ADCs
1. 24-bit, ΔΣ data-acquisition system ADC
2. 16-bit, 100-kSPS sampling micropower ADC
3. 4- or 8-channel ADCs
 - Complete, single-chip touch-screen controller
4. 5-V, 200-kSPS, 4- or 8-channel bipolar ADCs
 - 5-V, 200-kSPS, 4- or 8-channel unipolar ADCs
5. 14-bit ADC with internal PGA, 32-word FIFOs
 - Dual-input, 12-bit ADC with 16-word FIFO option
6. 12-bit, high-speed ADC includes FIFO option
 - 20-bit, direct photosensor digitizer ADC

DACs
7. 20-bit, ΔΣ DACs
8. 16-bit, 2.5-mW DACs
9. Quad, 16-bit, low-power DACs
 - 16-bit, serial-input, voltage-output, quad DACs
10. 10-bit, 8-channel DACs
11. 12-bit, 8-channel DACs

Resources
10. ADC selection guide
12. DSP/Codecs selection guide
13. DAC selection guide
14. Application reports
15. Evaluation modules

Sine On
Data-Acquisition Products

New name, same great analog/mixed-signal products

Page 2
24-bit, 40-kSPS, +5-V supply ADC for high-resolution measurement applications

Quad, 16-bit DACs
±10-V output with force and sense reference input and DAC output

Read Sine On online at www.ti.com/sc/sineon
24-bit, delta-sigma, +5-V supply data-acquisition system

ADS1250/ADS1252

Get samples, datasheets and EVMs at:
www.ti.com/sc/device
Replace device in URL with ads1250 or ads1252

- Differential inputs
- External reference
- Serial SPI compatible interface
- Applications include:
 - Cardiac diagnostics
 - Direct thermocouple interface
 - Infrared pyrometer
 - Liquid/gas chromatography
 - Precision process control
 - Portable instrumentation
- Packaging:
 - ADS1250 is available in 16-lead SO
 - ADS1252 is available in 8-lead SO
- Suggested resale price (in quantities of 1,000):
 - ADS1250 pricing starts at $6.55 each
 - ADS1252 pricing starts at $5.25 each

<table>
<thead>
<tr>
<th>Comparison</th>
<th>ADS1250</th>
<th>ADS1252</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>20 bits</td>
<td>24 bits</td>
</tr>
<tr>
<td>No missing codes</td>
<td>20 bits</td>
<td>24 bits</td>
</tr>
<tr>
<td>Effective resolution</td>
<td>18 bits</td>
<td>19 bits</td>
</tr>
<tr>
<td>Sample rate</td>
<td>25 kSPS</td>
<td>40 kSPS</td>
</tr>
<tr>
<td>Integral non-linearity</td>
<td>0.02%</td>
<td>0.015%</td>
</tr>
<tr>
<td>Programmable gain amp</td>
<td>1, 2, 4, 8</td>
<td>No</td>
</tr>
</tbody>
</table>

ADS1250 block diagram

16-bit, 100-kSPS sampling, 2.7-V to 5.25-V micropower ADCs

ADS8320/ADS8321

Get samples and datasheets at:
www.ti.com/sc/device
Replace device in URL with ads8320 or ads8321

- 100-kSPS sampling rate
- Micropower (ADS8320)
 - 1.8 mW at 100 kSPS and 2.7 V
 - 0.1 mW at 10 kSPS and 2.7 V
- Micropower (ADS8321)
 - 4.5 mW at 100 kSPS and 5 V
 - 1 mW at 10 kSPS and 5 V
- Powerdown: 3 µA max
- Serial (SPI/SSI) interface
- Applications include:
 - Battery-operated systems
 - Remote data acquisition
 - Simultaneous sampling, multi-channel systems
 - Industrial controls
 - Robotics
- Packaging: available in 8-lead MSOP
- Suggested resale price starts at $6.25 each in quantities of 1,000

ADS8320/ADS8321 block diagram

For technical support and ordering literature, see page 15.
16-bit, 4- and 8-channel serial output sampling ADCs

ADS8341/ADS8344

Get samples and datasheets at: www.ti.com/sc/device
Replace device in URL with ads8341 or ads8344

- Up to 100-kSPS conversion rate
- Single supply: 2.7 V to 5 V
- Synchronous serial interface
- Input channels:
 - 4-ch single-ended or 2-ch differential (ADS8341)
 - 8-ch single-ended or 4-ch differential (ADS8344)
- On-board multiplexer
- Shutdown mode reduces power dissipation to under 15 µW
- Typical power dissipation in 8 mW (ADS8341) at 100 kSPS throughput rate and a ±5-V supply
- Applications include:
 - Data acquisition
 - Test and measurement
 - Industrial process control
 - Battery-powered systems
 - Personal digital assistants (PDAs)
- Packaging:
 - ADS8341 is available in 16-lead SSOP
 - ADS8344 is available in 20-lead QSOP and SSOP
- Suggested resale price (in quantities of 1,000):
 - ADS8341 pricing starts at $7.00 each
 - ADS8344 pricing starts at $7.50 each

ADS8341/ADS8344 block diagram

Complete, single-chip touch-screen controller in 16-lead TSSOP

ADS7846

Get samples, datasheet and EVM at: www.ti.com/sc/ads7846

- >125-kSPS sample rate
- 2.2-V to 5.25-V single-supply operation
- Internal ±2.5-V reference
- Direct battery measurement (0 V to 6 V)
- On-chip temperature measurement
- Touch-pressure measurement (Z-axis)
- QSPI/SPI 3-wire interface
- Auto powering down
- Applications include:
 - Personal digital assistants (PDAs)
 - Portable instruments
 - Point-of-sale terminals
 - Touch-screen monitors
 - Cellular phones
- Packaging: available in 16-lead TSSOP and SSOP
- Suggested resale price starts at $2.30 each in quantities of 1,000

ADS7846 simplified block diagram

Read Sine On online at www.ti.com/sc/sineon
12- or 14-bit, 5-V, 200-kSPS
4- or 8-channel bipolar ADCs

