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Designing a UCD3138 Controlled Single Phase PFC 
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ABSTRACT 

The UCD3138[1] is a digital power supply controller from Texas Instruments offering superior levels of 
integration and performance in a single chip solution. The flexible nature of the UCD3138 makes it suitable for a 
wide variety of power conversion applications. In addition, multiple peripherals inside the device have been 
specifically optimized to enhance the performance of ac/dc applications such as power factor correction (PFC). 
 
The UCD3138 is a fully programmable solution offering customers complete control of their application. 
However, the use of digital controllers in PFC design brings new challenges to many analog designers in their 
effort to change the design from the analog space to its new digital environment. This application note gives a 
step by step guidance on how to design a UCD3138 controlled single phase PFC. It covers the hardware 
interface, voltage loop and current loop implementation, system protection, firmware structure, internal state 
machines, as well as some advanced features. Finally, a graphical user interface (GUI) and a guidance for 
tuning the coefficients of a PFC system are presented. For interleaved or bridgeless PFC design, please refer to 
application notes [2] and [3]. 
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1 Overview 

1.1 Block Diagram 
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Figure 1. UCD3138 controlled single phase PFC block diagram 

 
Figure 1 is an example of block diagram of a single phase PFC controlled by the UCD3138. The input voltage 
Vin is sensed before the bridge rectifier, the line and neutral are sensed separately by two ADC channels AD_07 
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and AD_08. PFC output voltage Vbus_sen is sensed by another ADC channel AD_03. In addition, a separate 
Vout sensing circuit is connected to an on chip analog comparator COMP_F for over voltage protection (OVP). 
The current signal is sensed by current shunt and its feedback signal Iin_fdbk is connected to error ADC channel 
EAP0 for current loop control. This signal is further filtered and connected to AD_02 for input power and RMS 
current measurement. A current transformer is used to sense the MOSFET instantaneous current and its output 
is connected to an on chip analog comparator, COMP_D, for cycle-by-cycle current protection. The control loop 
generates one PWM output, DPWM1B, to drive the MOSFETs through an external gate driver.   
 
Average current mode control is used for input current regulation. The current reference is calculated based on 
Vin, voltage loop output and input voltage feed forward. The averaged input current signal is sensed and 
compared with this reference, the error goes through a 2-pole 2-zero digital compensator CLA1; a PWM signal is 
generated based on the compensator output to control the PFC. 
 
It needs to be mentioned here that the above configuration reflects TI’s PFC evaluation board PWR026. It is not 
necessary to follow this configuration. For example, Iin_fdbk can be connected to a different EAP channel, a 
different CLA can be used for compensation, and the PFC can be driven by different DPWM outputs as well. 
However, in order to maximize source code reuse and reduce design time it is recommended to use a 
configuration similar to PWR026. 

1.2 Signal Conditioning and Interface 
For each input signal to the UCD3138, its magnitude should accommodate the measurement range of the 
UCD3138. In the UCD3138, the ADC measurement range is 0 – 2.5V, the error ADC measurement range is 0 - 
1.6V, the analog comparator range is 0 – 2.5V. On the other hand, to have the best signal-to-noise ratio, the 
input signal should be as big as possible. For these reason, the signal conditioning for each input signal should 
follow the subsequent guidelines. 

 For Vin, the voltage divider:
max_*2

5.2

in

vin
V

K   

 For Vout, the voltage divider:
max_

5.2

out
vout V

K   

 For I_shunt, the OP_AMP gain: 
shuntin

i RI
K

*

6.1

max_

  

 For current transformer: I_CT1 ≤ 2.5V 
 

2 Voltage Loop 

2.1 Overview 
Since the speed constraints on the voltage loop bandwidth are typically low, it can easily be implemented by 
pure firmware. As shown in Figure 1. Vout_sen is sensed by a 12-bit ADC. An error signal is calculated based on 
the target output voltage and then processed by a proportional-integral (PI) controller. The output of this PI 
controller will take part in the current reference calculation. 
 
To meet the load transient response requirement, a non-linear PI gain is used. When the voltage error exceeds a 
threshold, a larger PI gain is used.  

2.2 Firmware Implementation of PI Controller 
Following is the code example for this nonlinear PI controller. Two different gains are used in this example. If the 
load transient response still is not met, a third or forth gain can be added.    
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All the codes in this application note are just examples of how to implement a specific function, it does not 
contain the variable definitions and how the function gets called. Although plenty of comments are provided to 
explain how it works, there may still exist unclearness. To better understand the code, please refer to PWR026 
PFC EVM source code for details.  
 
inline int32 proportional_integral(int32 error) //error is difference between ADC value and reference 
{ 

int32 output, steady_state_error; 
 

if( abs(error) < iv.pis.nl_threshold) //if error is small, then use small PI gain 
{ 
 steady_state_error = iv.vbus_target - (iv.vbus_filtered >> 6); 
 iv.pis.p = iv.pis.kp * steady_state_error; //proportional 
 iv.pis.i = iv.pis.i + (iv.pis.ki * steady_state_error); //integrator 
} 
else 
{ //non-linear gain for Voltage loop 
 iv.pis.p = iv.pis.kp_nl * error; //proportional 
 iv.pis.i = iv.pis.i + (iv.pis.ki_nl * error); //integrator 
} 
 
if(iv.pis.i > PI_I_HIGH_LIMIT) //clamp integrator 
{ 
 iv.pis.i = PI_I_HIGH_LIMIT; 
} 
else if (iv.pis.i < PI_I_LOW_LIMIT) 
{ 
 iv.pis.i = PI_I_LOW_LIMIT; 
} 
 
output = (iv.pis.p + iv.pis.i) >> 12; //scale for Q15 from Q15 coefficients and Q12 from ADC 
 
if(output > PI_OUTPUT_HIGH_LIMIT) //clamp PI output 
{ 
 output = PI_OUTPUT_HIGH_LIMIT; 
} 
else if (output < PI_OUTPUT_LOW_LIMIT) 
{ 
 output = PI_OUTPUT_LOW_LIMIT; 
} 
 
iv.pis.output = output; 
return output; 

