

# Power Management





### What is Power Management

- > Power Budgeting
  - **Evaluate Device Requirements**
- **≻Device Power States** 
  - On, Standby, Suspend, Off

**>** Global System Power States

♥On, Standby, Suspend, Hibernate, Off, Critical Off

Current Change Request







## **Power Budget**

- > Unit Loads
  - **♦ Low & High Power Sources**
  - **♦ Low & High Bus-Powered Devices**
- **≻**Power sources
  - **⇔** Bus powered
  - AC powered
  - Battery powered

### **Device Power States**

- ➤ Off, Low power, High power
- > Standby Reduced power
- > Suspend Lowest power state
  - Normal device operation ceases
  - **♦**Increased response time
- > Device may wakeup the system
  - **External event may restart system**

### Hubs

- > Power Type
  - **Self Powered**
  - **Bus Powered** 
    - 4 external ports (max)
- > HUB Types
  - **Standalone**
  - **Scompound** 
    - Embedded Device
    - External Ports





### **Hot Attach**

- > Inrush limiting
- > Attach detection
- > System Notification
- **Device Enumeration**
- **➤** Device Configuration
- > Power Allocation



### **Device Removal**

- > Removal Detection
  - **\\$Transfer failure**
  - **Bus management**
- > Bandwidth Deallocation
- > Power Deallocation
- > Unloading Device Driver







## System Suspend

#### **DEVICE REQUIREMENTS:**

- ➤ All USB devices must support Suspend
- ➤ Max. suspend current <500ua ♣ Bus termination ~320ua
- > Device maintains state information
- > Optional Remote wakeup

#### **DRIVER REQUIREMENTS**

- > Connect to USB PM services
  - **♦** Suspend request
  - **♦** Suspend grant
  - **♦** Critical off
  - **Resume notification**
  - **Optional** 
    - Save device specific info.
    - Selective suspend

#### **USB SERVICES:**

- ➤ Interface to O/S Power

  Management
- ➤ Notify Drivers of PM event \$\\$Responsible for sequencing
- >Shutdown USB after all drivers suspend

- > Restart activity on resume or wakeup
- **➤**Notify Drivers of Resume event
- Enumerate bus to detect device changes





### Suspend vs Hibernation

#### **SUSPEND**

- > System software suspends the device by turning off the device port in the upstream hub
- > Device suspends when it detects lack of bus activity (3ms)
- > Device wakeup request

**⇔Detected via USB bus poll** 

Current

Change

> Driver notified by bus enumerator

Request

### **HIBERNATION** (Class Specific)

- ➤ To USB device drivers, hibernation looks like suspend, except, device state is lost
- > System may transition directly to hibernation from suspend
- > Device driver responsible for saving device data needed to resume the device





### **Active Power Control**

- ➤ Host sets device power policy
- > Contract between driver and device
  - **Minimize power consumption**
- > Device Design Guidelines
  - **♦**Stop clock idle detection

- **∜Idle time-outs**
- >Multiple operational power levels
  - i.e.. disk rotational rates, TX power level
- > Device Driver Guidelines
  - Suspend device during idle time
  - >Device idle timers minimize bus traffic
  - **∜**Tradeoff performance vs. power
  - **Comprehend latency of power level (i.e., spin up time)**





### **Device Powering**



### > Operating Power Levels

**♦ Low Power: 100mA or less** 

**⇔** High Power: 500mA or less (Power up at 100mA or less)

Local Power: No power limit, may draw power from bus





## Voltage Drop/Droop Requirements

- > Must consider cumulative voltages drops in cables, connectors, pc board traces, current limit devices, etc.
- >  $V_{BUS(min)}$  set by  $V_{CC(in)}$  voltage regulator ⇔ Assumes a 500mv dropout for a 3.3V ± 5% regulator ⇔  $V_{BUS(min)}$  = 4.0V measured at regulator input
- ➤ Must consider different topologies

  \$\\$\\$\\$Host to high-power device or bus-powered hub

  \$\\$\\$\\$Host through bus-powered hub to low-power device





## **V**<sub>DROP</sub>: Host to Self-powered Hub



- **>** Power Supply 5.00v +/- 5%
- ➤ Host can drop 100mV
  - > traces, ferrite beads, connector, current limit device
- > Detachable cable can drop 250mV max @ 500mA
- > Bus-powered device may drop 50mV max
  - > traces, connectors, etc





## **V**<sub>DROP</sub>: Host to Low-powered Device



- > Bus-powered hub with integral cable can drop 250mV max.
  - > connector, traces, power distribution switch, ferrite beads, etc
- > To meet system power distribution requirements the Buspowered Hub may require an integral cable.