TLC2574/TLC2578, TLC3574/TLC3578

- Maximum throughput 200 kSPS
- Multiple analog inputs:
 - 8 single-ended channels (TLC2578, TLC3578)
 - 4 single-ended channels (TLC2574, TLC3574)
- Built-in conversion clock and 8-word FIFO
- Single 5-V analog supply and 3- or 5-V digital supply
- Pseudo-differential analog inputs
- Hardware-controlled and programmable sampling period
- Powerdown:
 - Software powerdown mode (25 µA max)
 - Auto powerdown mode (50 µA)
- Programmable auto channel sweep
- Hardware configuration mode
- INL: ±1.5 LSB, 10LSB: ±1 LSB
- SPI/I2C-compatible serial interfaces with SCLK up to 25 MHz
- Analog input range: ±10 V
- Powering: available in 24-lead TSSOP, 24-lead SOIC and 20-lead DIP
- Suggested resale price (in quantities of 1,000):
 - TLC2574 pricing starts at $4.98 each
 - TLC2578 pricing starts at $5.48 each
 - TLC3574 pricing starts at $9.97 each
 - TLC3578 pricing starts at $10.72 each

14-bit, 5-V, 200-kSPS
4- or 8-channel unipolar ADCs

TLC3544/TLC3548

- Throughput 200 kSPS
- Built-in 4-V reference, conversion clock and 8-word FIFO
- Single 5-V analog supply and 3- or 5-V digital supply
- Pseudo-differential analog inputs
- Hardware-controlled and programmable sampling period
- Low (ADC) operating current 4 mA
- Powerdown:
 - Software powerdown mode (10 µA max without reference)
 - Auto-powerdown mode (1.5 mA, internal reference)
- Programmable auto channel sweep
- Hardware configuration mode
- INL/DNL: ±1.5 LSB
- SPI/I2C-compatible serial interfaces with SCLK up to 25 MHz
- Analog input range: 0 V to reference voltage
- Powering: 24-lead SOIC and 24-lead TSSOP
- Suggested resale price (in quantities of 1,000):
 - TLC3544 pricing starts at $11.23 each
 - TLC3548 pricing starts at $11.98 each

For technical support and ordering literature, see page 15.
14-bit ADC family includes internal PGA, 32-word FIFOs

THS14F01/THS14F03

- 14-bit resolution
- 1- and 3-MSPS speed grades available
- On-chip FIFO for optimized data transfer
- Differential nonlinearity (DNL) ±0.6 LSB (typ)
- Integral nonlinearity (INL) ±1.5 LSB (typ)
- Internal reference
- Differential inputs
- Programmable gain amplifier (PGA)
- Microprocessor-compatible parallel interface
- Timing compatible with TMS320C54x™ DSP platform
- 3.3-V single supply
- Powerdown mode
- Monolithic CMOS design
- Packaging: available in 32-lead TSSOP
- Suggested resale price (in quantities of 1,000):
 • THS14F01 pricing starts at $9.75 each
 • THS14F03 pricing starts at $12.75 each

THS14F01/THS14F03 block diagram

Dual-input, 12-bit ADC with 16-word FIFO option

THS12082/THS1209

- 8-MSPS sample rate
- Simultaneous sampling of 2 single-ended inputs, 1 differential-input, or combination of both
- Integrated 16-word FIFO (THS12082)
- Differential nonlinearity error: ±1 LSB
- Integral nonlinearity error: ±1.5 LSB
- Signal-to-noise and distortion ratio: 66 dB at fI = 2 MHz
- Auto-scan mode for 2 inputs
- 3.3- or 5-V digital-interface compatible
- Low power: 186 mW (typ)
- 3.3-V analog single supply operation
- Internal voltage references: 50 ppm/°C and ±5% accuracy
- Parallel microcontroller/DSP interface
- Applications include:
 • Radar
 • Instrumentation
 • Motor control
 • Wireless and telecom infrastructure
 • Automotive
- Packaging: available in 32-lead TSSOP
- Suggested resale price (in quantities of 1,000):
 • THS12082 pricing starts at $9.95 each
 • THS1209 pricing starts at $8.94 each

THS12082/THS1209 simplified block diagram

Read Sine On online at www.ti.com/sc/sineon
12-bit, high-speed ADC includes FIFO option

THS1206/THS1207

Get samples, datasheets, EVMs and application reports at:
www.ti.com/sc/docs/products/analog/device.html
Replace device on URL with ths1206 or ths1207

➤ 6-MSPS sample rate
➤ 4 single-ended or 2 differential inputs
➤ Simultaneous sampling of 4 single-ended, 2 differential inputs or combination of both
➤ Integrated 16-word FIFO (THS1206)
➤ Differential nonlinearity error: ±1 LSB
➤ Integral nonlinearity error: ±1.5 LSB
➤ Signal-to-noise and distortion ratio: 68 dB at f_in = 2 MHz
➤ Auto-scan mode for 2, 3 or 4 inputs
➤ 3-V or 5-V digital-interface compatible
➤ Low power: 186 mW (typ)
➤ 5-V analog single-supply operation
➤ Internal voltage reference: 50 ppm/°C and ±5% accuracy
➤ Glueless DSP interface
➤ Parallel microcontroller/DSP interface
➤ Packaging: available in 32-lead TSOP
➤ Suggested resale price (in quantities of 1,000):
 • THS1206 pricing starts at $13.00 each
 • THS1207 pricing starts at $11.99 each

THS1206/THS1207 simplified block diagram with DSP interface

20-bit, direct photosensor digitizer ADC

DDC112

Get datasheet at:
www.ti.com/sc/docs/ddc112

➤ Monolithic charge measurement ADC
➤ Dual-current input
➤ Continuous charge integration on each input
➤ Internal programmable gain ranges
➤ Easy cascadable serial output
➤ 50-pC to 1000-pC input range
➤ 20-bit digitized output
➤ Applications include:
 • Direct photosensor digitization
 • CT and luggage scanner DAS
 • Blood analysis
 • Precision process control
 • Infrared temp sensor (pyrometer)
➤ Packaging: available in 28-lead SO
➤ Suggested resale price starts at $11.50 each in quantities of 1,000

DDC112 block diagram

For technical support and ordering literature, see page 15.
20-bit, ΔΣ, low-power DACs optimized for industrial applications
DAC1220/DAC1221

Get samples, datasheets and EVMs at:
www.ti.com/sc/device
Replace device in URL with dac1220 or dac1221

➤ 20-bit monotonicity guaranteed over –40 °C to +85 °C
➤ Low power: 2.5 mW
➤ Settling time: 2 ms to 0.012%
➤ Max linearity error: ±0.0015%
➤ Voltage output
➤ On-chip calibration circuitry provides extremely low offset and gain error
➤ Synchronous serial interface is SPI/Microwire compatible
➤ Applications include:
 • Process control
 • ATE pin electronics
 • Closed-loop servo control
 • Smart transmitters
 • Portable instruments
➤ Packaging: available in 16-lead SSOP
➤ Suggested resale price (in quantities of 1,000):
 • DAC1220 pricing starts at $6.25 each
 • DAC1221 pricing starts at $4.95 each

