

## Windows Embedded Compact

## Android

## Linux Embedded

### Texas Instruments TechCampus, München July 6<sup>th</sup> 2011

Valter Minute, Windows Embedded MVP, Embedded Software Expert, Adeneo Embedded





## **Adeneo Embedded**

#### OUR TEAM

50+ engineering team - experts in system integration on complex embedded devices

Engineering offices in Europe and USA

# ed devices

Consumer



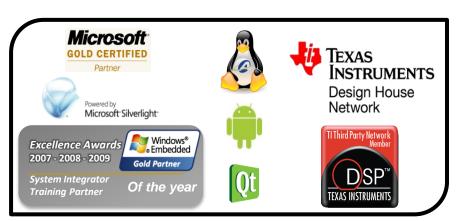
#### OUR PARENT COMPANY

Subsidiary of **Control** Group a 600 employees company involved in complete embedded systems development

#### OUR EXPERTISE with TI technologies

Expertise for WinCE and Embedded Linux system integration on OMAP and DaVinci architectures

1<sup>st</sup> European company awarded as "Elite Design House" by Texas Instruments


Editor of the WinCE reference BSPs for TI OMAP and Sitara – reference drivers for WL1271





Medical







🔱 Texas Instruments

## **Adeneo Services**

### **Evaluation**

- Scheduled Trainings
- **Benchmarking**
- Private Class Training •

Feasibility Study / Proof of Concept



The Evaluation Kit used is offered for FREE at the end of the session (\$1,495 value)

Get a jumpstart on learning how to implement either WinCE or Embedded Linux on an OMAP35xbased platform

## Architecture

- System Architecture Consulting
- **Reference BSPs and Drivers** with Maintenance and Support

**Design Review** 

- **Expertise on System**
- **Integration and Wireless** communications

Direct collaboration with TI to ensure technical expertise & support to embedded system manufacturers

**OMAP/Sitara Reference BSPs to** secure design robustness Wifi/Bluetooth Drivers for WL1271 Wireless module

## Design

- **Support Contract**
- **Firmware Expertise**
- **Turnkey HW/SW design**



**Application Development** 



Benefit from our 10+ years of expertise to optimize cost and schedule

Be flexible with our set of services from support contract to complete turnkev design





## **Adeneo Expertise**

#### **Application Development**

#### Multimedia

#### Custom GUI

- Silverlight
- .NET Compact Framework
- Qt Embedded
- Real-time
- Data management
- Geo-localisation GPS
- Middleware
- •Custom shells / Firmware update

#### Firmware Expertise

- BSP Adaptation and customization for OMAP/Sitara based designs
- Wireless communication with WL1271 based solutions
- Custom drivers
  development
- OS optimization
  - power management
  - boot duration
  - real-time performances

#### **Hardware Development**

- Collaboration with a team of 100+ hardware design engineers from AdetelGroup
- Full turnkey hardware and software design
- Collaboration with TI both on the hardware side and the OS system integration



| 80 50 8<br>30<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 70<br>80<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>9                                             | 41 15 16<br>13 10 10 10<br>14 10 10<br>10 100<br>100 Nom | a N m        | 500  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|------|
| Local                                                                                       | u UPC(N) Hist                                                                                                   | prique des défauts                                       |              |      |
|                                                                                             | SYSTEM                                                                                                          | UPC 18/11/2                                              | 005 11:22:29 |      |
| Auto                                                                                        | MJ_SPC                                                                                                          | UPC 18/11/2                                              |              | 100  |
| Manu                                                                                        | COM                                                                                                             | SPC2 18/11/2                                             |              | Ŷ    |
|                                                                                             | COM                                                                                                             | SPC1 18/11/2                                             |              | 1    |
| Difeuts OSYSTEM                                                                             |                                                                                                                 |                                                          |              | 3    |
|                                                                                             | OCH                                                                                                             | UPC 18/11/2                                              |              | 8    |
| UPC(N)                                                                                      | SIMUL                                                                                                           | UPC 18/11/2                                              |              | 10   |
| UPC(S)                                                                                      | 0 OE                                                                                                            | UPC 18/11/2                                              |              |      |
| -                                                                                           | OE<br>OE                                                                                                        | UPC 18/110<br>UPC 18/110                                 |              |      |
| T-ADT                                                                                       | 0e                                                                                                              | UPC 18/110                                               | 005 11:22:23 | 0    |
|                                                                                             | direct second | Configuration                                            |              | - 17 |