} 

3 Current Loop 

3.1 Overview 
The PFC current loop is used to regulate the inductor current so that the input current will follow the input 
voltage. To do this, the current reference, which takes the same shape as the input voltage, needs to be 
calculated first. For an average current mode controlled PFC, the current reference is calculated as: 
 
Iref = Km * A * B * C       (1) 
 
while: 
Km: multiplier gain 
A: Voltage loop output 
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B: 1/Vin_rms
2 

C: sensed input voltage Kvin*Vin 

 

Once the current reference is calculated, the corresponding function blocks in the chip need to be configured to 
close the loop. There are 3 major hardware blocks for the current loop: Front End, Filter, and DPWM. These 
blocks will be introduced one by one. 
 

 
Figure 2. Current loop 

3.2 Multiplier Gain Km 
The multiplier gain Km is defined as follows: 
From (1), 
 

2/))(( rmsvininvmmref VKVUKBCAKI                                                                        (2) 

 
where, 
 
Uv : voltage loop output 
Vrms : RMS voltage of digitized input voltage 
Kvin : Input voltage divider 
 
For digital implementation, the voltage signals in (2) are digitized, a suitable fixed-point notation is chosen so that 
each signal is normalized with the maximum value equals to 1. For maximum power output, at minimum Vin, the 
voltage controller output and the reference current command will be at their maximum values, Uvmax and Iref_max 

respectively. Since Iref and Uv are calculated in per unit, their maximum values are, Iref_max = 1, Uvmax = 1. 
Therefore,  
 

vinpk

rms

vvinpk

rms
ref KV

V

UKV

V
IKm

)min(

2
(min)

max)min(

2
(min)

max_ ][     (3) 

 

For sine wave input, this can be written as, 
 

)min(
)min(

2
)min(

2

5.0
2 pkvin

vinpk

pkvin
m VK

KV

VK
K                                                                                                  (4)   

 

3.3 Vin Sensing and Rectification 
Vin line and neutral are measured by 2 ADC channels separately, then it is rectified by firmware.  
 
inline void rectify_vac(void) 
{ 

if(iv.adc_raw[AC_L_CHANNEL] > iv.adc_raw[AC_N_CHANNEL] ) //this is the cycle for line 
{ 
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 iv.vin_raw = iv.adc_raw[AC_L_CHANNEL] - iv.adc_raw[AC_N_CHANNEL]; 
 iv.positive = 1; //tell other functions that this is positive cycle 
} 
else //cycle for neutral 
{ 
 iv.vin_raw = iv.adc_raw[AC_N_CHANNEL] - iv.adc_raw[AC_L_CHANNEL];  
 iv.positive = 0; //tell other functions that this is negative cycle 
} 
iv.vin_sum = iv.vin_raw + iv.vin_sum - (iv.vin_sum >> 2); 
iv.vin_filtered = iv.vin_sum >> 2; //filtered vin measurement 

} 
 

3.4 Calculate Vin_rms
2 

The RMS value is defined as: 

 acT

ac
rms dttV

T
V

0

22 )(*
1

     (5) 

In discrete format: 

 
N

nV
Vrms

2

2 )(      (6) 

 
Vin is sampled every 20us, then the sampled Vin is squared and accumulated in each AC cycle. The RMS value 
is calculated by divide the number of samples in one cycle.  
 
First, calculate V(n)2  
 
iv.vin_squared = (iv.vin_filtered * iv.vin_filtered) >> 9;  
 
Then, calculate sum 
 
//sum V(n)2 for the negative cycle 
inline void accumulate_negative_cycle_values() 
{ 

iv.negative_vin_squared_accumulate = iv.vin_squared + iv.negative_vin_squared_accumulate; 
} 
 
// sum V(n)2 for the positive cycle 
inline void accumulate_positive_cycle_values() 
{ 

iv.positive_vin_squared_accumulate = iv.vin_squared + v.positive_vin_squared_accumulate; 
} 
 
Finally, calculate Vin_rms2 
 
//calculate Vin_rms2 for the negative cycle 
inline void store_negative_cycle_values(void) 
{ 

iv.vin_squared_average = iv.negative_vin_squared_accumulate / iv.negative_cycle_counter; 
iv.vin_squared_for_ac_drop = iv.vin_squared_average; 

} 
 
//calculate Vin_rms2 for the positive cycle 
inline void store_positive_cycle_values(void) 
{ 

iv.vin_squared_average = iv.positive_vin_squared_accumulate / iv.positive_cycle_counter; 
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iv.vin_squared_for_ac_drop = iv.vin_squared_average; 
} 

3.5 Calculate Vin Feed Forward 
The following function is used to calculated voltage feed forward Km * B 
 
Km: multiplier gain 
B: 1/Vin_rms2 

 
inline void voltage_feed_forward(void) //calculate Km/Vrms^2 
{ 

if(iv.vin_squared_average < VAC_MIN_OFF_SQ_AVG) //if VAC is below normal operation range 
{ 
 iv.vff_multiplier = K_FEED_FORWARD / VAC_MIN_OFF_SQ_AVG; 

 //Q30/Q15 = Q15 limit to minimum operating voltage to avoid overflow 
} 
else //here if vac is within range 
{ 
 if(abs(iv.vin_squared_average – (iv.vin_squared_slow_average >> 

 VRECT_SQUARED_SLOW_AVERAGE_SHIFT)) > (iv.vin_squared_slow_average >> 
 (VRECT_SQUARED_SLOW_AVERAGE_SHIFT + 4))) 