DAC1220 block diagram

16-bit, 2.5-mW low-power DACs
DAC7631/DAC7641

Get samples and datasheets at:
www.ti.com/sc/device
Replace device in URL with dac7631 or dac7641

➤ Low power: 2.5 mW
➤ Setting time: 10 µs to 0.003%
➤ 15-bit monotonicity guaranteed over –40 °C to +85 °C
➤ Unipolar or bipolar operation
➤ Includes configurable output amplifier
➤ Processor interface:
 • Serial DAC7631
 • Parallel DAC7641
➤ User-selectable reset to mid-scale or zero-scale
➤ Voltage output specifically designed for fast settling in single supply (+5) and low-voltage dual supply (±5) applications
➤ Applications include:
 • ATE pin electronics
 • Closed-loop servo control
 • Motor control
 • Data-acquisition systems
➤ Packaging:
 • DAC7631 is available in 20-lead SSOP
 • DAC7641 is available in 32-lead TQFP
➤ Suggested resale price (in quantities of 1,000):
 • DAC7631 pricing starts at $5.50 each
 • DAC7641 pricing starts at $5.85 each

DAC7631/DAC7641 block diagrams

Read Sine On online at www.ti.com/sc/sineon
Quad, 16-bit, low-power DACs

DAC7634/DAC7644

Get samples and datasheets at:
www.ti.com/sc/device
Replace device in URL with dac7634 or dac7644

- Low power: 10 mW
- Unipolar/bipolar operation
- Settling time: 10 µs to 0.003%
- 15-bit linearity and monotonicity: –40 °C to +85 °C
- Programmable reset to mid-scale or zero-scale
- Double-buffered data inputs
- Open-loop output allows flexibility in applications such as high current outputs, 4-20 mA outputs, filtering, scaling, and driving buffered cables
- Applications include:
 - Process control
 - Closed-loop servo control
 - Motor control
 - Data-acquisition systems
 - DAC-per-pin programmers
- Packaging: available in 48-lead SSOP
- Suggested resale price starts at $18.75 each in quantities of 1,000

16-bit, serial-input, voltage-output, quad DACs

DAC7734/DAC7744

Get samples and datasheets at:
www.ti.com/sc/device
Replace device in URL with dac7734 or dac7744

- Low power: 200 mW
- Unipolar/bipolar operation
- Settling time: 10 µs to 0.003%
- Single supply output range: +10 V
- Dual supply output range: ±10 V
- 16-bit linearity and monotonicity: –40 °C to +85 °C
- Double-buffered data inputs
- Applications include:
 - Process control
 - ATE pin electronics
 - Closed-loop servo control
 - Motor control
 - Data-acquisition systems
 - DAC-per-pin programmers
- Packaging: available in 48-lead SSOP
- Suggested resale price (in quantities of 1,000):
 - DAC7734 pricing starts at $27.10 each
 - DAC7744 pricing starts at $25.98 each

For technical support and ordering literature, see page 15.
10-bit, 8-channel, 2.7-V to 5.5-V, low-power DACs with powerdown

TLV5608/TLV5631

- Eight voltage-output DACs per package
- Programmable settling time vs. power consumption
 - 1 µs in fast mode at 5 V
 - 3 µs in slow mode at 5 V
- Compatible with SPI serial ports and TI’s TMS320™ DSP family
- Internal reference (TLV5631)
- Monotonic over temperature
- Low power consumption:
 - 18 mW in slow mode at 3 V
 - 48 mW in fast mode at 3 V
- Powerdown mode
- Data output for daisy-chaining
- Applications include:
 - Digital servo control loops
 - Digital offset and gain adjustment
 - Industrial process control
 - Machine and motion-control devices
- Mass storage devices
- Packaging: available in 20-lead SOIC and 20-lead TSSOP
- Suggested resale price starts at $5.10 each in quantities of 1,000

TLV5608/TLV5631 block diagram

12-bit, 8-channel, 2.7-V to 5.5-V, low-power DACs with powerdown

TLV5610/TLV5630

- Eight voltage-output DACs per package
- Programmable settling time vs. power consumption
 - 1 µs in fast mode at 5 V
 - 3 µs in slow mode at 5 V
- Compatible with SPI serial ports and TI’s TMS320™ DSP family
- Internal reference (TLV5630)
- Monotonic over temperature
- Low power consumption:
 - 18 mW in slow mode at 3 V
 - 48 mW in fast mode at 3 V
- Powerdown mode
- Buffered, high-impedance reference inputs
- Data output for daisy-chaining
- Applications include:
 - Digital servo control loops
 - Digital offset and gain adjustment
 - Industrial process control
 - Machine and motion-control devices
 - Mass storage devices
- Packaging: available in 20-lead SOIC and 20-lead TSSOP
- Suggested resale price starts at $9.30 each in quantities of 1,000

TLV5610/TLV5630 block diagram

Read Sine On online at www.ti.com/sc/sineon
ADCs

50kSPS<fs<200kSPS Successive Approximation Architecture

<table>
<thead>
<tr>
<th>Model</th>
<th>Bits</th>
<th>Sampling Rate</th>
<th>Channels</th>
<th>Interface</th>
<th>Input Voltage (V)</th>
<th>Linearity (%)</th>
<th>NCM (Bit)</th>
<th>SNR/AD (dB)</th>
<th>Power (mW/V)</th>
<th>Leads</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS7805</td>
<td>16</td>
<td>100</td>
<td>1</td>
<td>Serial</td>
<td>±10, ±3.3, ±5</td>
<td>100/+5</td>
<td>20 BB</td>
<td>$20.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS7809</td>
<td>16</td>
<td>100</td>
<td>1</td>
<td>Serial</td>
<td>±10, ±3.3, ±5</td>
<td>100/+5</td>
<td>20 BB</td>
<td>$20.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS8321</td>
<td>16</td>
<td>100</td>
<td>2</td>
<td>SE Serial</td>
<td>±VREF ±VREF Ext</td>
<td>±0.012</td>
<td>15 BB</td>
<td>$6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS8324</td>
<td>16</td>
<td>100</td>
<td>2</td>
<td>SE Serial</td>
<td>±VREF ±VREF Ext</td>
<td>±0.012</td>
<td>15 BB</td>
<td>$6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS8341</td>
<td>16</td>
<td>100</td>
<td>2</td>
<td>SE Serial</td>
<td>±VREF ±VREF Ext</td>
<td>±0.012</td>
<td>15 BB</td>
<td>$6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5kSPS<fs<50kSPS Successive Approximation Architecture