# Agenda

- Windows Embedded Compact 7 & Silverlight for Windows Embedded
- Android
- QT & Linux Embedded





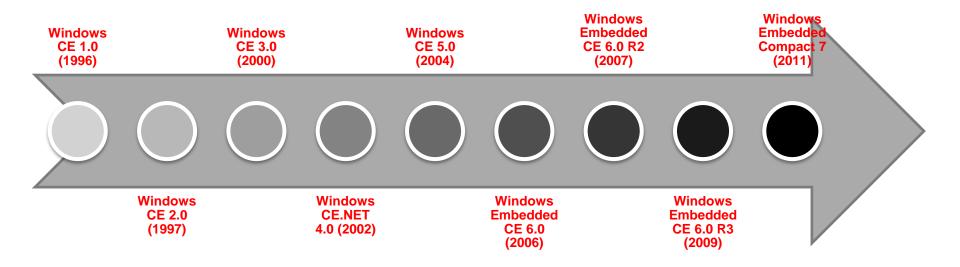
## **Windows Embedded Compact 7**





## **Windows Embedded**










7

# **History**







## **OS Features**

- Multi-platform – X86, ARM, MIPS
- Hard real-time
- Win32 compatible API
- Designed to run on low power devices
- Componentizable





## **OS Features**

- Multi-process and multi-thread
- Networking
- Graphical user interface
- Multimedia
- Internet connectivity



## **Compact 7 New Features**

- Multi-core support
- 3GB of addressable memory
- Support for ARMv5, ARMv6 and ARMv7
- Silverlight for Windows Embedded tools
- Multi-Touch
- Windows Compositor
- Updated browser
- DLNA





## **Real Time**

- Up to 32K processes
- Infinite Threads
- 256 Priorities
- 1ms System Tick
- Low latencies
- Deterministic








# **Shared Source**

- The full source code of the Windows Embedded Compact 7 kernel is available
- Sample BSPs and Drivers are provided in source format and can be modified and redistributed
- Source code is available only in licensed version
- Additional source code access is provided to MVPs, Gold partners and universities





TEXAS INSTRUMENTS

## **Platform Builder**

- Tool used to configure and debug the OS
- Visual Studio 2008 plug-in.
- Components can be selected from a Catalog
- Development and debugging inside the Visual Studio IDE
- Kernel debugger





## **Platform Builder**





# **Application Development**

## Native

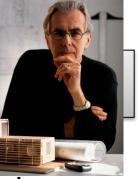


- Allows access to all the OS features trough the APIs
- Allows Real-Time applications development
- Can provide a rich UI using Silverlight for Windows Embedded

## Provides Rapid Application Development capabilities

Managed

- Provides a rich Windows-Forms based UI
- Provides a solid class library to access most of the features of the OS




16

# **Silverlight for Windows Embedded**

**Developer** 

## Designer



- Knows how to design a simple and beautiful UI
- Don't care about the complexity of source code
- Wants to control the way the UI behaves in the final application



- Knows how to develop application code, leveraging all the features of the OS
- Don't like to waste time coding animations and other UI-related stuff
- Wants to integrate the UI
  with minimal effort



## XAML!


- Designers and developers must share a common language
- XAML is a XML-based language that can be used to describe application user interfaces
- XAML can be edited using graphical tools (Expression Blend)
- XAML can be easily integrated into applications







## **XAML Sample**







## **Expression Blend**





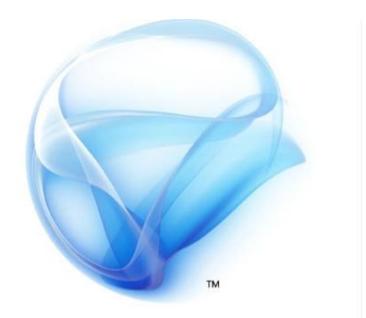
## **Microsoft XAML-based technologies**

- Windows Presentation Foundation (WPF)
- Silverlight
- Silverlight for Windows Phone 7
- Silverlight for Windows Embedded
- Similar concepts, different (and not 100% compatible!) implementations



## **Windows Presentation Foundation**

- WPF can be used to develop local user interfaces for managed applications on Windows XP, Windows Vista and Windows 7
- It provides 2D and 3D rendering capabilities using DirectDraw and Direct3D
- Large feature set, biggest footprint