 //compares difference between fast and slow VAC values to a percentage of the slow value. 
 //instead of multiplying the slow value times a constant, it uses a shift.  So a shift of +4, for  
 //example = 1/16  or .0625% of the slow value. 
 //so the code below is executed if the difference between fast and slow values is greater  
 //than the percentage.  It uses the fast value. 
 { 

iv.vff_multiplier = K_FEED_FORWARD / iv.vin_squared_average; 
 } 
 else //here if the fast and slow values are close - use the slow value. 
 { 

if(iv.vin_squared_slow_average < (VAC_MIN_OFF_SQ_AVG <<   
  VRECT_SQUARED_SLOW_AVERAGE_SHIFT))  

{ 
 iv.vff_multiplier = K_FEED_FORWARD / AC_MIN_OFF_SQ_AVG; 
 //Q30/Q15 limit to minimum operating voltage to avoid overflow 
} 
else 
{ 
 iv.vff_multiplier = K_FEED_FORWARD / (iv.vin_squared_slow_average >>  

  VRECT_SQUARED_SLOW_AVERAGE_SHIFT); 
} 

 } 
} 

} 

3.6 Calculate Current Reference  
Now that we have A, B and C, we can calculate the average current reference. This is done in 2 functions: 
 
First, calculate Km * A * B: 
 
inline void handle_voltage_loop(void) 
{ 

iv.i_target_average = ((iv.vff_multiplier >> 5) * proportional_integral(iv.vbus_target -   
 v.adc_avg[VBUS_CHANNEL])) >> 11; 
} 
 
Then, calculate Km * A * B * C, which is the current reference: 
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inline void calculate_current_target_shunt(void) 
{ 

int32 pointer; 
 
//for EMI CAP compensation 
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered; 
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal 
iv.i_target_sensed = ((iv.cir_buff[pointer] * iv.i_target_average) >> 16) + iv.i_target_offset; 
iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f; 
 
if(iv.i_target_sensed > 0x3ff) //clamp current target at maximum current 
{ 
 iv.i_target_sensed = 0x3ff; 
} 
 
FeCtrl0Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //disregard dithering bits. 

} 
 
Now that the current reference is calculated, it’s time to configure the current loop hardware so that the loop can 
be closed.  

3.7 Current Feed Back Front End Configuration 
The Front End measures the difference between the current feed back signal and the current reference 
calculated in section 3.6. It passes this digital error information to the filter. The blocks which need to be 
configured are: the front end for current feedback signal sensing, the AFE_GAIN, the CLA filter, the 
compensation coefficients, and the DPWM module. The UCD3138 is very flexible, the front end, filter and DPWM 
facilitate  connections to and from multiple peripherals. The following code example is based on the PWR026 
PFC EVM hardware; it uses Frond End0, CLA1 and DPWM1. Other configurations are also possible. For detail 
of how to configure UCD3138 digital peripherals, please refer to programmer manual [4]. 
 
void init_front_end0(void)  
{ 

FeCtrl0Regs.EADCDAC.bit.DAC_VALUE = 0; 
FeCtrl0Regs.EADCCTRL.bit.AFE_GAIN = 1; 

} 
 
void init_loop_mux(void) 
{ 

LoopMuxRegs.SAMPTRIGCTRL.bit.FE0_TRIG_DPWM1_EN = 1; //Use DPWM1 sample trigger for FE0 
 
LoopMuxRegs.FILTERMUX.bit.FILTER1_FE_SEL = 0; //use FE0 (shunt) to drive CLA1 
LoopMuxRegs.FILTERMUX.bit.FILTER1_PER_SEL = 1;//CLA1 switching period select from DPWM1 
 
LoopMuxRegs.DPWMMUX.bit.DPWM1_FILTER_SEL =1; //CLA1 is providing input to DPWM1 
LoopMuxRegs.DPWMMUX.bit.DPWM3_SYNC_SEL = 1;  //DPWM1 is the master for DPWM3 

}  

3.8 Current Loop Filter Configuration 
The filter takes the error signal from the Front End and passes it through a 2-pole 2-zero digital filter which 
compensates the disturbance of the current loop. The filter needs to be initialized such that once powered up, 
the current loop will use well-tuned control parameters to close the current loop: 
 
void init_filter1(void) 
{ 

MiscAnalogRegs.CLKTRIM.bit.HFO_LN_FILTER_EN = 1; 
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Filter1Regs.FILTERCTRL.bit.OUTPUT_MULT_SEL = 1; //PID output multiply with period 
Filter1Regs.FILTERCTRL.bit.OUTPUT_SCALE = 0; //no scale 
 
Filter1Regs.FILTERKICLPHI.bit.KI_CLAMP_HIGH = 0x7FFFF0; 
Filter1Regs.FILTERKICLPLO.bit.KI_CLAMP_LOW = 0x800010; 
 
Filter1Regs.FILTERYNCLPHI.all = 0x799999; //95% 
Filter1Regs.FILTERYNCLPLO.all = 0; 
 
Filter1Regs.FILTERCTRL.bit.FILTER_EN = 1; 
//enable OK here, because nothing will happen until DPWM and front end are globally enabled 

} 
 
In PWR026 PFC EVM, some of the important parameters, such as set-points, AFE_Gain, Oversampling, voltage 
loop PI gain and current loop PID gain are stored in data flash. Upon power up, they are loaded from data flash 
to their corresponding registers.  
 
void copy_configuration_to_registers(volatile struct FILTER_REGS *dest) 
{ 

//copy PFC configuration 
iv.vbus_voltage = pfc_config_in_ram.PFC_SETPOINT.VOUT_COMMAND +  

 pfc_config_in_ram.PFC_CAL.VOUT_CAL_OFFSET; 
iv.vbus_setpoint = ((Uint32)((iv.vbus_voltage * 4095) / VBUS_FULL_RANGE)); 
 
if(iv.supply_state >= STATE_PFC_ON) 
{ 
 iv.vbus_target = ((int32)((iv.vbus_voltage * 4095)/VBUS_FULL_RANGE)); 
} 