<table>
<thead>
<tr>
<th>Model</th>
<th>Bits</th>
<th>Sampling Rate</th>
<th>Channels</th>
<th>Interface</th>
<th>Input Voltage (V)</th>
<th>Linearity (%)</th>
<th>NCM (Bit)</th>
<th>SNR/AD (dB)</th>
<th>Power (mW/V)</th>
<th>Leads</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC542</td>
<td>10</td>
<td>38</td>
<td>1</td>
<td>Serial</td>
<td>VREF Ext ±0.1</td>
<td>1.3/+2.7</td>
<td>8 TI</td>
<td>$1.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC546</td>
<td>10</td>
<td>40</td>
<td>19</td>
<td>Serial</td>
<td>VREF Ext ±0.2</td>
<td>6/+5</td>
<td>28 TI</td>
<td>$3.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC549</td>
<td>10</td>
<td>40</td>
<td>1</td>
<td>Serial</td>
<td>VREF Ext ±0.2</td>
<td>9/+3, 6</td>
<td>8 TI</td>
<td>$0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV0834</td>
<td>8</td>
<td>41</td>
<td>4</td>
<td>SE Serial</td>
<td>VREF Ext ±0.2</td>
<td>2.7/+3.3</td>
<td>14 TI</td>
<td>$1.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV0832</td>
<td>8</td>
<td>44.7</td>
<td>2</td>
<td>SE Serial</td>
<td>VREF Ext ±0.2</td>
<td>5/+3.3</td>
<td>8 TI</td>
<td>$1.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV0831</td>
<td>8</td>
<td>49</td>
<td>1</td>
<td>SE Serial</td>
<td>VREF Ext ±0.2</td>
<td>0.7/+3.3</td>
<td>8 TI</td>
<td>$1.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5kSPS<fs<50kSPS Delta-Sigma/Dual-Slope Architecture

<table>
<thead>
<tr>
<th>Model</th>
<th>Bits</th>
<th>Sampling Rate</th>
<th>Channels</th>
<th>Interface</th>
<th>Input Voltage (V)</th>
<th>Linearity (%)</th>
<th>NCM (Bit)</th>
<th>SNR/AD (dB)</th>
<th>Power (mW/V)</th>
<th>Leads</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS1240</td>
<td>24</td>
<td>0.015</td>
<td>2</td>
<td>Diff/4 SE</td>
<td>Serial</td>
<td>±0.0015</td>
<td>24 BB</td>
<td>$3.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS1241</td>
<td>24</td>
<td>0.015</td>
<td>4</td>
<td>Diff/8 SE</td>
<td>Serial/Flash</td>
<td>±0.0015</td>
<td>24 BB</td>
<td>$3.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS1216</td>
<td>24</td>
<td>0.78</td>
<td>4</td>
<td>Diff/8 SE</td>
<td>Serial/Flash</td>
<td>±0.0015</td>
<td>24 BS</td>
<td>$6.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS1218</td>
<td>24</td>
<td>0.78</td>
<td>4</td>
<td>Diff/8 SE</td>
<td>Serial/Flash</td>
<td>±0.0015</td>
<td>24 BS</td>
<td>$7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- (1) NS = not specified.
- (2) Suggested resale price in quantities of 1,000.
- *BB = from Burr-Brown product line; TI = Texas Instruments product.
ADCs (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Rev</th>
<th>Bits</th>
<th>Rate (kSPS)</th>
<th>Channels</th>
<th>Interface</th>
<th>Input Voltage (V)</th>
<th>Linearity (%)</th>
<th>NMC (Bit)</th>
<th>SNR (dB)</th>
<th>Power (mW/V)</th>
<th>Price/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS8343</td>
<td>16</td>
<td>100</td>
<td>2 D/A 4 SE</td>
<td>Serial</td>
<td>x8/64 at x8/64</td>
<td>Ext</td>
<td>±0.009</td>
<td>15</td>
<td>88 (typ)</td>
<td>10 x 5</td>
<td>$7.00</td>
</tr>
<tr>
<td>ADS8344</td>
<td>16</td>
<td>100</td>
<td>2 D/A 4 SE</td>
<td>Serial</td>
<td>x8/64 at x8/64</td>
<td>Ext</td>
<td>±0.009</td>
<td>15</td>
<td>88 (typ)</td>
<td>10 x 5</td>
<td>$7.50</td>
</tr>
<tr>
<td>TLC5680</td>
<td>14</td>
<td>200</td>
<td>8 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.98</td>
</tr>
<tr>
<td>TLC5682</td>
<td>14</td>
<td>200</td>
<td>8 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$10.22</td>
</tr>
<tr>
<td>T/LC5684</td>
<td>14</td>
<td>200</td>
<td>8 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.83</td>
</tr>
<tr>
<td>T/LC5677</td>
<td>14</td>
<td>200</td>
<td>8 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$11.98</td>
</tr>
<tr>
<td>T/LC5654</td>
<td>14</td>
<td>200</td>
<td>4 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.83</td>
</tr>
<tr>
<td>T/LC5675</td>
<td>14</td>
<td>200</td>
<td>4 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$11.98</td>
</tr>
<tr>
<td>T/LC5652</td>
<td>14</td>
<td>200</td>
<td>2 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.83</td>
</tr>
<tr>
<td>T/LC5654</td>
<td>14</td>
<td>200</td>
<td>4 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$11.98</td>
</tr>
<tr>
<td>T/LC5652</td>
<td>14</td>
<td>200</td>
<td>2 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.83</td>
</tr>
<tr>
<td>T/LC5654</td>
<td>14</td>
<td>200</td>
<td>4 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$11.98</td>
</tr>
<tr>
<td>T/LC5652</td>
<td>14</td>
<td>200</td>
<td>2 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.83</td>
</tr>
<tr>
<td>T/LC5654</td>
<td>14</td>
<td>200</td>
<td>4 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$11.98</td>
</tr>
<tr>
<td>T/LC5652</td>
<td>14</td>
<td>200</td>
<td>2 SE/DIY</td>
<td>Serial</td>
<td>0</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>95</td>
<td>25/30</td>
<td>$11.83</td>
</tr>
<tr>
<td>T/LC5654</td>
<td>14</td>
<td>200</td>
<td>4 SE/DIY</td>
<td>Serial</td>
<td>±10</td>
<td>Int</td>
<td>±0.107</td>
<td>14</td>
<td>76</td>
<td>30/35</td>
<td>$11.98</td>
</tr>
</tbody>
</table>

Notes: (1) NS = not specified. (2) Suggested resale price in quantities of 1,000. *BB = from TI's Burr-Brown product line; TI = Texas Instruments product.

