
MSP430 Family Introduction to COFF Format

2-1

Topics

2 Introduction to Common Object File Format 2-3

2.1 Sections 2-4

2.2 How the Assembler Handles Sections 2-6
2.2.1 Uninitialized Sections 2-6
2.2.2 Initialized Sections 2-7
2.2.3 Named Sections 2-7
2.2.4 Section Program Counters 2-8
2.2.5 An Example That Uses Sections Directives 2-8

2.3 How the Linker Handles Sections 2-11
2.3.1 Default Memory Allocation 2-12
2.3.2 Placing Sections in the Memory Map 2-13

2.4 Relocation 2-14

2.5 Runtime Relocation 2-15

2.6 Loading a Program 2-16

2.7 Symbols in a COFF File 2-17
2.7.1 External Symbols 2-17
2.7.2 The Symbol Table 2-17

Figures

Fig. Title Page
2.1 Partitioning Memory Into Logical Blocks 2-5

2.2 Using Sections Directives 2-9

2.3 Generated Object Code according to previous source code example 2-10

2.4 Combining Input Sections to Form an Executable Object Module 2-12

2.5 An Example of Code That Generates Relocation Entries 2-14

Notes

Title Page
2.1

Default Section Directive 2-6

Introduction to COFF Format MSP430 Family

2-2

MSP430 Family Introduction to COFF Format

2-3

2 Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a MSP430 device. The
format that these object files are in is called common object file format (COFF).

COFF makes modular programming easier because it encourages you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are
known as sections. Both the assembler and the linker provide directives that allow you to
create and manipulate sections.

For more information about COFF object file structure refer to the Appendix.

Introduction to COFF Format MSP430 Family

2-4

2.1 Sections

The smallest unit of an object file is called a section. A section is a block of code or data that
will ultimately occupy contiguous space in the MSP430 memory map. Each section of an
object file is separate and distinct from the other sections. COFF object files always contain
three default sections:

.text section usually contains executable code.

.data section usually contains initialized data.

.bss section usually reserves space for uninitialized variables.

In addition, the assembler and linker allow you to create, name, and link named sections
that are used like the .data, .text, and .bss sections.

It is important to note that there are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized;
named sections created with the .sect assembler directive are also
initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss
section is uninitialized; named sections created with the .usect,
reg, and .regpair assembler directive are also uninitialized.

The assembler provides several directives that allow you to associate various portions of
code and data with the appropriate sections. The assembler builds these sections during the
assembly process, creating an object file that is organized like the object file shown in the
following figure.

One of the linker’s functions is to relocate sections into the target memory map; this is called
allocation. Because most systems contain several different types of memory, using sections
can help you to use target memory more efficiently. All sections are independently
relocatable; you can place different sections into various blocks of target memory. For
example, you can define a section that contains an initialization routine and then allocate the
routine into a portion of the memory map that contains ROM.

MSP430 Family Introduction to COFF Format

2-5

Object File Target File

.bss

.data

.text

RAM

EEPROM

ROM

Figure 2.1: Partitioning Memory Into Logical Blocks

Introduction to COFF Format MSP430 Family

2-6

2.2 How the Assembler Handles Sections

The assembler’s main function related to sections is to identify the portions of an assembly
language program that belong in a particular section. The assembler has seven directives
that support this function:

• .bss

• .data

• .sect

• .text

• .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect
directives create initialized sections.

Note: Default Section Directive
If you don´t use any of the sections directives, the assembler assembles everything into
the .text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in MSP430 memory; they are usually allocated into
RAM. These sections have no actual contents in the object file; they simply reserve memory.
A program can use this space at runtime for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler directives. The .bss
directive reserves space in the .bss section. The .usect directive reserves space in a specific
uninitialized named section. If the section name is specified, the space is reserved in the
named section. Each time you invoke one of these directives, the assembler reserves more
space in the appropriate section.

The syntaxes for these directives are:

.bss name [,size in bytes]

symbol .usect “section name", size in byte

symbol points to the first byte reserved by this invocation of the .bss or .usect
directive. The symbol corresponds to the name of the variable that you're
reserving space for. It can be referenced by any other section and can also be
declared as a global symbol (with the .global assembler directive).

size is an absolute expression. The .bss directive reserves size bytes in the .bss
section; the .usect directive reserves size bytes in section name. If the section
name is specified, the space is reserved in the named section.The default size
for .bss is one byte.

section name tells the assembler which named section to reserve space in.