 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH =  

 ((Uint32)(pfc_config_in_ram.PFC_SETPOINT.VOUT_OV_LIMIT * 127) / VBUS_FULL_RANGE); 
 
switching_frequency = pfc_config_in_ram.PFC_SETPOINT.FREQUENCY; 
 
//copy voltage loop gains 
iv.pis.kp  = pfc_config_in_ram.PI_GAINS.KP; 
iv.pis.ki  = pfc_config_in_ram.PI_GAINS.KI; 
iv.pis.kp_nl  = pfc_config_in_ram.PI_GAINS.KP_NL; 
iv.pis.ki_nl  = pfc_config_in_ram.PI_GAINS.KI_NL; 
iv.pis.nl_threshold  = (pfc_config_in_ram.PI_GAINS.NL_THRESHOLD << 12) / VBUS_FULL_RANGE; 
 
//copy current loop gains 
dest->COEFCONFIG.all       = pfc_config_in_ram.COEFCONFIG.all; 
dest->FILTERKPCOEF0.all = pfc_config_in_ram.FILTERKPCOEF0.all; 
dest->FILTERKPCOEF1.all = pfc_config_in_ram.FILTERKPCOEF1.all; 
dest->FILTERKICOEF0.all  = pfc_config_in_ram.FILTERKICOEF0.all; 
dest->FILTERKICOEF1.all  = pfc_config_in_ram.FILTERKICOEF1.all; 
dest->FILTERKDCOEF0.all = pfc_config_in_ram.FILTERKDCOEF0.all; 
dest->FILTERKDCOEF1.all = pfc_config_in_ram.FILTERKDCOEF1.all; 
dest->FILTERKDALPHA.all= pfc_config_in_ram.FILTERKDALPHA.all; 
dest->FILTERNL0.all = pfc_config_in_ram.FILTERNL0.all; 
dest->FILTERNL1.all = pfc_config_in_ram.FILTERNL1.all; 
dest->FILTERNL2.all = pfc_config_in_ram.FILTERNL2.all; 
dest->FILTERCTRL.bit.NL_MODE = fc_config_in_ram.FILTERMISC.bit.NL_MODE; 

 
FeCtrl0Regs.EADCCTRL.bit.AFE_GAIN = pfc_config_in_ram.FILTERMISC.bit.AFE_GAIN; 
 
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE=  

 pfc_config_in_ram.FILTERMISC.bit.SAMPLE_TRIG1_OVERSAMPLE; 
}  
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3.9 DPWM Configuration 
The output of the compensator is passed to a Digital PWM (DPWM) generator.  The DPWM has two outputs, 
which can be configured in many different ways to accommodate different power topologies. For PFC, either 
DPWMA or DPWMB can be used. If DPWMA is used, it needs to be set to normal mode, for DPWMB, it needs to 
be set to Multi-mode. The following code example accommodates the PWR026 PFC EVM, in which DPWMB is 
used and configured as Multi-mode. Another PWM module DPWM3 is also configured to do PFC ZVS control[5]. 
 
void init_dpwm1(void) // DPWM1B is used to drive 1st phase  
{ 

Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 0;  //disable everything 
 

Dpwm1Regs.DPWMCTRL1.bit.GPIO_A_EN = 1; //turn off DPWM1A for now 
Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //turn off DPWM1B for now 

 
 // Enable CBC and Blanking windows 
Dpwm1Regs.DPWMCTRL0.bit.CBC_PWM_AB_EN = 1; // Enable cycle by cycle current limit. 
Dpwm1Regs.DPWMCTRL0.bit.BLANK_B_EN = 1;      // Enable blanking Dpwm1Regs.DPWMBLKBBEG.all = 0x0000; 
Dpwm1Regs.DPWMBLKBEND.all = 0x0500; 

 
Dpwm1Regs.DPWMFLTCTRL.bit.B_MAX_COUNT = 2; 
Dpwm1Regs.DPWMFLTCTRL.bit.ALL_FAULT_EN = 1; //enable this for OVP 
 
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG_1_EN = 1; //enable sample trigger1 
 
Dpwm1Regs.DPWMEV1.all = 290; 
Dpwm1Regs.DPWMEV3.all = 290; //aviod 72ns events update window 
Dpwm1Regs.DPWMCTRL0.bit.PWM_MODE = 2; //multi mode 
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE = 3; //8X oversampling. 
Dpwm1Regs.DPWMCTRL1.bit.EVENT_UP_SEL = 1; //update at end of period 
 
Dpwm1Regs.DPWMCTRL0.bit.CLA_EN = 1; 
Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 1; 
//enable OK here, because nothing will happen until DPWM and front end are globally enabled  

} 
 
void init_dpwm3(void) // DPWM3 is used for ZVS control 
{ 

Dpwm3Regs.DPWMCTRL0.bit.PWM_EN = 0;  //disable everything 
 
Dpwm3Regs.DPWMCTRL1.bit.GPIO_A_EN = 0;//turn on DPWM3A  
Dpwm3Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;//turn off DPWM3B for now 

 
Dpwm3Regs.DPWMCTRL0.bit.CLA_EN = 0; //open loop  

 
Dpwm3Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 1; //slave mode 
 
Dpwm3Regs.DPWMCTRL0.bit.PWM_EN = 1;//enable OK here, because nothing will happen until DPWM and front end are 

globally enabled  
} 
 
void set_new_switching_frequency(void) 
{ 

iv.switching_period = (SWITCH_FREQ_NUMERATOR/switching_frequency) << 4; 
iv.period_times_2_14 = iv.switching_period << 14; 
iv.dither_max_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency - 4)) << 4;  
iv.dither_min_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency + 4)) << 4;  
iv.dither_step = ((iv.dither_max_period - iv.dither_min_period) << 14)/DITHER_PERIOD;  
//step for dither value 

 



SLUA708 – March 2014 

12 Designing a UCD3138 Controlled Single Phase PFC 

Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
Dpwm3Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
Dpwm1Regs.DPWMSAMPTRIG1.all = iv.switching_period - (iv.sample_trigger_offset * 4); // sample at the end of period 
Dpwm1Regs.DPWMPHASETRIG.all = 0; //0 delay for next phase 

} 
 
void init_dpwms(void) 
{ 

init_dpwm1(); 
init_dpwm3(); 
set_new_switching_frequency(); 

} 

4 System Protection 
 
System protection includes current protection and voltage protection. There are two levels of over voltage 
protection, one is implemented through software with a lower threshold, and the other is through an on chip 
analog comparator with a higher threshold. The current is protected on a cycle-by-cycle bases. 