Read Sine On online at www.ti.com/sc/sineon
ADCs (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Bits</th>
<th>Rate (kSPS)</th>
<th>Channels</th>
<th>Interface</th>
<th>Input Linearity</th>
<th>No. MC (dB)</th>
<th>SNDR (dB)</th>
<th>Power (mW/V)</th>
<th>Price* (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS8232</td>
<td>16</td>
<td>500</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.0045</td>
<td>15</td>
<td>90 (typ)</td>
</tr>
<tr>
<td>ADS8233</td>
<td>16</td>
<td>500</td>
<td>1</td>
<td>Parallel</td>
<td>±2.5±2.5</td>
<td>Yes</td>
<td>±0.0045</td>
<td>15</td>
<td>90 (typ)</td>
</tr>
<tr>
<td>THS1408</td>
<td>14</td>
<td>6000</td>
<td>1</td>
<td>Diff</td>
<td>+3.3</td>
<td>Yes</td>
<td>±0.015</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>THS1410</td>
<td>14</td>
<td>6000</td>
<td>1</td>
<td>Diff</td>
<td>+3.3</td>
<td>Yes</td>
<td>±0.015</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>THS1416</td>
<td>14</td>
<td>6000</td>
<td>1</td>
<td>Diff</td>
<td>+3.3</td>
<td>Yes</td>
<td>±0.015</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>THS1420</td>
<td>14</td>
<td>6000</td>
<td>1</td>
<td>Diff</td>
<td>±3.3</td>
<td>Yes</td>
<td>±0.015</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>THS1424</td>
<td>14</td>
<td>6000</td>
<td>1</td>
<td>Diff</td>
<td>±3.3</td>
<td>Yes</td>
<td>±0.015</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>THS12082</td>
<td>10</td>
<td>6000</td>
<td>1</td>
<td>Diff/2 SE</td>
<td>±2.5</td>
<td>Yes</td>
<td>±0.036</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>THS1209</td>
<td>10</td>
<td>6000</td>
<td>1</td>
<td>Diff/2 SE</td>
<td>±2.5</td>
<td>Yes</td>
<td>±0.036</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>THS1206</td>
<td>10</td>
<td>6000</td>
<td>2</td>
<td>Diff/4 SE</td>
<td>±2.5</td>
<td>Yes</td>
<td>±0.036</td>
<td>12</td>
<td>66</td>
</tr>
<tr>
<td>THS1207</td>
<td>10</td>
<td>6000</td>
<td>2</td>
<td>Diff/4 SE</td>
<td>±2.5</td>
<td>Yes</td>
<td>±0.036</td>
<td>12</td>
<td>66</td>
</tr>
<tr>
<td>ADS8093</td>
<td>12</td>
<td>5000</td>
<td>1</td>
<td>Diff/1 SE</td>
<td>±5</td>
<td>Yes</td>
<td>±0.019</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>ADS9100</td>
<td>12</td>
<td>8000</td>
<td>1</td>
<td>Diff/2 SE</td>
<td>±5</td>
<td>Yes</td>
<td>±0.019</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>ADS9109</td>
<td>12</td>
<td>8000</td>
<td>2</td>
<td>Diff/4 SE</td>
<td>±5</td>
<td>Yes</td>
<td>±0.019</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>TLV1578</td>
<td>10</td>
<td>1250</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.01</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>TLV1572</td>
<td>10</td>
<td>1250</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.01</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>TLV1571</td>
<td>10</td>
<td>1250</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.01</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>TLV1570</td>
<td>10</td>
<td>1250</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.01</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>TLV1562</td>
<td>10</td>
<td>2000</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.01</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>TLV1571</td>
<td>8</td>
<td>1250</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.015</td>
<td>8</td>
<td>58</td>
</tr>
<tr>
<td>TLV1562</td>
<td>8</td>
<td>1250</td>
<td>1</td>
<td>Parallel</td>
<td>±5</td>
<td>Yes</td>
<td>±0.015</td>
<td>8</td>
<td>58</td>
</tr>
</tbody>
</table>

DSPcodecs

<table>
<thead>
<tr>
<th>Device</th>
<th>Resolution (Bits)</th>
<th>Sampling Rate (kSPS)</th>
<th>Bandwidth (kSPS)</th>
<th>SNR (dB)</th>
<th>Number of Channels</th>
<th>Supply Voltage (V)</th>
<th>Power (mW)</th>
<th>Package</th>
<th>Source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV3300AC27</td>
<td>16</td>
<td>22.05</td>
<td>Up to 9.92</td>
<td>80/95</td>
<td>2</td>
<td>3.3-5</td>
<td>171</td>
<td>TQFP-48</td>
<td>TI</td>
</tr>
<tr>
<td>TLV3300AC11</td>
<td>16</td>
<td>22.05</td>
<td>Up to 9.92</td>
<td>80/95</td>
<td>1</td>
<td>3.3-5</td>
<td>39</td>
<td>TQFP-48</td>
<td>TI</td>
</tr>
</tbody>
</table>

Notes: (1) NS = not specified. (2) Suggested resale price in quantities of 1,000. *BB = from TI’s Burr-Brown product line; TI = Texas Instruments product.

For technical support and ordering literature, see page 15.
Selection Guide for Data-Acquisition Products