MSP430 Family Introduction to COFF Format

2-7

The .text, .data, and .sect directives tell the assembler to stop assembling into the current
section and begin assembling into the indicated section. The .bss and .usect, however, do
not end the current section and begin a new one; they simply “escape" from the current
section temporarily. The .bss and .usect directives can appear anywhere in an initialized
section without affecting the contents of the initialized section.

2.2.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections
are stored in the object file and placed in MSP430 memory when the program is loaded.
Each initialized section is separately relocatable and may reference symbols that are defined
in other sections. The linker automatically resolves these section–relative references.

Three directives tell the assembler to place code or data into a section. The syntaxes for
these directives are:

.text

.data

.sect “section name"

When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied “end current section" command). It then assembles subsequent
code into the respective section until it encounters another .text, .data, or .sect directive.

Sections are built up through an iterative process. For example, when the assembler first
encounters a .data directive, the .data section is empty. The statements following this first
.data directive are assembled into the .data section (until the assembler encounters a .text or
.sect directive). If the assembler encounters subsequent .data directives, it adds the state-
ments following these .data directives to the statements that are already in the .data section.
This creates a single .data section that can be allocated contiguously into memory.

2.2.3 Named Sections

Named sections are sections that you create. You can use them like the default .text, .data,
and .bss sections, but they are assembled separately from the default sections.

For example, repeated use of the .text directive builds up a single .text section in the object
file. When linked, this .text section is allocated into memory as a single unit. Suppose there
is a portion of executable code (perhaps an initialization routine) that you don't want
allocated with .text. If you assemble this segment of code into a named section, it will be
assembled separately from .text, and you will be able to allocate it into memory separately
from .text. Note that you can also assemble initialized data that is separate from the .data
section, and you can reserve space for uninitialized variables that is separate from the .bss
section.

Introduction to COFF Format MSP430 Family

2-8

Two directives let you create named sections:

• The .usect directive creates sections that are used like the .bss section. These sections
reserve space in RAM for variables.

• The .sect directive creates sections that can contain code or data, similar to the default
.text and .data sections. The .sect directive creates named sections with relocatable
addresses.

The syntaxes for these directives are:

symbol .usect “section name", size

.sect “section name"

The section name parameter is the name of the section. Section names are significant to 8
characters. You can create up to 32,767 separate named sections.

Each time you invoke one of these directives with a new name, you create a new named
section. Each time you invoke one of these directives with a name that was already used,
the assembler assembles code or data (or reserves space) into the section with that name.
You cannot use the same names with different directives. That is, you cannot create a
section with the .usect directive and then try to use the same section with .sect.

2.2.4 Section Program Counters

The assembler maintains a separate program counter for each section. These program
counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the
assembler sets each SPC to 0. As the assembler fills a section with code or data, it
increments the appropriate SPC. If you resume assembling into a section, the assembler
remembers the appropriate SPC’s previous value and continues incrementing the SPC at
that point.

The assembler treats each section as if it begins at address 0; the linker relocates each
section according to its final location in the memory map.

2.2.5 An Example That Uses Sections Directives

The figure on the next page shows how you can build COFF sections incrementally, using
the sections directives to swap back and forth between the different sections. You can use
sections directives to:

• Begin assembling into a section for the first time.

• Continue assembling into a section that already contains code. In this case, the
assembler simply appends the new code to the code that is already in the section.

MSP430 Family Introduction to COFF Format

2-9

The SPCs are modified during assembly. A line in a listing file has four fields:
Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.

 1 **
 2 ** Assemble an initialized table into .data **
 3 **
 4 0000 .data
 5 0000 0011 coeff .word 011h, 022h
 0002 0022
 6
 7 **
 8 ** Reserve space in .bss for a variable **
 9 **
 10
 11 0000 .bss buffer, 10
 12 **
 13 ** Still in .data **
 14 **
 15
 16 0004 0123 ptr .word 0123h
 17 **
 18 ** Assemble code into the .text section **
 19 **
 20
 21 0000 .text
 22 0000 5504 addl add R5,R4
 23 0002 4304 clr R4
 24 0004 ’23fd jnz addl
 25 **
 26 ** Assemble more data into the .data section**
 27 **
 28
 29 0006 .data
 30 0006 00aa ivals .word 0aah, 0bbh
 0008 00bb
 31 **
 32 ** define another section for more variables**
 33 **
 34
 35 0000 var2 .usect "newvars",1
 36 0001 inbuf .usect "newvars",7
 37 **
 38 ** Assembler more code into .text **
 39 **
 40
 41 0006 .text
 42 0006 4524 acode mov @R5, R4
 43 0008 4407 mov R4, R7
 44 **
 45 ** Define a named section for int. vectors **
 46 **
 47
 48 0000 .sect "vectors"
 49 0000 ’0000 .word addl, acode
 0002 ’0006

Field 1 Field 2 Field 3 Field 4

Figure 2.2: Using Sections Directives

Introduction to COFF Format MSP430 Family

2-10

The listing file creates five sections:

.text contains 10 bytes of object code.