4.1 Software OVP Protection 
This is a pure software OVP protection. Vout is measured by an ADC, the output of ADC is filtered for 
measurement noise immunity, and then compared with a programmable threshold. The PWM will shut down if 
the measurement is greater than a user programmable threshold. The ADC continues monitoring Vout, PWM will 
turn back on once Vout drops below its setpoint. This allows the PFC to enter a hiccup mode. This will be useful 
for OVP conditions that are not caused by hardware failure, but by a sudden operating condition change, such as 
a load transient. 
 
inline void pfc_on_state_handler(void) 
{ 

if(iv.vin_squared_average > VAC_MIN_OFF_SQ_AVG) //if Vac above 80 volts 
{ 
 if(iv.adc_avg[VBUS_CHANNEL] > VBUS_DPWM_OFF_LEVEL)//if we've hit OVP 
 { 

turn_off_pfc(); 
iv.supply_state = STATE_PFC_HICCUP; 

 } 
} 
else 
{ 
 turn_off_pfc(); 
 init_miscellaneous(); 
 iv.supply_state = STATE_IDLE;   
} 

} 
 
inline void pfc_hiccup_state_handler(void) 
{ 

if(iv.adc_avg[VBUS_CHANNEL] < VBUS_DPWM_ON_LEVEL) //if OVP gone 
{ 
 LoopMuxRegs.GLBEN.all = 0x70F; //global enable all Front_ends and DPWMs 
 turn_on_pfc(); 
 iv.supply_state = STATE_PFC_ON; 
} 

} 
 
void turn_on_pfc(void) 
{ 
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Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 0; 
} 
 
void turn_off_pfc(void) 
{ 

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; 
 
LoopMuxRegs.GLBEN.all= 0; //disable all front end and DPWMs 

} 

4.2 Hardware OVP Protection 
As shown in Figure 1, Vout is also connected to an on chip analog comparator COMP_F. the comparator is 
configured to turn off the PWM automatically once triggered. The comparator’s threshold is also programmable, 
and its threshold is usually set a little bit higher than the software OVP. This provides a fast OVP protection. If 
this OVP gets triggered, this usually means the PFC has had a serious hardware failure. Because of this it is 
latched there once shut down for safety purpose.   
 
Following is the code to configure this OVP: 
 
// Enable ACOMP-F pin and connect to DPWM-1 and DPWM-2 for Vbus OV protection 
FaultMuxRegs.DPWM1FAULTDET.bit.PWMB_ACOMP_F_EN = 1;  // Connect ACOMP-F to DPWM-1 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_SEL = 0;         // Use threshold register for trip 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_POL = 1;        // Above thresh to trip 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH = ((Uint32)(PFC_CONFIG_TEMP.PFC_SETPOINT.VOUT_OV_LIMIT * 
127) / VBUS_FULL_RANGE); 
 
 

4.3 Cycle by Cycle Current Protection 
The current is protected through on chip analog comparators COMP_D and COMP_E. It is cycle by cycle (CBC) 
based. Once the analog comparator is triggered, the PWM is turned off for the remainder of the cycle, but it will 
turn back on the next switching cycle. The code to configure the analog comparator for CBC is: 
 
 // Enable ACOMP-D pin and connect to current limit on DPWM-1 
 FaultMuxRegs.DPWM1CLIM.bit.ACOMP_D_EN = 1;  // Connect ACOMP-D to DPWM-1  
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_SEL = 0;       // Use threshold register for trip 
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_POL = 1;       //Above thresh to trip 
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_THRESH = OC_COMPARATOR; // Trip value  
 

5 Advanced Features 

5.1 Frequency Dithering 
Frequency dithering refers to modulating the switching frequency to achieve a reduction in conducted EMI noise 
beyond the capability of the line filter. This total range from minimum to maximum frequency is defined as the 
dither magnitude, and is centered on the nominal switching frequency. The rate at which PWM traverses from 
one extreme to the other and back again is defined as the dither rate. Both these two parameters are 
programmable. 
 
inline void frequency_dithering(void) 
{ 

if(status_1.bits.dither_enabled == 1) 
{ 
 if(iv.dither_direction == 1) 
 { 



SLUA708 – March 2014 

14 Designing a UCD3138 Controlled Single Phase PFC 

iv.period_times_2_14 = iv.period_times_2_14 + iv.dither_step; 
iv.switching_period = iv.period_times_2_14 >> 14; 
if(iv.switching_period > iv.dither_max_period) 
{ 
 iv.switching_period = iv.dither_max_period; 
 iv.dither_direction = 0; 
} 

 } 
 else  //if dither direction equalled 0 to start with 
 { 

iv.period_times_2_14 = iv.period_times_2_14 - iv.dither_step; 
iv.switching_period = iv.period_times_2_14 >> 14; 
 
if(iv.switching_period < iv.dither_min_period) 
{ 
 iv.switching_period = iv.dither_min_period; 
 iv.dither_direction = 1; 
} 

 } 
 
 Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
 Dpwm1Regs.DPWMSAMPTRIG1.all = iv.switching_period – (iv.sample_trigger_offset*4); 
} 

} 

5.2 AC Drop Detection 
The AC drop detection algorithm is shown in Figure 3. Vin is checked every 100μs. Its measurement is 
compared with a predetermined threshold “AC_DROP_V_RECT_THRESHOLD”. If the consecutive samples 
below this threshold are greater than a predetermined number, “AC_DROP_COUNT_MAX”, then AC drop is 
detected, a AC drop signal is send out to the host through a GPIO. 
 