# Silverlight

- Silverlight can be used to develop in-browser applications on Windows and Mac-OSX platforms
- It provides support for 2D graphics and managed code development
- It provides support for running applications offline using local storage, but require a browser to run



# <sup>Microsoft®</sup> Silverlight<sup>™</sup>



# **Silverlight on Windows Phone 7**

- Provides support for developing managed applications for Windows Phone 7 smartphones
- Applications can be downloaded from the Windows Phone Marketplace
- No interop support and no support for interfacing native code ("sandbox")

# Windows®



# Silverlight for Windows Embedded

- Provides support for native application development on embedded devices running Windows CE 6.0 R3 or Windows Embedded Compact 7
- Provides support for hardware acceleration.
- Can be used to customize the user interface of operating system components





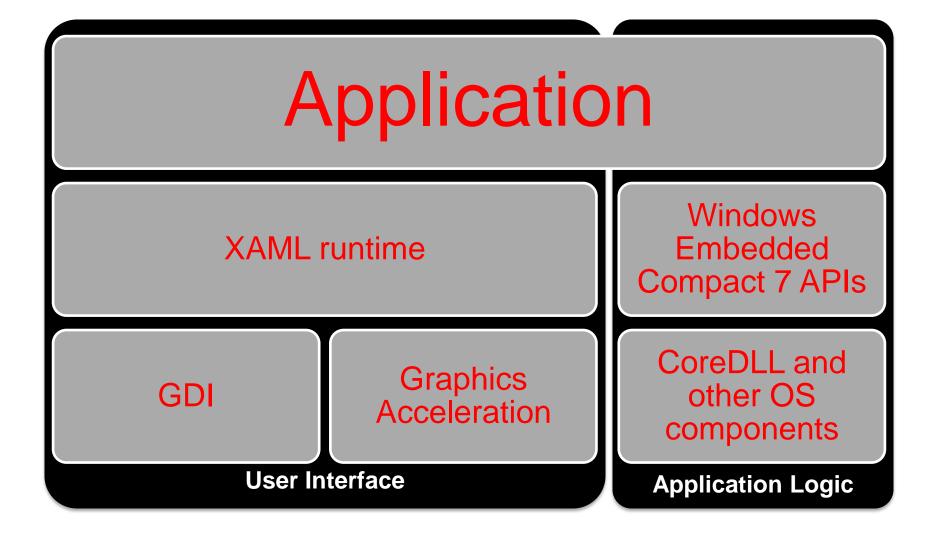
## Comparison

|                                  | WPF  | Silverlight | WP7  | Silverlight<br>for<br>Windows<br>Embedded |
|----------------------------------|------|-------------|------|-------------------------------------------|
| Local application user interface | •    | limited     | •    | •                                         |
| In-browser applications          |      | •           |      |                                           |
| 3D support                       | •    |             |      |                                           |
| Managed code support             | •    | •           | •    |                                           |
| Native code support              |      |             |      | •                                         |
| Access to OS features            | •    | limited     |      | •                                         |
| Hardware acceleration            | •    |             |      | •                                         |
| Marketplace                      |      |             | •    |                                           |
| Visual Studio Version            | 2010 | 2010        | 2010 | 2008                                      |





## **Windows Embedded Silverlight Tools**


- Expression Blend Plugin
- Wizard for project creation as Platform Builder subproject and Visual Studio application
- Automatic update of source code to reflect XAML modifications