## **V**<sub>DROOP</sub> & Inrush Current Limiting

### **DESIGN REQUIREMENTS:**

- > 330mV max.  $V_{DROOP}$  when hot-plugging to SP Hub
- > Maximum load at downstream cable end is  $10\mu F$  in parallel with  $44\Omega$
- > Output port power lines must be bypassed with no less than a 120µF tantalum capacitor
- > Bus-powered Hubs must provide surge limiting
  - **♦** Soft start when enabling downstream ports







### **Hub Power Dist. Requirements**

#### **USB Bus-Powered Hub**



#### **USB Self-Powered Hub**



**NSTRUMENTS** 

#### **Bus-Powered Hubs:**

Draws all power from USB connector power pins

#### **Self-Powered Hubs:**

Internal function and downstream port power does not come from USB.

#### **Low Powered Function:**

1 Unit Load = 100 mA

#### **High Powered Function:**

5 Unit Loads = 500 mA

#### **USB Switch Application:**

The Host and all Self-powered hubs must implement over-current protection. They must detect the overcurrent condition and report it to the USB Host Controller. The controller will then remove power to that port.

#### **LDO Regulator:**

Each hub must run on 3.3V. The Vbus supplies 5V nom and inputs may be as low as 4.40V. A 500mV max dropout voltage is recommended.

### Polyfuses vs MOSFET Switches

|                                               | Polyfuse    | MOSFET     |
|-----------------------------------------------|-------------|------------|
| Report Overcurrent Condition                  | NO          | YES        |
| Fast Response Time                            | NO (150ms)  | YES (45μs) |
| Limit Output Current < 5A                     | YES         | YES        |
| Meets V <sub>DROP</sub> Requirements (90mV)   | 2.5A Device | YES        |
| Meets V <sub>DROOP</sub> Requirements (330mV) | NO          | YES        |
| Enabled/Disabled by Controller                | NO          | YES        |

#### **Complete Polyfuse Solution with Enable and Over Current Response**

Polyfuses do
NOT meet all of
the requirements
of the USB
specification



Intelligent
MOSFET switches
do meet all of the
requirements of the
USB specification





### TPS2014/15 Power Dist. Switches

#### **TPS2014/15**

- · High-Side MOSFET Switch
  - 95 m  $\Omega$  max r DS(on) (5.5-V input)
  - TPS2014: 0.6A continuous, 1.2A current limit
  - TPS2015: 1.0A continuous, 2.0A current limit
- · 2V Logic Compatible Enable Input
- Overcurrent and Thermal Protection
  - With Overcurrent logic output
  - 4.0V to 5.5V Operating Range (7V max)
    (Due to UVLO)
- · Controlled Rise and Fall Times limits
  Current Surges and minimizes EMI.
- Undervoltage Lock-Out Guarantees the Switch is Off at Power Up
- · Thermal Protection
- · 10μ A Maximum Standby Current
- · Applications
  - **USB** Bus-Powered and Self-Powered Hubs
  - Hot insertion applications
  - Power Distribution











## Non-Ganged Hub Power Dist.

BOM for Non-Ganged Configuration:

TUSB2040 QTY 1
TPS75240 QTY 2
TPS7133 QTY 1
TPS2014 QTY 4
Ferrite Beads None
Cap, 150uF (USB req.) QTY 4
Cap, 1000uF (option) QTY 1
Cap, 1uF QTY 4

#### PROS:

Lower Current Devices
No Ferrite Beads Required
Good Voltage Droop Response
Faults only shut down the Port affected
(most user friendly)

#### **CONS:**

**Highest Cost solution** 







## **Ganged Hub Power Distribution**

#### BOM for Ganged Configuration:

TUSB2040 QTY 1
SN75240 QTY 2
TPS7133 QTY 1
TPS2023 QTY 1
Ferrite Beads QTY 8
Cap, 150uF (USB req.) QTY 4
Cap, 1000uF (option) QTY 1
Cap, 1uF QTY 1

#### PROS:

Most Cost Effective Lowest IC Count

#### CONS:

Fault on one port shuts down switch, and all ports go down
Ferrite Beads required (adds impedance between outputs, lowers V-droop)
Higher current devices required (4 X 500mA = 2A min, with 5A UL max)







## Summary

- > USB power management was designed in from the start
- > Well suited for power managed desktop & laptop computers
- > Illegal topologies gracefully rejected
- $\triangleright$  Designs must pay strict attention to  $V_{DROP}$  and  $V_{DROOP}$  req.
- > Current limit devices, power switches, and LDO regulators are required by the USB spec.
- ➤ Polyfuse, in general, are not an adequate current limit device for power management