The threshold and number of consecutive samples will affect the sensitivity of the AC drop detection algorithm. 
They can be tuned base on the specific application requirements. 
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Figure 3. AC Drop Detection 

 
The following is the code to implement this function: 
inline void check_ac_drop(void) 
{ 

if(iv.vin_filtered > AC_DROP_V_RECT_THRESHOLD) 
{ 
 iv.ac_drop_count = 0; //if over threshold, clear counter 
} 
else 
{ 
 iv.ac_drop_count++; 
 if(iv.ac_drop_count > AC_DROP_COUNT_MAX) 
 { 

iv.ac_drop = 1; 
iv.ac_drop_recovery_not_complete = 1; 
iv.vin_squared_for_ac_drop = 0; //clear for ac recovery detection 
MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 0; 
//pull down opto to signal AC drop to primary side 

 } 
} 
 
if(iv.vin_squared_for_ac_drop > AC_UNDROPPED_THRESHOLD)  
//if above ac not dropped threshold 
{  
 iv.ac_drop = 0;  // we've got enough energy, clear AC drop warning 
 MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 1; 
 //turn off AC drop output signal also - inactive high 
} 

} 
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5.3 PFC ZVS or Valley Switching Control 
In discontinuous conduction mode (DCM), when the MOSFET is turned off, the boost inductor current starts to 
decrease. The current will not stop decreasing when it reaches zero. Rather, it will continue going to negative 
value and an oscillation between the inductor and the total parasitic capacitance at the switching node occurs. 
 
The oscillation period and amplitude are dependent on the inductance and capacitance values as well as the 
operating point. This oscillation results in a significant current distortion and seriously deteriorates the THD.  
 
A new control method developed by TI [5] can always force the MOSFET to turn on at the point shown by the 
arrows in figure 4. Since the MOSFET always turns on at the same zero current position, the issue described in 
previous paragraph is solved, and the current distortion is significantly reduced. Also, because of zero voltage 
switching (ZVS) and zero current switching (ZCS), the efficiency is also improved.   
 

 
Figure 4. A New ZVS/Valley Switching Control Algorithm. 

 
For more details of how to implement this control, please refer to application report SLUA644.  
 

5.4 X-CAP Reactive Current Compensation 
Every PFC has an electromagnetic interference (EMI) filter on the input end. The X capacitors of the EMI filter 
will cause the AC input current to lead the AC input voltage, which will degrade power factor (PF). This situation 
gets worse at light-load and high-line. To increase the PF at light-load, we can force the inductor current to be 
slightly delayed so that the total AC current will match the input voltage. This can be achieved by delaying the 
current reference.  

 
//stuff for EMI CAP compensation  
int16 cir_buff[64]; //64buffer for vin 
int32 cir_buff_ptr; //pointer for spot in cir buff; 
int32 cir_buff_delay; //delay for waveform from circular buffer. 
 
inline void calculate_current_target_shunt(void) 
{ 

int32 pointer; 
 
//for EMI CAP compensation 
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered; 
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal 
iv.i_target_sensed = ((iv.cir_buff[pointer] * iv.i_target_average) >> 16) + iv.i_target_offset; 
iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f; 
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if(iv.i_target_sensed > 0x3ff) //saturate current target at maximum current 
{ 
 iv.i_target_sensed = 0x3ff; 
} 
 
FeCtrl0Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //disregard dithering bits. 

} 
 
There is another way to actively compensate the X-cap reactive current, please refer to TI application note [6] for 
details.   

 5.5 Input Power and RMS Current Measurement 
The real-time energy consumption measurement, including input real power and input RMS current 
measurement for off-line power supplies, is becoming ever more important nowadays. These measurements 
could be used to adjust power delivery and optimize energy usage. Traditionally the input power and current are 
measured by a dedicated power metering chip and extra sensing circuit. While the power metering chip proved 
to be sufficient, it adds extra cost and design effort. Since the digital controller used in a digital PFC already has 
analog to digital converters (ADC) and a fast CPU, it could be used to do input power and current measurements 
as well. A method has been developed by TI to use the existing controller in a PFC application to do input power 
and Irms measurements at the same time. It has the following features: 
 

 Using existing PFC controller chip and hardware, eliminating the traditional dedicated power metering 
chip and extra sensing circuit. 

 Extreme low cost 
 Simple calibration, only needs 2 points, can be AC or DC source 
 Vin and Iin dual sample and hold 
 Optimized mathematic calculation, overhead on CPU usage is little, no impact on normal PFC control 

 
The proposed method has been tested on different PFC units, test results show this method give excellent 
measurement accuracy. Please refer to the application note [7] for details.  
 

5.6 A Novel Burst Mode – AC Cycle Skipping 
 
The PFC efficiency gets lower and lower at light load, this is because the switching loss, driving loss, and 
reverse recovery loss of semiconductor components become dominant at light load. In the meanwhile, the PFC 
may enter from continuous conduction mode (CCM) to discontinuous conduction mode (DCM), it causes the 
converter dynamics change abruptly, the current loop bandwidth will reduce significantly. The small current 
feedback signal also makes the control very difficult. As a result, the THD is getting worse. To improve efficiency 
and THD at light load is always a challenge in PFC design.  
 
A special burst mode is developed once the PFC load reduced to less than a pre-defined threshold. In this mode, 
depends on the load, one or more AC cycles are skipped by PFC. In other words, PFC turns off for one or more 
AC cycles, and turns back on for the next AC cycle. The turn on/turn off instant is at the AC zero-crossing, such 
that the whole AC cycle is skipped. Moreover, since the PFC turn on/turn off at the moment current equals to 
zero, both the stress and EMI noise are low [8].  
 