.data contains 10 bytes of object code.

vectors is a named section created with the .sect directive; it contains 4 bytes of
initialized data.

.bss reserves 10 bytes in memory.

newvars is a named section created with the .usect directive; it reserves 8 bytes in
memory.

The second column shows the object code that is assembled into these sections; the first
column shows the source statements that generated the object code.

5504
4304
23FD
4524
4407

0011
0022
0123
00AA
00BB

0000
0006

No data
10 bytes
reserved

No data
8 bytes
reserved

Object Code SectionLine Numbers
22
23
24
42
43

5
5
16
30
30

49
49

 11

 35
 36

.text

.data

 vectors

 .bss

 newvars

Figure 2.3: Generated Object Code according to previous source code example

MSP430 Family Introduction to COFF Format

2-11

2.3 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the sections in
COFF object files as building blocks; it combines input sections (when more than one file is
being linked) to create output sections in an executable COFF output module. Second, the
linker chooses memory addresses for the output sections.

The linker provides two directives that support these functions:

• The MEMORY directive allows you to define the memory map of a target system. You
can name portions of memory and specify their starting addresses and their lengths.

• The SECTIONS directive tells the linker how to combine input sections and where to
place the output sections in memory.

It is not always necessary to use linker directives. If you don’t use them, the linker uses the
target processor’s default allocation algorithm. When you do use linker directives, you must
specify them in a linker command file.

Introduction to COFF Format MSP430 Family

2-12

2.3.1 Default Memory Allocation

.bss

.text

.data

Init
(named section)

.bss

.text

.data

Tables
(named section)

file 1
(.bss)

file 2
(.bss)

file 1
(.data)

file 2
(.data)

file 1
(.text)

file 2
(.text)

Init

Tables

Init

Tables

Executable
Code
(.text)

Initialized
Data

(.data)

Space for

Variables

(.bss)

file1.obj

Executable
Object Module Memory Map

file2.obj

Figure 2.4: Combining Input Sections to Form an Executable Object Module

In the figure, file1.obj and file2.obj have been assembled to be used as linker input. Each
contains the .text, .data, and .bss default sections; in addition, each contains a named
section. The executable output module shows the combined sections. The linker combines
file1.text with file2.text to form one .text section, then combines the .data sections, then the
.bss sections, and finally places the named sections at the end. The memory map shows
how the sections are put into memory.

MSP430 Family Introduction to COFF Format

2-13

2.3.2 Placing Sections in the Memory Map

The figure also illustrates the linker’s default methods for combining sections. Sometimes
you may not want to use the default setup. For example, you may not want all of the .text
sections to be combined into a single .text section. Or you might want a named section
placed where the .data section would normally be allocated. Most memory maps comprise
various types of memories (RAM, ROM, EPROM, etc.) in varying amounts; you may want to
place a section in a particular type of memory.

• The MEMORY directive allows you to define the memory map for your particular system.

• The SECTIONS directive lets you build sections and place them into memory.

Introduction to COFF Format MSP430 Family

2-14

2.4 Relocation

The assembler treats each section as if it began at address 0. All relocatable symbols
(labels) are relative to address 0 in their sections. Of course, all sections can’t actually begin
at address 0 in memory, so the linker relocates sections by:

• allocating sections into the memory map so that they begin at the appropriate address.

• adjusting symbol values to correspond to the new section addresses.

• adjusting references to relocated symbols to reflect the adjusted symbol values.

The linker uses relocation entries to adjust references to symbol values. The assembler
creates a relocation entry each time a relocatable symbol is referenced. The linker then uses
these entries to patch the references after the symbols are relocated.

Figure 2.5: An Example of Code That Generates Relocation Entries

Both symbols x and y are relocatable. y is defined in the .text section of this module; x is
defined in some other module. When the code is assembled, x has a value of 0 (the
assembler assumes all undefined external symbols have values of 0), and y has a value of 8
(relative to address 0 in the .text section). The assembler generates two relocation entries,
one for x and one for y. The reference to x is an external reference (indicated by the !
character in the listing). The reference to y is to an internally defined relocatable symbol
(indicated by the ’ character in the listing).