## **XAML** Runtime



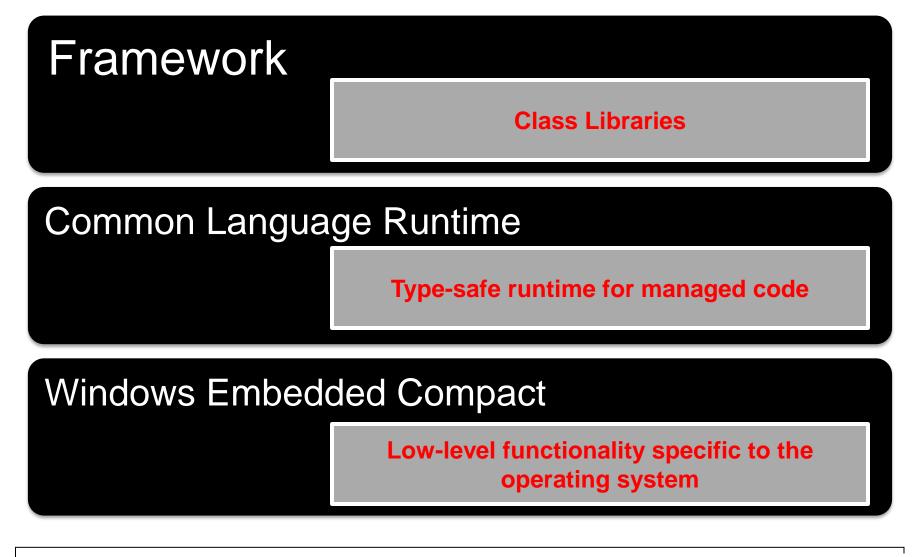


# **Silverlight for Windows Embedded**

## DEMO



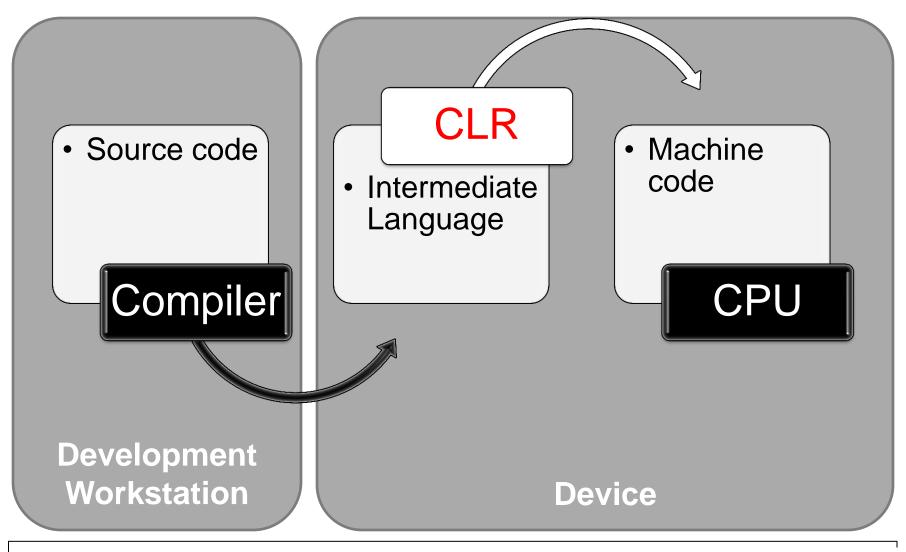



# **Managed Application Development**

- Support for Compact Framework 3.5
- Compatibility with desktop versions of the framework
- Visual Studio 2008 can be used for UI design and application development
- Easy access to XML data, databases etc.
- Lacks WPF support






## **Compact Framework Architecture**







## **Source Code to Machine Code**



🤴 Texas Instruments



## **.NET Compact Framework**

## DEMO





## Android





## Android

KAS INSTRUMENTS

"Android is an operating system for mobile devices such as cellular phones, tablet computers and netbooks."

(Wikipedia 2010)

"Android is a software stack for mobile devices that includes an operating system, middleware and key applications."

(Wikipedia 2011)



# **Android Versions**



 Ice Cream Sandwich (announced at 2011 Google I/O) should merge Gingerbread and Honeycomb and is planned for Q4 2011