5.7 Harmonic Injection 
 
For a high end PFC design, it not only requires the THD not exceeding a certain percentage with a specific load, 
but also requires each of the individual harmonics not exceeding a specific limit, as defined in IEC 61000-3-2. 
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Sometimes a new PFC design can pass the THD test, but failed with individual harmonics distortion test. How to 
reduce a specific order of harmonic distortion is a big challenge in PFC design. 
 
A harmonics injection method is developed such that the harmonics with high magnitudes will be suppressed 
actively [9].  
 

5.8 Duty Ratio Feedforward Control 
 
Average current-mode control has been used in PFC for decades. Various analog PFC control chips employing 
this control algorithm can be found in the commercial market. The performance of average current-mode control 
is often considered adequate for most commercial power applications with 50/60 Hz AC line input. However, the 
traditional average current-mode control causes the inductor current to lead the input voltage, resulting in a non-
unity fundamental displacement power factor and zero-crossing distortion. This situation gets worse with PFC 
operating under a high-frequency AC environment, such as 400 Hz, often used in airborne systems. The high 
input current quality required in these systems is difficult to achieve through traditional control methods. A new 
control method, called duty ratio feedforward (DFF) control, can effectively reduce input current distortion under 
high line frequencies. 
 
An enhanced version, which combines the regular duty ratio feedforward and the hardware digital filter of a 
digital controller UCD3138, has been developed. Compared to the regular duty ratio feedforward control, the 
enhanced version increases the control loop bandwidth. Thus, the current waveform and THD are greatly 
improved [10].  
  
 

6 Firmware structure 
The firmware is divided as 3 major parts: background loop, standard interrupt loop and fast interrupt loop, as 
shown below: 

Background Loop
System initialization
Voltage feed forward
System monitoring
Dynamic system optimization
PMBus communication
UART transmit data
Power metering calculation

Standard interrupt
ADC measurement
State machine
Vrms calculation
Voltage loop calculation
Current reference calculation
AC drop detection
UART receive data
Frequency dithering
ZVS control
Input power measurement

Fast interrupt
OVP

 
Figure 5. Firmware Structure 
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6.1 Background Loop 
The firmware starts from function main(). In this function, after the system initialization, it goes to an infinite loop. 
All the non-time critical tasks are put in this loop, it includes: 
 

 Calculate voltage feed forward 
 System monitoring 
 Dynamic system optimization  
 PMBus communication 
 UART transmit data  
 Power metering calculation 
 

The user can always add any additional non-time critical functions in this loop 
 
void main() 
{ 

MiscAnalogRegs.IOMUX.all = 0; //enable JTAG 
look_for_interrupted_dflash_erase(); //Check to see if the last DFLASH erase was interrupted 
pmbus_write_restore_default_all(); //load PFC configuration from data flash 
init_miscellaneous(); 
init_adc_polled(); 
init_uart(); 
init_front_ends(); 
init_dpwms(); 
init_filters(); 
init_loop_mux(); 
init_fault_mux(); 
init_timer_interrupt(); 
init_pmbus(); 
 
string_out_0("\033[2J"); //clear screen 
 
for(;;) 
{ 
 pmbus_handler();  
 
 emi_current_calculation(); 
 
 pmbus_handler(); 
 
 input_current_calculation(); 
 
 pmbus_handler(); 
 
 input_power_calculation(); 
 
 pmbus_handler(); 
 
 voltage_feed_forward(); 
 
 pmbus_handler(); 
 
 system_monitoring(); 
 
 pmbus_handler(); 
 
 if(iv.supply_state == STATE_PFC_ON) 
 { 

dynamic_system_optimization();//change compensation based on Vin 
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 }   
 
 pmbus_handler(); 
 
 if (erase_segment_counter > 0) 
 { 

erase_task(); //  Handle the DFlash segment erases 
 } 
 
 pmbus_handler(); 
 
 if(uart_tx_timeout >= UART_TX_TIME) 
 { 

output_primary_secondary_message(); 
 } 
 else 
 { 

process_uart_rx_data(); 
 } 
} 

} 

6.2 Standard Interrupt Loop (IRQ) 
Standard interrupt loop is triggered by a timer at every 20μs. It is used to handle all the time critical tasks. It 
includes: 
 

 ADC measurements 
 PFC State machine 
 Vin_rms calculation 
 Voltage loop calculation 
 Current reference calculation 
 Vin drop detection 
 UART receive data 
 Frequency dithering 
 ZVS control 
 Input power measurement  

 
However, to handle all these tasks in 20μs will cause interrupt overflow. To deal with this issue, the tasks 
distribution state machine is used to handle different task at different time interval.  

6.2.1 Tasks Distribution State Machine 
void standard_interrupt(void) 
{ 

poll_adc(); 
rectify_vac(); 
calculate_current_target_shunt(); 
 

#ifdef ZVS_CONTROL 
if(ipm_or_zvs) //switch between ipm and zvs, IRQ will overflow if do them together 
{ 
 input_power_measurement(); 
 ipm_or_zvs = 0; 
} 
else 
{ 
 handle_zvs_control(); 
 ipm_or_zvs = 1; 
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} 
#else 

input_power_measurement(); 
#endif 

 
switch(iv.interrupt_state)  
{ 
 case I_STATE_1 : 
  handle_voltage_loop(); 
  iv.interrupt_state = I_STATE_2; 
  break; 
 
 case I_STATE_2 : 
  half_cycle_processing(); 
  iv.interrupt_state = I_STATE_3; 
  break; 
 
 case I_STATE_3 : 
  check_ac_drop(); 
  iv.interrupt_state = I_STATE_4; 
  break; 
 
 case I_STATE_4 : 
  uart_receive_data(); 
  iv.interrupt_state = I_STATE_5; 
  break; 
 
 case I_STATE_5 : 
  supply_state_handler(); //run PFC state machine 
 
  if(zvs_flag == 0) //only do dither when zvs control is disabled 
  { 

frequency_dithering();       
  } 
 
  iv.interrupt_state = I_STATE_1; 
  break; 
 
 default: //if it's in an illegal state 
  iv.interrupt_state = I_STATE_1; //start it up again 
  break; 
}    
TimerRegs.T16PWM0CMPCTRL.all = 3; //clear interrupt bit by a read/write. 