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution (Bits)</th>
<th>Settling Time (µs)</th>
<th># Output DACs</th>
<th>Output (V)</th>
<th>(V_{ref}) (%)</th>
<th>Linearity (%)</th>
<th>Power Voltage (mW/V)</th>
<th># Leads</th>
<th>Source*</th>
<th>Price (1K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC1220</td>
<td>20</td>
<td>10 ms</td>
<td>1 Serial</td>
<td>+5</td>
<td>±0.0015</td>
<td>20</td>
<td>315</td>
<td>16</td>
<td>BB</td>
<td>$6.25</td>
</tr>
<tr>
<td>DAC1221</td>
<td>20</td>
<td>10 ms</td>
<td>1 Serial</td>
<td>+2.5</td>
<td>±0.0015</td>
<td>15</td>
<td>180</td>
<td>16</td>
<td>BB</td>
<td>$4.95</td>
</tr>
<tr>
<td>DAC712</td>
<td>16</td>
<td>12</td>
<td>1 Parallel</td>
<td>±10</td>
<td>±0.003</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>BB</td>
<td>$12.38</td>
</tr>
<tr>
<td>DAC714</td>
<td>16</td>
<td>10</td>
<td>1 Serial</td>
<td>±10</td>
<td>±0.0015</td>
<td>15</td>
<td>0.00000</td>
<td>16</td>
<td>BB</td>
<td>$12.38</td>
</tr>
<tr>
<td>DAC715</td>
<td>16</td>
<td>10</td>
<td>1 Parallel</td>
<td>±10</td>
<td>±0.003</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>BB</td>
<td>$12.38</td>
</tr>
<tr>
<td>DAC716</td>
<td>16</td>
<td>10</td>
<td>1 Serial</td>
<td>±10</td>
<td>±0.003</td>
<td>15</td>
<td>0.00000</td>
<td>16</td>
<td>BB</td>
<td>$12.38</td>
</tr>
<tr>
<td>DAC7634</td>
<td>16</td>
<td>10</td>
<td>4 Serial</td>
<td>+VREF, ±VREF</td>
<td>±0.0015</td>
<td>15</td>
<td>0.00000</td>
<td>48</td>
<td>BB</td>
<td>$19.75</td>
</tr>
<tr>
<td>DAC7641</td>
<td>16</td>
<td>10</td>
<td>1 Parallel</td>
<td>+VREF, ±VREF</td>
<td>±0.0015</td>
<td>15</td>
<td>0.00000</td>
<td>48</td>
<td>BB</td>
<td>$19.75</td>
</tr>
<tr>
<td>DAC7644</td>
<td>16</td>
<td>10</td>
<td>4 Parallel</td>
<td>±VREF, ±VREF</td>
<td>±0.0015</td>
<td>15</td>
<td>0.00000</td>
<td>48</td>
<td>BB</td>
<td>$19.75</td>
</tr>
<tr>
<td>DAC7651</td>
<td>16</td>
<td>10</td>
<td>1 Serial</td>
<td>+10, ±10</td>
<td>±0.003</td>
<td>15</td>
<td>0.00000</td>
<td>48</td>
<td>BB</td>
<td>$7.80</td>
</tr>
<tr>
<td>DAC7654</td>
<td>16</td>
<td>10</td>
<td>4 Serial</td>
<td>+4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>48</td>
<td>BB</td>
<td>$7.80</td>
</tr>
<tr>
<td>DAC7657</td>
<td>16</td>
<td>10</td>
<td>4 Serial</td>
<td>+4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>48</td>
<td>BB</td>
<td>$7.80</td>
</tr>
<tr>
<td>DAC7661</td>
<td>12</td>
<td>10</td>
<td>1 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7671</td>
<td>12</td>
<td>10</td>
<td>2 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7672</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7674</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7675</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7676</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7677</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7678</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7679</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC7680</td>
<td>12</td>
<td>10</td>
<td>4 Serial</td>
<td>±4</td>
<td>±0.012</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>BB</td>
<td>$1.99</td>
</tr>
<tr>
<td>DAC811</td>
<td>12</td>
<td>4</td>
<td>1 Parallel</td>
<td>±10, ±5, ±10</td>
<td>±0.0009</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>BB</td>
<td>$9.95</td>
</tr>
<tr>
<td>DAC813</td>
<td>12</td>
<td>4</td>
<td>1 Parallel</td>
<td>+10, ±5, ±10</td>
<td>±0.0009</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>BB</td>
<td>$9.95</td>
</tr>
<tr>
<td>TLV5614</td>
<td>12</td>
<td>3</td>
<td>4 Serial</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>16</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5624</td>
<td>12</td>
<td>3</td>
<td>4 Parallel</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5626</td>
<td>12</td>
<td>4</td>
<td>4 Parallel</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5634</td>
<td>12</td>
<td>3</td>
<td>4 Serial</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>16</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5636</td>
<td>12</td>
<td>3</td>
<td>4 Parallel</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5638</td>
<td>12</td>
<td>4</td>
<td>4 Parallel</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5639</td>
<td>12</td>
<td>4</td>
<td>4 Parallel</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>28</td>
<td>TI</td>
<td>$8.30</td>
</tr>
<tr>
<td>TLV5640</td>
<td>12</td>
<td>1/3</td>
<td>8 Serial</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>TI</td>
<td>$6.70</td>
</tr>
<tr>
<td>TLV5642</td>
<td>10</td>
<td>1/3</td>
<td>8 Serial</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>TI</td>
<td>$6.70</td>
</tr>
<tr>
<td>TLV5644</td>
<td>10</td>
<td>1/3</td>
<td>8 Serial</td>
<td>VREF</td>
<td>±0.1</td>
<td>15</td>
<td>0.00000</td>
<td>20</td>
<td>TI</td>
<td>$6.70</td>
</tr>
<tr>
<td>UCC3800</td>
<td>10</td>
<td>2.5</td>
<td>2 Serial</td>
<td>±1, ±3.2</td>
<td>±0.2</td>
<td>15</td>
<td>0.00000</td>
<td>8</td>
<td>TI</td>
<td>$3.37</td>
</tr>
<tr>
<td>UCC3800A</td>
<td>10</td>
<td>2.5</td>
<td>2 Serial</td>
<td>±1, ±3.2</td>
<td>±0.2</td>
<td>15</td>
<td>0.00000</td>
<td>8</td>
<td>TI</td>
<td>$3.37</td>
</tr>
<tr>
<td>UCC3800B</td>
<td>10</td>
<td>2.5</td>
<td>2 Serial</td>
<td>±1, ±3.2</td>
<td>±0.2</td>
<td>15</td>
<td>0.00000</td>
<td>8</td>
<td>TI</td>
<td>$3.37</td>
</tr>
<tr>
<td>UCC3800C</td>
<td>10</td>
<td>2.5</td>
<td>2 Serial</td>
<td>±1, ±3.2</td>
<td>±0.2</td>
<td>15</td>
<td>0.00000</td>
<td>8</td>
<td>TI</td>
<td>$3.37</td>
</tr>
</tbody>
</table>

NOTES: Suggested resale price in quantities of 1,000. *BB = from TI's Burr-Brown product line; TI = Texas Instruments product.