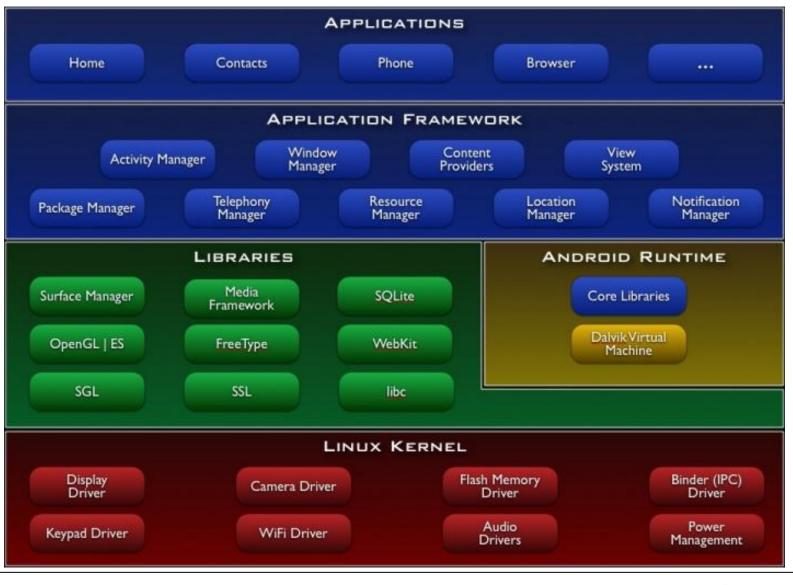
## **Android is Linux?**

- Android is based on the Linux kernel
- Includes some architecture changes in the kernel (security, power management...)
- Does not support the full set of GNU libraries (bionic is used as C library)
- Provides a java-based API for application development that is currently not supported on Linux



## **Android Components License**

- The kernel is released under GPLv2, Androidspecific code is available but is not merged in the mainline kernel
- Bionic, the Dalvik virtual machine and other Android key components are released under the Apache Software License 2.0






#### **Android Architecture**

ţi.

**TEXAS INSTRUMENTS** 





39

### Dalvik

- Open source virtual machine
- Indipendent from Sun/Oracle implementation
- Just in time compiler since version 2.2
- Does not run standard Java bytecode
- Provides a VM instance for each application and manages limited access to OS resources depending on application privileges



## **The Android SDK**

- Includes all the tools required to develop Android applications in Java (compiler, debugger, emulator)
- Provides a plugin for Eclipse to support RAD-like application development and interactive debugging inside the IDE
- The «Android Native Development Kit» allows development of native components that can be integrated with the existing class library to provide additional features

🤴 Texas Instruments



# Android NDK

- Allows development of native components or applications on Android
- Native applications are supported since ver. 2.3 (Gingerbread)
- Native modules can be built for ARMv5 or ARMv7
- Only libraries accessible through the NDK provide a stable interface





## **Activities**

- Android applications are called «Activities»
- Multiple activities can run at the same time but only one is active
- Activities can be suspended and resumed to free resources
- Activities UI can be defined using XML files that can be designed using the eclipse plugin



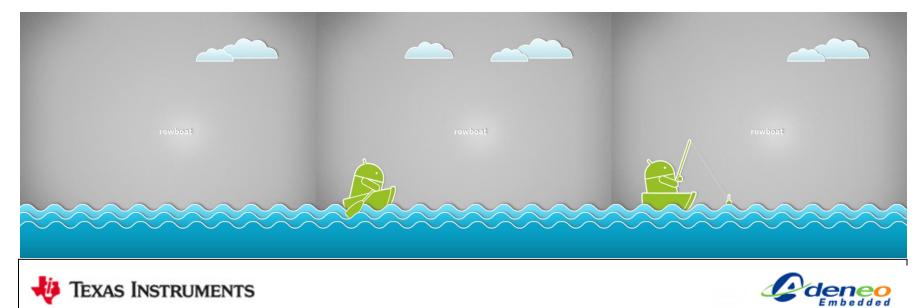


#### Android

#### DEMO






# **Android Porting**

- Porting Android on a device requires a porting of the Linux kernel and Android specific features (power management, graphics support etc)
- Google does not provide a simple way to port and customize Android
- Not all the applications are available as free software. Some applications are proprietary and Google provides them with a separate license



#### **Rowboat Android**

- Android porting on TI CortexA8 platforms
- Can provide a good starting point for porting Android on a specific device
- Can be accessed using a git repository or by installing the TI Android SDK
- http://arowboat.org



## **Android Device Certification**

- To use the Android trademark a device must be certified as compatible with the Android Compatibility Definition Document (CDD)
- Compatibility can be asserted using the Compatibility Test Suite that is available for free
- Compatibility is a mandatory requirement to access the Android marketplace and license Google proprietary apps.



#### **Embedded Linux**





#### **Embedded Linux**

- There are many different Linux distribution that target embedded devices.
- Different UI frameworks can be used to develop applications and graphical user interfaces
- Integrating the different parts required to develop an embedded Linux device from scratch is possible but challenging



## Arago and Open Embedded

- Arago-project.org
- Is an overlay over OpenEmbedded and Agnstrom Linux mantained by TI
- Is used to generate Linux SDKs for TI platforms
- Provide a tested and reliable set of features and simplifies the integration steps required to build a custom Linux version for a device base on TI's SOCs.

## QT

- Portable framework developed by Trolltech/Nokia
- Available on many platforms
  - Linux
  - Windows
  - MacOS
  - Windows CE
  - Symbian
  - Embedded Linux
- Provides a rich class library
  - UI
  - OS access in a portable way
  - Multimedia
  - Webkit

| deless.ore.wh                              | ere. |
|--------------------------------------------|------|
| odeless.<br>create more.<br>Deploy everywh |      |
|                                            |      |
|                                            |      |



### **QT User Interface Design**

- User Interface elements can be designed using QT Creator
- A rich C++ class library provides easy access to OS features and user interface elements in a portable way
- UI layout can be designed and saved as QML files that can be loaded by applications







#### **QT User Interface Design**





#### **Some Discussion Points**





## **Hardware Support**

- Writing a BSP of some kind of drivers (wi-fi, USB etc.) from scratch is complex and can require time and money
- Choosing components knowing the level of support provided by the operating system is important to reduce the overall project costs
- TI provides Linux and Windows CE/Embedded Compact support for its 32bit ARM processors



# Integration

- An OS providing integrated components can shorten development time
- Integrated build system, debugger and application development environment can simplify development and debugging of the different software layers
- A standard set of APIs can simplify application porting and provide access to commercial applications and an experienced developer base





# Integration

- Android provide a set of features, APIs (both native and java-based), a development environment and a growing developer community
- Windows Embedded Compact provides a catalog of integrated components, no standard SDK and support for native API/frameworks and Managed framework widely used in the Windows developer community
- TI provides Linux SDKs to ease the integration work and Arago/Open Embedded can be used to pick-up components that are easy to integrate



## **Customizability**

- Choosing the right set of features for a dedicated embedded device can reduce the resource requests and provide more stability
- The OS can be modeled on the device and application needs
- User interface can be designed and implemented for a specific usage





## Customizability

- Android requires a defined set of Kernel features and has no componentization features
- Windows Embedded Compact can be customized by choosing components provided by MS or third parties or by re-implementing or customizing the components that are provided in source code format
- Linux provides the maximum degree of customizability, giving the user the chance to choose different implementation of the same technology and customize the open-source ones



## The «best» Operating System

- All those Operating Systems (and others) are used by thousands of developers to develop many different kinds of devices
- Choosing the right OS is one of the key steps in making a successful device
- There is no absolute «best» OS, you should evaluate wich OS is the best one for your specific project considering:
  - Hardware support
  - Key features
  - Development team experience
  - Licensing

🔱 Texas Instruments









## Window Embedded Compact

- Download the evaluation version of Visual Studio 2008 and Expression Blend 3 from: <u>http://www.microsoft.com/windowsembedded/en-us/downloads/download-windows-embeddedcompact-ce.aspx</u>
- Install BBSDK.MSI (provided in the zip file)
- Create a bootable SD card using the SDCardBootUtility using the MLO, ebootsd.nb0 and nk.bin (provided in the zip file)
- Configure 192.168.111.1 as static IP address for your PC network card





#### www.adeneo-embedded.com

# Valter Minute vminute@adeneo-embedded.com





# Android (Ubunto 11.04 32bit)

- Download and install Eclipse version 3.7.0 from <u>http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7-201106131736/eclipse-SDK-3.7-linux-gtk.tar.gz</u>
- Download and install the Android SDK from <u>http://dl.google.com/android/android-sdk\_r11-linux\_x86.tgz</u>
- Use the SDK manager to dowload and install the Android SDK ver 2.2
- Install the Android plugin for Eclipse following this instructions: <u>http://developer.android.com/sdk/eclipse-</u> adt.html#installing





# Android (Ubunto 11.04 32bit)

- Untar beagleboard-xm-android.zip
- Put a microSD card (2GB at least) in your reader and check the device assigned to it (ex: /dev/sdb)
- Run the mkmmc-android.sh script proving the SD card device as parameter.
- Boot your beagleboard-xm and connect it to the PC using an USB cable.
- Go to the platform-tools folder of the Android SDK installation and run: adb devices
- If the devices is reported with ??????? as ID, run: sudo adb kill-server sudo adb start-server

🤴 Texas Instruments