After the code is linked, suppose that x is relocated to address 7100h. Suppose also that the
.text section is relocated to begin at address 7200h; y now has a relocated value of 7208h.
The linker uses the two relocation entries to patch the two references in the object code:

40300000 br #x becomes 40307100

12B00008 call #y becomes 12B07208

Each section in a COFF object file has a table of relocation entries. The table contains one
relocation entry for each relocatable reference in the section. The linker usually removes
relocation entries after it uses them. This prevents the output file from being relocated again
(if it is relinked or when it is loaded). A file that contains no relocation entries is an absolute
file (all its addresses are absolute addresses). If you want the linker to retain relocation
entries, invoke the linker with the -r option.

 1 .global x
 2 0000 .text
 3 0000 !40300000 br #x ;uses an external relocation
 4 0004 ’12B00008 call #y ;uses an internal relocation
 5 0008 5504 y: add R5, R4 ;defines internal relocation

MSP430 Family Introduction to COFF Format

2-15

2.5 Runtime Relocation

It may be necessary or desirable at times to load code into one area of memory and run it in
another. For example, you may have performance–critical code in a ROM–based system.
The code must be loaded into ROM but would run much faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive, you can
optionally direct the linker to allocate a section twice: once to set its load address, and again
to set its run address.

Use the load keyword for the load address and the run keyword for the run address.

The load address determines where a loader will place the raw data for the section. Any
references to the section (such as labels in it) refer to its run address. The application must
copy the section from its load address to its run address; this does not happen automatically
just because you specify a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated
only once and will load and run at the same address. If you provide both allocations, the
section is actually allocated as if it were two different sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run
address. The linker allocates uninitialized sections only once: if you specify both run and
load addresses, the linker warns you and ignores the load address.

Introduction to COFF Format MSP430 Family

2-16

2.6 Loading a Program

The linker produces executable COFF object modules. An executable object file has the
same COFF format as object files that are used as linker input; however, the sections in an
executable object file are combined and relocated to fit into target memory.

In order to run a program, the data in the executable object module must be transferred, or
loaded, into target system memory.

Several methods can be used for loading a program, depending on the execution
environment. Some of the more common situations are listed below.

• The MSP430 development tools (In-Circuit-Emulator and Evaluation Module) provide
COFF object module loading capabilities.

• You can use the object format converter (the rom430, which is shipped as part of the
assembly language package) to convert the executable COFF object module into one of
several object file formats. You can then use the converted file with almost any EPROM
programmer to burn the program into an EPROM.

MSP430 Family Introduction to COFF Format

2-17

2.7 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in the program.
The linker uses this table when it performs relocation. Debugging tools can also use the
symbol table to provide symbolic debugging.

2.7.1 External Symbols

External symbols are symbols that are defined in one module and referenced in another
module. You can use the .def, .ref, or .global directives to identify symbols as external:

Defined (.def) Defined in the current module and used in another module

Referenced (.ref) Referenced in the current module, but defined in another module

Global (.global) May be either of the above

The following code segment illustrates these definitions.

x: ADD #56h, R4 ; Define x
BR #y ; Reference y
.global x ; DEF of x
.global y ; REF of y

The .global definition of x says that it is an external symbol defined in this module and that
other modules can reference x. The .global definition of y says that it is an undefined symbol
that is defined in some other module.

The assembler places both x and y in the object file’s symbol table. When the file is linked
with other object files, the entry for x defines unresolved references to x from other files. The
entry for y causes the linker to look through the symbol tables of other files for y’s definition.

The linker must match all references with corresponding definitions. If the linker cannot find a
symbol’s definition, it prints an error message about the unresolved reference. This type of
error prevents the linker from creating an executable object module.

2.7.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encounters an external
symbol (both definitions and references). The assembler also creates special symbols that
point to the beginning of each section; the linker uses these symbols to relocate references
to other symbols in a section.

The assembler does not usually create symbol table entries for any other type of symbol,
because the linker does not use them. For example, labels are not included in the symbol
table unless they are declared with .global. For symbolic debugging purposes, it is
sometimes useful to have entries in the symbol table for each symbol in a program. To
accomplish this, invoke the assembler with the -s option.

Introduction to COFF Format MSP430 Family

2-18