Read Sine On online at www.ti.com/sc/sineon
DACs (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution (Bits)</th>
<th>Settling Time (µs)</th>
<th>Output DACs</th>
<th>Interface</th>
<th>Output (V)</th>
<th>Linearity (%)</th>
<th>Mux (Bits)</th>
<th>Power Voltage (mW/V)</th>
<th># Leads</th>
<th>Source*</th>
<th>Price(1) (¥)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC5615</td>
<td>10</td>
<td>12.5</td>
<td>1 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.1</td>
<td>10</td>
<td>0.75/±5</td>
<td>8</td>
<td>TI</td>
<td>1.85</td>
</tr>
<tr>
<td>TLV5618</td>
<td>10</td>
<td>1/3</td>
<td>1 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>8</td>
<td>±1/±5/±5</td>
<td>10</td>
<td>TI</td>
<td>5.10</td>
</tr>
<tr>
<td>TLV5620</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Int</td>
<td>±0.4</td>
<td>10</td>
<td>15/±3/±3</td>
<td>20</td>
<td>TI</td>
<td>5.50</td>
</tr>
<tr>
<td>TLC5620</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>12</td>
<td>1/±2/±2/±2</td>
<td>10</td>
<td>TI</td>
<td>2.29</td>
</tr>
<tr>
<td>TLV5621</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.5</td>
<td>12</td>
<td>2/±2/±2/±2</td>
<td>10</td>
<td>TI</td>
<td>2.29</td>
</tr>
<tr>
<td>TLV5620</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.5</td>
<td>8</td>
<td>±1/±1/±1</td>
<td>10</td>
<td>TI</td>
<td>2.29</td>
</tr>
<tr>
<td>TLC5628</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.8</td>
<td>8</td>
<td>±0.5/±1/±5</td>
<td>14</td>
<td>TI</td>
<td>2.50</td>
</tr>
<tr>
<td>TLV5621</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>10</td>
<td>18/5/18/5</td>
<td>14</td>
<td>TI</td>
<td>2.50</td>
</tr>
<tr>
<td>TLC5628</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>18</td>
<td>±2/±2/±2/±2/±2/±2/±2/±2</td>
<td>10</td>
<td>TI</td>
<td>2.50</td>
</tr>
<tr>
<td>TLV5625</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.8</td>
<td>18</td>
<td>±0.5/±1/±5</td>
<td>14</td>
<td>TI</td>
<td>2.72</td>
</tr>
<tr>
<td>TLC5628</td>
<td>8</td>
<td>10</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.9</td>
<td>8</td>
<td>±0.5/±1/±5</td>
<td>14</td>
<td>TI</td>
<td>2.72</td>
</tr>
<tr>
<td>TLV5623</td>
<td>8</td>
<td>3</td>
<td>1 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.5</td>
<td>8</td>
<td>0/±1/±1/±1</td>
<td>20</td>
<td>TI</td>
<td>2.12</td>
</tr>
<tr>
<td>TLV5627</td>
<td>8</td>
<td>3</td>
<td>4 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.8</td>
<td>8</td>
<td>±0.5/±1/±1</td>
<td>10</td>
<td>TI</td>
<td>2.15</td>
</tr>
<tr>
<td>TLV5623</td>
<td>8</td>
<td>1/3</td>
<td>8 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>10</td>
<td>18/5/18/5</td>
<td>20</td>
<td>TI</td>
<td>2.68</td>
</tr>
<tr>
<td>TLV5628</td>
<td>8</td>
<td>2,5/3</td>
<td>1 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>10</td>
<td>18/5/18/5</td>
<td>20</td>
<td>TI</td>
<td>2.68</td>
</tr>
<tr>
<td>TLV5625</td>
<td>8</td>
<td>2,5/3</td>
<td>2 Serial</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.4</td>
<td>10</td>
<td>18/5/18/5</td>
<td>20</td>
<td>TI</td>
<td>2.68</td>
</tr>
<tr>
<td>TCV5624</td>
<td>8</td>
<td>0,1</td>
<td>1 Parallel</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.5</td>
<td>8</td>
<td>0/±1/±1/±1</td>
<td>10</td>
<td>TI</td>
<td>1.45</td>
</tr>
<tr>
<td>TCV5628</td>
<td>8</td>
<td>0,1</td>
<td>4 Parallel</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.5</td>
<td>8</td>
<td>0/±1/±1/±1</td>
<td>10</td>
<td>TI</td>
<td>1.52</td>
</tr>
<tr>
<td>TCV5620</td>
<td>8</td>
<td>0,1</td>
<td>2 Parallel</td>
<td>V Ref</td>
<td>Ext</td>
<td>±0.5</td>
<td>8</td>
<td>0/±1/±1/±1</td>
<td>10</td>
<td>TI</td>
<td>1.37</td>
</tr>
</tbody>
</table>

NOTES: Suggested resale price in quantities of 1,000. *BB = from TI’s Burr-Brown product line; TI = Texas Instruments product.

Data-Acquisition Application Reports

- Interfacing A/D Converters TLC5540/10 to the DSP Starter Kit TMS320C31 (slaa118)
- Interfacing the TLC5510 Analog-to-Digital Converter to the TMS320C203 DSP (sbaa029)
- Using References to Generate Offsets for the TVS6511 Family Data Converters (sbaa031)
- Desigining with the THS1206 High-Speed Data Converter (sbaa039)
- Dynamic Tests for A/D Converter Performance (sbaa040)
- Analog-to-Digital Converter Grounding Practices Effect System Performance (sbaa053)
- Tips for Using the AD71xx Family of A/D Converters (sbaa059)
- Selecting an A/D Converter (sbaa061)
- Giving A/D Converters a Little Gain Boost with a Front End Analog Gain Stage (sbaa061)
- DEM-ADS1210/1211 Demo Board Tricks to Evaluate (sbaa071)
- Interfacing the ADS1210 with an 8xC51 Microcontroller (sbaa081)
- Accessing the ADS1210 Demo Board with your PC (sbaa081)
- Overriding the Inputs to the ADS1210, ADS1211, ADS1212, and ADS1213 (sbaa081)
- Synchronization of External Analog Multiplexers with the ΔΣ A/D Converters (sbaa091)
- Extract and Digitize AC Signals with a Single A/D Converter (sbaa091)
- A “Getting Started” Guide for the A/D Converters: ADS1210, ADS1211 (sbaa091)
- How to Get 23 Bits of Effective Resolution from Your 24-Bit Converter (sbaa091)
- Using the Continuous Parallel Mode with the ADS7804 and ADS7805 (sbaa091)
- ADS121x Analog to Digital Converter Applications Primer (sbaa091)
- Understanding the DDC112s Continuous and Non-Continuous Modes (sbaa092)
- The DDC112s Test Mode (sbaa093)
- Retrieving Data from the DDC112 (sbaa093)
- Evaluating the ADS7844E Using the Demo-ADS7844E/46E Evaluation Fixture (Touch Screen Controller) (sbaa093)
- Multi-DDC112 DUT Board for the DDC112 Evaluation Fixture (sbaa093)
- New Software for the DDC112 Evaluation Fixture (sbaa093)
- Creating a Bipolar Input Range for the DDC112 (sbaa094)
- Coding Schemes Used with Data Converters (sbaa094)

For a complete list of analog application reports, visit www.ti.com/sc/docs/apps/analog/index.htm

Data-Acquisition Products

Selection Guide for Data-Acquisition Products

For technical support and ordering literature, see page 15.
Data-Acquisition Products EVMs

The following evaluation modules (EVMs) are available for data converter devices. To order any of the EVM kits listed, please call our toll free order desk number at 1-800-477-8924 ext. 5800 in North America. To order in Asia, Europe, and other regions, contact the TI Product Information Center for your region or contact your local TI distributor; see www.ti.com/sc/docs/distmenu.htm for distributor listings. For a complete list of analog EVMs, visit www.ti.com/sc/docs/tools/analog/index.html.

Each EVM kit contains an evaluation board, data sheet and a user’s guide for the evaluation board. Some kits also include application notes and other necessary hardware.

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C54XADAPTEVM</td>
<td>TMS320C54xTM DSKplus Adaptor Kit</td>
<td>$50</td>
</tr>
<tr>
<td>DEM-ADS1250</td>
<td>20-bit data-acquisition system ADC</td>
<td>$270</td>
</tr>
<tr>
<td>DEM-ADS7946</td>
<td>4-Wire touch-screen controller ADC</td>
<td>$95</td>
</tr>
<tr>
<td>DEM-DA1220</td>
<td>20-bit DAC, monostic performance</td>
<td>$35</td>
</tr>
<tr>
<td>MULTI-DVTR-EVM</td>
<td>Evaluates the performance of 6 multi-purpose ADCs</td>
<td>$99</td>
</tr>
<tr>
<td>THS1401EVM</td>
<td>14-bit, 1-MSPS ADC, single-channel, differential input, DSP microprocessor interface, programmable gain amplifier, internal sample and hold</td>
<td>$99</td>
</tr>
<tr>
<td>THS1402EVM</td>
<td>14-bit, 2-MSPS ADC, single-channel, differential input, DSB microprocessor interface, programmable gain amplifier, internal sample and hold</td>
<td>$99</td>
</tr>
<tr>
<td>THS1840EVM</td>
<td>14-bit, 8-MSPS DSP-compatible ADC with internal reference and PBA</td>
<td>$99</td>
</tr>
<tr>
<td>THS1450EVM</td>
<td>14-bit, 1-MSPS AWC with 32-word FIFO</td>
<td>$99</td>
</tr>
<tr>
<td>TLV2541EVM</td>
<td>5-V, 12-bit ADC</td>
<td>$50</td>
</tr>
<tr>
<td>TLV2544EVM</td>
<td>12-bit, 400-1KSPS, 4-channel ADC with serial interface</td>
<td>$99</td>
</tr>
<tr>
<td>TLV2561EVM</td>
<td>12-bit, 400-1KSPS, 8-channel ADC with serial interface</td>
<td>$99</td>
</tr>
<tr>
<td>TLV33205G4EVM</td>
<td>16-bit delta-sigma ADC</td>
<td>$99</td>
</tr>
<tr>
<td>TLV330A054EVM</td>
<td>Single-channel codec with hybrid op amps and speaker driver</td>
<td>$75</td>
</tr>
<tr>
<td>TLV6414EVM</td>
<td>10-bit ADC with serial control and 4-8 analog inputs</td>
<td>$10</td>
</tr>
<tr>
<td>TLV1610EVM</td>
<td>10-bit, CMOS, high-speed programmable ADC</td>
<td>$10</td>
</tr>
<tr>
<td>TLV1615EVM</td>
<td>10-bit, 1.25-MSPS, 2.7 to 5.5-V serial ADC with powerdown</td>
<td>$10</td>
</tr>
<tr>
<td>TLV1517EVM</td>
<td>1-channel, 10-bit, 1.25-MSPS parallel ADC</td>
<td>$50</td>
</tr>
<tr>
<td>TLV1518EVM</td>
<td>10-bit, 1.25-MSPS, 2.7 to 5.5-V serial ADC with powerdown</td>
<td>$50</td>
</tr>
<tr>
<td>TLV1518EVM</td>
<td>8-channel, 10-bit, 1.25-MSPS parallel ADC</td>
<td>$50</td>
</tr>
<tr>
<td>TLV5468VM</td>
<td>3-V, 12-bit ADC</td>
<td>$50</td>
</tr>
<tr>
<td>TLV5468VM</td>
<td>12-bit, 200-1KSPS serial output ADC, auto-powerdown, low power, 4 channels, FIFO</td>
<td>$50</td>
</tr>
<tr>
<td>TLV5487VM</td>
<td>12-bit, 200-1KSPS serial output ADC, auto-powerdown, low power, 8 channels, FIFO</td>
<td>$50</td>
</tr>
<tr>
<td>TLV330A01C1EVM</td>
<td>General-purpose 18-bit, 22-1KSPS DSP/Programmable DAC/ADC</td>
<td>$99</td>
</tr>
<tr>
<td>TLV330A01C2EVM</td>
<td>18-bit, stereo DAC/ADC/DSP/Programmable DAC/ADC</td>
<td>$99</td>
</tr>
<tr>
<td>TLV3357EVM</td>
<td>2.7-V to 5.5-V, 1-channel, 8-bit, parallel ADC</td>
<td>$50</td>
</tr>
<tr>
<td>THS1320EVM</td>
<td>8-bit, 6-MSPS ADC, 4-channel, like FIFO, Use to evaluate THS1308, THS1308D, THS1308BD and THS1308B</td>
<td>$99</td>
</tr>
</tbody>
</table>

* Not available in Europe; no application for CE approval.

Safe Harbor Statement

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. Forward-looking statements generally can be identified by the use of words such as “will,” “expects,” “anticipates,” “intends,” “believes,” “could,” “estimates,” or similar expressions. These forward-looking statements, which reflect management’s current judgment as to the outcome of future events and the currently best estimate as to the impact of such events, are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995.

Forward-looking statements are based on information available at the date of such statement and management’s current belief or estimate as of that date with respect to the events or results described in such statements. Each forward-looking statement is subject to risks and uncertainties that could cause actual results to differ materially from those in such forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.
Get the latest design solutions from TI's Designer's Guides

Now, get two great Designer's Guides—your options have never been better!

Order your free copy of either easy-to-use design reference for analog and mixed-signal products. Call 1-800-477-8924 and ask for ext. 4968 or return the enclosed reply card.

Texas Instruments Incorporated
P.O. Box 954
Santa Clarita, CA 91380

Address service requested