} 

6.2.2 PFC State Machine 
PFC state machine is only one of the tasks in standard interrupt, it is called every 100μs. A typical PFC state 
machine is shown below: 
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Figure 6. PFC State Machine 

 
As soon as Vin is greater than 85V, the relay closes and the PFC starts up. A 100ms delay is added after relay 
closes to deal with the relay bouncing issue. After that, the PFC will gradually ramp up its output voltage until 
Vout reaches its setpoint. At this point, the PFC enters its final regulation state and will stay there until some 
abnormal conditions occurs, such as Vout over voltage or Vin under voltage.  
 
inline void supply_state_handler(void) 
{ 

switch(iv.supply_state)  
{ 
 case STATE_IDLE : 
  idle_state_handler(); 
  break; 
 
 case STATE_RELAY_BOUNCE: 
  relay_bounce_state_handler(); 
  break; 
 
 case STATE_RAMP_UP : 
  ramp_up_state_handler(); 
  break; 
 
 case STATE_PFC_ON: 
  pfc_on_state_handler();  
  break; 
 
 case STATE_PFC_HICCUP: 
  pfc_hiccup_state_handler(); 
  break; 
 
 case STATE_PFC_SHUT_DOWN: 
  pfc_shut_down_state_handler(); 



   SLUA708 – March 2014 

 Designing a UCD3138 Controlled Single Phase PFC 23 

  break; 
 
 default: 
  break; 
} 

} 

6.3 Fast Interrupt (FIQ) 
The FIQ is triggered by the comparator on AD06 (Comparator F).  Since DPWM1B is already turned off to 
protect the PFC, what the FIQ does is only to report an OVP failure through a GPIO and set the PFC state into a 
shut down latched state. The customer can always add more time critical tasks in function: 
 
#pragma INTERRUPT(fast_interrupt,FIQ) 
void fast_interrupt(void) 
{ 

volatile int32 temp; 
 
turn_off_pfc(); 
 
iv.supply_state = STATE_PFC_SHUT_DOWN; 
 
temp = FaultMuxRegs.FAULTMUXINTSTAT.all; //read to clear the interrupt flag 

} 

7 Graphical User Interface (GUI) 
 
A graphical user interface (GUI) named “Fusion Digital Power Designer” is provided by Texas Instruments to 
facilitate UCD3138 controlled power converter designed. By talking to the GUI through the PMBus, the PFC 
operating status can be monitored, its operation setpoints can be configured, and the control loop can be tuned 
on the fly.  
 
The GUI is deigned to support the most popular topologies, including PFC. Different topologies will have different 
interfaces. A setup id is used in the PFC firmware to tell the GUI that this is a PFC, so that when the GUI starts, it 
will open a interface to accommodate the PFC topology. In addition, the setup id specifies the PFC topology 
(single phase, interleaved or bridgeless), and it also includes the hardware modules used in the PFC current 
loop: which front end, which CLA and which DPWM modules are used. The following setup id is used in the 
single phase PFC EVM PWR026: 
 
#define SETUP_ID        "VERSION1|PFC001" 
In this case, the “PFC001” is defined as a single phase PFC, with FE0, CLA1 and DPWM1 consist the current 
loop. 
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Figure 7. Monitor PFC Operating Status 

 

 
Figure 8. Configure PFC Operation Setpoints 
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Figure 9. Tune PFC Control Loop 

  
The current and voltage loop can be tuned through GUI. As shown in Figure 9, This GUI provides interface to 
tune the current and voltage control loop compensator, it also shown the loop bode plot, as well as bandwidth, 
phase margin, and gain margin. The loop tuning is much simplified. For details of the GUI, please refer to [11]. 

8 PFC Tuning and THD Reduction  
 
PFC current loop tuning can be a time consuming and challenging task for the PFC design engineer. It requires 
the current waveform not only to be stable, but also to be smooth with very low THD and high PF. It gets more 
and more challenging with the ever increasing THD and PF requirements. The digital controller provides more 
flexibility and additional ways to achieve these increasing performance requirements. To make this task easier TI 
provides a GUI that greatly simplifies the work involved in these tasks. Additionally, application note [12] also 
provides a step by step guide of how to tune the current loop of a UCD3138 controlled PFC, it also summarizes 
some of the most common but effective methods to reduce the current distortion in a digitally controlled PFC. All 
the methods are analyzed and tested. 

Reference: 
[1] UCD3138 datasheet 
[2] TI application note: Design a UCD3138 Controlled Interleaved PFC 
[3] TI application note: Design a UCD3138 Controlled Bridgeless PFC 
[4] SLUU995: UCD3138 Digital Power Peripherals Programmer’s Manual 
[5] TI application note: SLUA644, 
[6] TI application note: A Novel EMI Filter X-CAP Reactive Current Compensation Method to increase PF 
[7] TI application note: A Low Cost Input Power and RMS Current Measurement Solution 
[8] TI application note: A Special PFC Burst Mode - AC Cycle Skipping 
[9] TI application note: A Harmonic Injection Method to Reduce PFC Harmonics and Improve THD 
[10] B. Sun, “Duty-ratio Feedforward Control of digitally controlled PFC”, Power Systems Design Europe, Dec. 2012.  



SLUA708 – March 2014 

26 Designing a UCD3138 Controlled Single Phase PFC 

 
[11] TI user guide: SLUA676 
[12] TI application note: UCD3138 PFC Tuning. 
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requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity



