
 Application Report
 SLUA708 – March, 2014

1

Designing a UCD3138 Controlled Single Phase PFC

Bosheng Sun High Performance Isolated

ABSTRACT

The UCD3138[1] is a digital power supply controller from Texas Instruments offering superior levels of
integration and performance in a single chip solution. The flexible nature of the UCD3138 makes it suitable for a
wide variety of power conversion applications. In addition, multiple peripherals inside the device have been
specifically optimized to enhance the performance of ac/dc applications such as power factor correction (PFC).

The UCD3138 is a fully programmable solution offering customers complete control of their application.
However, the use of digital controllers in PFC design brings new challenges to many analog designers in their
effort to change the design from the analog space to its new digital environment. This application note gives a
step by step guidance on how to design a UCD3138 controlled single phase PFC. It covers the hardware
interface, voltage loop and current loop implementation, system protection, firmware structure, internal state
machines, as well as some advanced features. Finally, a graphical user interface (GUI) and a guidance for
tuning the coefficients of a PFC system are presented. For interleaved or bridgeless PFC design, please refer to
application notes [2] and [3].

Contents

1 Overview .. 3

1.1 Block Diagram .. 3
1.2 Signal Conditioning and Interface ... 4

2 Voltage Loop .. 4
2.1 Overview ... 4
2.2 Firmware Implementation of PI Controller .. 4

3 Current Loop .. 5
3.1 Overview ... 5
3.2 Multiplier Gain Km ... 6
3.3 Vin Sensing and Rectification ... 6
3.4 Calculate Vin_rms

2 ... 7
3.5 Calculate Vin Feed Forward ... 8
3.6 Calculate Current Reference .. 8
3.7 Current Feed Back Front End Configuration .. 9
3.8 Current Loop Filter Configuration ... 9
3.9 DPWM Configuration .. 11

4 System Protection ... 12
4.1 Software OVP Protection .. 12
4.2 Hardware OVP Protection .. 13
4.3 Cycle by Cycle Current Protection .. 13

5 Advanced Features ... 13
5.1 Frequency Dithering ... 13
5.2 AC Drop Detection .. 14
5.3 PFC ZVS or Valley Switching Control ... 16

SLUA708 – March 2014

2 Designing a UCD3138 Controlled Single Phase PFC

5.4 X-CAP Reactive Current Compensation ... 16
5.5 Input Power and RMS Current Measurement ... 17
5.6 A Novel Burst Mode – AC Cycle Skipping .. 17
5.7 Harmonic Injection .. 17
5.8 Duty Ratio Feedforward Control ... 18

6 Firmware structure .. 18
6.1 Background Loop .. 19
6.2 Standard Interrupt Loop (IRQ) .. 20

6.2.1 Tasks Distribution State Machine ... 20
6.2.2 PFC State Machine .. 21

6.3 Fast Interrupt (FIQ) ... 23
7 Graphical User Interface (GUI) ... 23
8 PFC Tuning and THD Reduction .. 25
Reference: ... 25

Figures

Figure 1. UCD3138 controlled single phase PFC block diagram ... 3
Figure 2. Current loop .. 6
Figure 3. AC Drop Detection .. 15
Figure 4. A New ZVS/Valley Switching Control Algorithm. ... 16
Figure 5. Firmware Structure ... 18
Figure 6. PFC State Machine ... 22
Figure 7. Monitor PFC Operating Status .. 24
Figure 8. Configure PFC Operation Setpoints ... 24
Figure 9. Tune PFC Control Loop ... 25

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 3

1 Overview

1.1 Block Diagram

Vs

 Fusion Power Peripheral

AD_03

RL

Vbus

Q1

D1

Cb

COMP_D

Signal
Conditioning

Rs1

EMI Filter
& Inrush

Relay
Gate
Driver

L1Iin D3

AD_07

DPWM1

Signal
Conditioning

Signal
Conditioning

Vin

Iq1

PI
(Gv)

+ +

-
-

UCD3138

Vref

Vb

Ev

Iin

CLA1
(Gc)

Calculate
Vrms

Calculate
1/Vrms2

Iref

A

B

c

+
Ui

Vrms Conditioning
&

Rectification

Km

Signal
Conditioning

FE0

I_CT1DPWM1B

DPWM1B

Vin_l Vbus_sen

Vbus_sen

Vin_n

I_CT1

Iin_sense

EAP0

UART
Interface

Vin_l

AD_08

Cycle by cycle limit

Vin_n

Vbus_ovCOMP_FOVP

Vbus_ov

PMBus
Interface

Iin_fdbk

Iin_fdbk

AD_02 Iin_sense

Figure 1. UCD3138 controlled single phase PFC block diagram

Figure 1 is an example of block diagram of a single phase PFC controlled by the UCD3138. The input voltage
Vin is sensed before the bridge rectifier, the line and neutral are sensed separately by two ADC channels AD_07

SLUA708 – March 2014

4 Designing a UCD3138 Controlled Single Phase PFC

and AD_08. PFC output voltage Vbus_sen is sensed by another ADC channel AD_03. In addition, a separate
Vout sensing circuit is connected to an on chip analog comparator COMP_F for over voltage protection (OVP).
The current signal is sensed by current shunt and its feedback signal Iin_fdbk is connected to error ADC channel
EAP0 for current loop control. This signal is further filtered and connected to AD_02 for input power and RMS
current measurement. A current transformer is used to sense the MOSFET instantaneous current and its output
is connected to an on chip analog comparator, COMP_D, for cycle-by-cycle current protection. The control loop
generates one PWM output, DPWM1B, to drive the MOSFETs through an external gate driver.

Average current mode control is used for input current regulation. The current reference is calculated based on
Vin, voltage loop output and input voltage feed forward. The averaged input current signal is sensed and
compared with this reference, the error goes through a 2-pole 2-zero digital compensator CLA1; a PWM signal is
generated based on the compensator output to control the PFC.

It needs to be mentioned here that the above configuration reflects TI’s PFC evaluation board PWR026. It is not
necessary to follow this configuration. For example, Iin_fdbk can be connected to a different EAP channel, a
different CLA can be used for compensation, and the PFC can be driven by different DPWM outputs as well.
However, in order to maximize source code reuse and reduce design time it is recommended to use a
configuration similar to PWR026.

1.2 Signal Conditioning and Interface
For each input signal to the UCD3138, its magnitude should accommodate the measurement range of the
UCD3138. In the UCD3138, the ADC measurement range is 0 – 2.5V, the error ADC measurement range is 0 -
1.6V, the analog comparator range is 0 – 2.5V. On the other hand, to have the best signal-to-noise ratio, the
input signal should be as big as possible. For these reason, the signal conditioning for each input signal should
follow the subsequent guidelines.

 For Vin, the voltage divider:
max_*2

5.2

in

vin
V

K 

 For Vout, the voltage divider:
max_

5.2

out
vout V

K 

 For I_shunt, the OP_AMP gain:
shuntin

i RI
K

*

6.1

max_



 For current transformer: I_CT1 ≤ 2.5V

2 Voltage Loop

2.1 Overview
Since the speed constraints on the voltage loop bandwidth are typically low, it can easily be implemented by
pure firmware. As shown in Figure 1. Vout_sen is sensed by a 12-bit ADC. An error signal is calculated based on
the target output voltage and then processed by a proportional-integral (PI) controller. The output of this PI
controller will take part in the current reference calculation.

To meet the load transient response requirement, a non-linear PI gain is used. When the voltage error exceeds a
threshold, a larger PI gain is used.

2.2 Firmware Implementation of PI Controller
Following is the code example for this nonlinear PI controller. Two different gains are used in this example. If the
load transient response still is not met, a third or forth gain can be added.

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 5

All the codes in this application note are just examples of how to implement a specific function, it does not
contain the variable definitions and how the function gets called. Although plenty of comments are provided to
explain how it works, there may still exist unclearness. To better understand the code, please refer to PWR026
PFC EVM source code for details.

inline int32 proportional_integral(int32 error) //error is difference between ADC value and reference
{

int32 output, steady_state_error;

if(abs(error) < iv.pis.nl_threshold) //if error is small, then use small PI gain
{
 steady_state_error = iv.vbus_target - (iv.vbus_filtered >> 6);
 iv.pis.p = iv.pis.kp * steady_state_error; //proportional
 iv.pis.i = iv.pis.i + (iv.pis.ki * steady_state_error); //integrator
}
else
{ //non-linear gain for Voltage loop
 iv.pis.p = iv.pis.kp_nl * error; //proportional
 iv.pis.i = iv.pis.i + (iv.pis.ki_nl * error); //integrator
}

if(iv.pis.i > PI_I_HIGH_LIMIT) //clamp integrator
{
 iv.pis.i = PI_I_HIGH_LIMIT;
}
else if (iv.pis.i < PI_I_LOW_LIMIT)
{
 iv.pis.i = PI_I_LOW_LIMIT;
}

output = (iv.pis.p + iv.pis.i) >> 12; //scale for Q15 from Q15 coefficients and Q12 from ADC

if(output > PI_OUTPUT_HIGH_LIMIT) //clamp PI output
{
 output = PI_OUTPUT_HIGH_LIMIT;
}
else if (output < PI_OUTPUT_LOW_LIMIT)
{
 output = PI_OUTPUT_LOW_LIMIT;
}

iv.pis.output = output;
return output;

}

3 Current Loop

3.1 Overview
The PFC current loop is used to regulate the inductor current so that the input current will follow the input
voltage. To do this, the current reference, which takes the same shape as the input voltage, needs to be
calculated first. For an average current mode controlled PFC, the current reference is calculated as:

Iref = Km * A * B * C (1)

while:
Km: multiplier gain
A: Voltage loop output

SLUA708 – March 2014

6 Designing a UCD3138 Controlled Single Phase PFC

B: 1/Vin_rms
2

C: sensed input voltage Kvin*Vin

Once the current reference is calculated, the corresponding function blocks in the chip need to be configured to
close the loop. There are 3 major hardware blocks for the current loop: Front End, Filter, and DPWM. These
blocks will be introduced one by one.

Figure 2. Current loop

3.2 Multiplier Gain Km
The multiplier gain Km is defined as follows:
From (1),

2/))((rmsvininvmmref VKVUKBCAKI  (2)

where,

Uv : voltage loop output
Vrms : RMS voltage of digitized input voltage
Kvin : Input voltage divider

For digital implementation, the voltage signals in (2) are digitized, a suitable fixed-point notation is chosen so that
each signal is normalized with the maximum value equals to 1. For maximum power output, at minimum Vin, the
voltage controller output and the reference current command will be at their maximum values, Uvmax and Iref_max

respectively. Since Iref and Uv are calculated in per unit, their maximum values are, Iref_max = 1, Uvmax = 1.
Therefore,

vinpk

rms

vvinpk

rms
ref KV

V

UKV

V
IKm

)min(

2
(min)

max)min(

2
(min)

max_][ (3)

For sine wave input, this can be written as,

)min(
)min(

2
)min(

2

5.0
2 pkvin

vinpk

pkvin
m VK

KV

VK
K  (4)

3.3 Vin Sensing and Rectification
Vin line and neutral are measured by 2 ADC channels separately, then it is rectified by firmware.

inline void rectify_vac(void)
{

if(iv.adc_raw[AC_L_CHANNEL] > iv.adc_raw[AC_N_CHANNEL]) //this is the cycle for line
{

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 7

 iv.vin_raw = iv.adc_raw[AC_L_CHANNEL] - iv.adc_raw[AC_N_CHANNEL];
 iv.positive = 1; //tell other functions that this is positive cycle
}
else //cycle for neutral
{
 iv.vin_raw = iv.adc_raw[AC_N_CHANNEL] - iv.adc_raw[AC_L_CHANNEL];
 iv.positive = 0; //tell other functions that this is negative cycle
}
iv.vin_sum = iv.vin_raw + iv.vin_sum - (iv.vin_sum >> 2);
iv.vin_filtered = iv.vin_sum >> 2; //filtered vin measurement

}

3.4 Calculate Vin_rms
2

The RMS value is defined as:

 acT

ac
rms dttV

T
V

0

22)(*
1

 (5)

In discrete format:

N

nV
Vrms

2

2)( (6)

Vin is sampled every 20us, then the sampled Vin is squared and accumulated in each AC cycle. The RMS value
is calculated by divide the number of samples in one cycle.

First, calculate V(n)2

iv.vin_squared = (iv.vin_filtered * iv.vin_filtered) >> 9;

Then, calculate sum

//sum V(n)2 for the negative cycle
inline void accumulate_negative_cycle_values()
{

iv.negative_vin_squared_accumulate = iv.vin_squared + iv.negative_vin_squared_accumulate;
}

// sum V(n)2 for the positive cycle
inline void accumulate_positive_cycle_values()
{

iv.positive_vin_squared_accumulate = iv.vin_squared + v.positive_vin_squared_accumulate;
}

Finally, calculate Vin_rms2

//calculate Vin_rms2 for the negative cycle
inline void store_negative_cycle_values(void)
{

iv.vin_squared_average = iv.negative_vin_squared_accumulate / iv.negative_cycle_counter;
iv.vin_squared_for_ac_drop = iv.vin_squared_average;

}

//calculate Vin_rms2 for the positive cycle
inline void store_positive_cycle_values(void)
{

iv.vin_squared_average = iv.positive_vin_squared_accumulate / iv.positive_cycle_counter;

SLUA708 – March 2014

8 Designing a UCD3138 Controlled Single Phase PFC

iv.vin_squared_for_ac_drop = iv.vin_squared_average;
}

3.5 Calculate Vin Feed Forward
The following function is used to calculated voltage feed forward Km * B

Km: multiplier gain
B: 1/Vin_rms2

inline void voltage_feed_forward(void) //calculate Km/Vrms^2
{

if(iv.vin_squared_average < VAC_MIN_OFF_SQ_AVG) //if VAC is below normal operation range
{
 iv.vff_multiplier = K_FEED_FORWARD / VAC_MIN_OFF_SQ_AVG;

 //Q30/Q15 = Q15 limit to minimum operating voltage to avoid overflow
}
else //here if vac is within range
{
 if(abs(iv.vin_squared_average – (iv.vin_squared_slow_average >>

 VRECT_SQUARED_SLOW_AVERAGE_SHIFT)) > (iv.vin_squared_slow_average >>
 (VRECT_SQUARED_SLOW_AVERAGE_SHIFT + 4)))

 //compares difference between fast and slow VAC values to a percentage of the slow value.
 //instead of multiplying the slow value times a constant, it uses a shift. So a shift of +4, for
 //example = 1/16 or .0625% of the slow value.
 //so the code below is executed if the difference between fast and slow values is greater
 //than the percentage. It uses the fast value.
 {

iv.vff_multiplier = K_FEED_FORWARD / iv.vin_squared_average;
 }
 else //here if the fast and slow values are close - use the slow value.
 {

if(iv.vin_squared_slow_average < (VAC_MIN_OFF_SQ_AVG <<
 VRECT_SQUARED_SLOW_AVERAGE_SHIFT))

{
 iv.vff_multiplier = K_FEED_FORWARD / AC_MIN_OFF_SQ_AVG;
 //Q30/Q15 limit to minimum operating voltage to avoid overflow
}
else
{
 iv.vff_multiplier = K_FEED_FORWARD / (iv.vin_squared_slow_average >>

 VRECT_SQUARED_SLOW_AVERAGE_SHIFT);
}

 }
}

}

3.6 Calculate Current Reference
Now that we have A, B and C, we can calculate the average current reference. This is done in 2 functions:

First, calculate Km * A * B:

inline void handle_voltage_loop(void)
{

iv.i_target_average = ((iv.vff_multiplier >> 5) * proportional_integral(iv.vbus_target -
 v.adc_avg[VBUS_CHANNEL])) >> 11;
}

Then, calculate Km * A * B * C, which is the current reference:

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 9

inline void calculate_current_target_shunt(void)
{

int32 pointer;

//for EMI CAP compensation
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered;
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal
iv.i_target_sensed = ((iv.cir_buff[pointer] * iv.i_target_average) >> 16) + iv.i_target_offset;
iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f;

if(iv.i_target_sensed > 0x3ff) //clamp current target at maximum current
{
 iv.i_target_sensed = 0x3ff;
}

FeCtrl0Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //disregard dithering bits.

}

Now that the current reference is calculated, it’s time to configure the current loop hardware so that the loop can
be closed.

3.7 Current Feed Back Front End Configuration
The Front End measures the difference between the current feed back signal and the current reference
calculated in section 3.6. It passes this digital error information to the filter. The blocks which need to be
configured are: the front end for current feedback signal sensing, the AFE_GAIN, the CLA filter, the
compensation coefficients, and the DPWM module. The UCD3138 is very flexible, the front end, filter and DPWM
facilitate connections to and from multiple peripherals. The following code example is based on the PWR026
PFC EVM hardware; it uses Frond End0, CLA1 and DPWM1. Other configurations are also possible. For detail
of how to configure UCD3138 digital peripherals, please refer to programmer manual [4].

void init_front_end0(void)
{

FeCtrl0Regs.EADCDAC.bit.DAC_VALUE = 0;
FeCtrl0Regs.EADCCTRL.bit.AFE_GAIN = 1;

}

void init_loop_mux(void)
{

LoopMuxRegs.SAMPTRIGCTRL.bit.FE0_TRIG_DPWM1_EN = 1; //Use DPWM1 sample trigger for FE0

LoopMuxRegs.FILTERMUX.bit.FILTER1_FE_SEL = 0; //use FE0 (shunt) to drive CLA1
LoopMuxRegs.FILTERMUX.bit.FILTER1_PER_SEL = 1;//CLA1 switching period select from DPWM1

LoopMuxRegs.DPWMMUX.bit.DPWM1_FILTER_SEL =1; //CLA1 is providing input to DPWM1
LoopMuxRegs.DPWMMUX.bit.DPWM3_SYNC_SEL = 1; //DPWM1 is the master for DPWM3

}

3.8 Current Loop Filter Configuration
The filter takes the error signal from the Front End and passes it through a 2-pole 2-zero digital filter which
compensates the disturbance of the current loop. The filter needs to be initialized such that once powered up,
the current loop will use well-tuned control parameters to close the current loop:

void init_filter1(void)
{

MiscAnalogRegs.CLKTRIM.bit.HFO_LN_FILTER_EN = 1;

SLUA708 – March 2014

10 Designing a UCD3138 Controlled Single Phase PFC

Filter1Regs.FILTERCTRL.bit.OUTPUT_MULT_SEL = 1; //PID output multiply with period
Filter1Regs.FILTERCTRL.bit.OUTPUT_SCALE = 0; //no scale

Filter1Regs.FILTERKICLPHI.bit.KI_CLAMP_HIGH = 0x7FFFF0;
Filter1Regs.FILTERKICLPLO.bit.KI_CLAMP_LOW = 0x800010;

Filter1Regs.FILTERYNCLPHI.all = 0x799999; //95%
Filter1Regs.FILTERYNCLPLO.all = 0;

Filter1Regs.FILTERCTRL.bit.FILTER_EN = 1;
//enable OK here, because nothing will happen until DPWM and front end are globally enabled

}

In PWR026 PFC EVM, some of the important parameters, such as set-points, AFE_Gain, Oversampling, voltage
loop PI gain and current loop PID gain are stored in data flash. Upon power up, they are loaded from data flash
to their corresponding registers.

void copy_configuration_to_registers(volatile struct FILTER_REGS *dest)
{

//copy PFC configuration
iv.vbus_voltage = pfc_config_in_ram.PFC_SETPOINT.VOUT_COMMAND +

 pfc_config_in_ram.PFC_CAL.VOUT_CAL_OFFSET;
iv.vbus_setpoint = ((Uint32)((iv.vbus_voltage * 4095) / VBUS_FULL_RANGE));

if(iv.supply_state >= STATE_PFC_ON)
{
 iv.vbus_target = ((int32)((iv.vbus_voltage * 4095)/VBUS_FULL_RANGE));
}

FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH =

 ((Uint32)(pfc_config_in_ram.PFC_SETPOINT.VOUT_OV_LIMIT * 127) / VBUS_FULL_RANGE);

switching_frequency = pfc_config_in_ram.PFC_SETPOINT.FREQUENCY;

//copy voltage loop gains
iv.pis.kp = pfc_config_in_ram.PI_GAINS.KP;
iv.pis.ki = pfc_config_in_ram.PI_GAINS.KI;
iv.pis.kp_nl = pfc_config_in_ram.PI_GAINS.KP_NL;
iv.pis.ki_nl = pfc_config_in_ram.PI_GAINS.KI_NL;
iv.pis.nl_threshold = (pfc_config_in_ram.PI_GAINS.NL_THRESHOLD << 12) / VBUS_FULL_RANGE;

//copy current loop gains
dest->COEFCONFIG.all = pfc_config_in_ram.COEFCONFIG.all;
dest->FILTERKPCOEF0.all = pfc_config_in_ram.FILTERKPCOEF0.all;
dest->FILTERKPCOEF1.all = pfc_config_in_ram.FILTERKPCOEF1.all;
dest->FILTERKICOEF0.all = pfc_config_in_ram.FILTERKICOEF0.all;
dest->FILTERKICOEF1.all = pfc_config_in_ram.FILTERKICOEF1.all;
dest->FILTERKDCOEF0.all = pfc_config_in_ram.FILTERKDCOEF0.all;
dest->FILTERKDCOEF1.all = pfc_config_in_ram.FILTERKDCOEF1.all;
dest->FILTERKDALPHA.all= pfc_config_in_ram.FILTERKDALPHA.all;
dest->FILTERNL0.all = pfc_config_in_ram.FILTERNL0.all;
dest->FILTERNL1.all = pfc_config_in_ram.FILTERNL1.all;
dest->FILTERNL2.all = pfc_config_in_ram.FILTERNL2.all;
dest->FILTERCTRL.bit.NL_MODE = fc_config_in_ram.FILTERMISC.bit.NL_MODE;

FeCtrl0Regs.EADCCTRL.bit.AFE_GAIN = pfc_config_in_ram.FILTERMISC.bit.AFE_GAIN;

Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE=

 pfc_config_in_ram.FILTERMISC.bit.SAMPLE_TRIG1_OVERSAMPLE;
}

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 11

3.9 DPWM Configuration
The output of the compensator is passed to a Digital PWM (DPWM) generator. The DPWM has two outputs,
which can be configured in many different ways to accommodate different power topologies. For PFC, either
DPWMA or DPWMB can be used. If DPWMA is used, it needs to be set to normal mode, for DPWMB, it needs to
be set to Multi-mode. The following code example accommodates the PWR026 PFC EVM, in which DPWMB is
used and configured as Multi-mode. Another PWM module DPWM3 is also configured to do PFC ZVS control[5].

void init_dpwm1(void) // DPWM1B is used to drive 1st phase
{

Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 0; //disable everything

Dpwm1Regs.DPWMCTRL1.bit.GPIO_A_EN = 1; //turn off DPWM1A for now
Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //turn off DPWM1B for now

 // Enable CBC and Blanking windows
Dpwm1Regs.DPWMCTRL0.bit.CBC_PWM_AB_EN = 1; // Enable cycle by cycle current limit.
Dpwm1Regs.DPWMCTRL0.bit.BLANK_B_EN = 1; // Enable blanking Dpwm1Regs.DPWMBLKBBEG.all = 0x0000;
Dpwm1Regs.DPWMBLKBEND.all = 0x0500;

Dpwm1Regs.DPWMFLTCTRL.bit.B_MAX_COUNT = 2;
Dpwm1Regs.DPWMFLTCTRL.bit.ALL_FAULT_EN = 1; //enable this for OVP

Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG_1_EN = 1; //enable sample trigger1

Dpwm1Regs.DPWMEV1.all = 290;
Dpwm1Regs.DPWMEV3.all = 290; //aviod 72ns events update window
Dpwm1Regs.DPWMCTRL0.bit.PWM_MODE = 2; //multi mode
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE = 3; //8X oversampling.
Dpwm1Regs.DPWMCTRL1.bit.EVENT_UP_SEL = 1; //update at end of period

Dpwm1Regs.DPWMCTRL0.bit.CLA_EN = 1;
Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 1;
//enable OK here, because nothing will happen until DPWM and front end are globally enabled

}

void init_dpwm3(void) // DPWM3 is used for ZVS control
{

Dpwm3Regs.DPWMCTRL0.bit.PWM_EN = 0; //disable everything

Dpwm3Regs.DPWMCTRL1.bit.GPIO_A_EN = 0;//turn on DPWM3A
Dpwm3Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;//turn off DPWM3B for now

Dpwm3Regs.DPWMCTRL0.bit.CLA_EN = 0; //open loop

Dpwm3Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 1; //slave mode

Dpwm3Regs.DPWMCTRL0.bit.PWM_EN = 1;//enable OK here, because nothing will happen until DPWM and front end are

globally enabled
}

void set_new_switching_frequency(void)
{

iv.switching_period = (SWITCH_FREQ_NUMERATOR/switching_frequency) << 4;
iv.period_times_2_14 = iv.switching_period << 14;
iv.dither_max_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency - 4)) << 4;
iv.dither_min_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency + 4)) << 4;
iv.dither_step = ((iv.dither_max_period - iv.dither_min_period) << 14)/DITHER_PERIOD;
//step for dither value

SLUA708 – March 2014

12 Designing a UCD3138 Controlled Single Phase PFC

Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency
Dpwm3Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency
Dpwm1Regs.DPWMSAMPTRIG1.all = iv.switching_period - (iv.sample_trigger_offset * 4); // sample at the end of period
Dpwm1Regs.DPWMPHASETRIG.all = 0; //0 delay for next phase

}

void init_dpwms(void)
{

init_dpwm1();
init_dpwm3();
set_new_switching_frequency();

}

4 System Protection

System protection includes current protection and voltage protection. There are two levels of over voltage
protection, one is implemented through software with a lower threshold, and the other is through an on chip
analog comparator with a higher threshold. The current is protected on a cycle-by-cycle bases.

4.1 Software OVP Protection
This is a pure software OVP protection. Vout is measured by an ADC, the output of ADC is filtered for
measurement noise immunity, and then compared with a programmable threshold. The PWM will shut down if
the measurement is greater than a user programmable threshold. The ADC continues monitoring Vout, PWM will
turn back on once Vout drops below its setpoint. This allows the PFC to enter a hiccup mode. This will be useful
for OVP conditions that are not caused by hardware failure, but by a sudden operating condition change, such as
a load transient.

inline void pfc_on_state_handler(void)
{

if(iv.vin_squared_average > VAC_MIN_OFF_SQ_AVG) //if Vac above 80 volts
{
 if(iv.adc_avg[VBUS_CHANNEL] > VBUS_DPWM_OFF_LEVEL)//if we've hit OVP
 {

turn_off_pfc();
iv.supply_state = STATE_PFC_HICCUP;

 }
}
else
{
 turn_off_pfc();
 init_miscellaneous();
 iv.supply_state = STATE_IDLE;
}

}

inline void pfc_hiccup_state_handler(void)
{

if(iv.adc_avg[VBUS_CHANNEL] < VBUS_DPWM_ON_LEVEL) //if OVP gone
{
 LoopMuxRegs.GLBEN.all = 0x70F; //global enable all Front_ends and DPWMs
 turn_on_pfc();
 iv.supply_state = STATE_PFC_ON;
}

}

void turn_on_pfc(void)
{

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 13

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 0;
}

void turn_off_pfc(void)
{

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;

LoopMuxRegs.GLBEN.all= 0; //disable all front end and DPWMs

}

4.2 Hardware OVP Protection
As shown in Figure 1, Vout is also connected to an on chip analog comparator COMP_F. the comparator is
configured to turn off the PWM automatically once triggered. The comparator’s threshold is also programmable,
and its threshold is usually set a little bit higher than the software OVP. This provides a fast OVP protection. If
this OVP gets triggered, this usually means the PFC has had a serious hardware failure. Because of this it is
latched there once shut down for safety purpose.

Following is the code to configure this OVP:

// Enable ACOMP-F pin and connect to DPWM-1 and DPWM-2 for Vbus OV protection
FaultMuxRegs.DPWM1FAULTDET.bit.PWMB_ACOMP_F_EN = 1; // Connect ACOMP-F to DPWM-1
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_SEL = 0; // Use threshold register for trip
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_POL = 1; // Above thresh to trip
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH = ((Uint32)(PFC_CONFIG_TEMP.PFC_SETPOINT.VOUT_OV_LIMIT *
127) / VBUS_FULL_RANGE);

4.3 Cycle by Cycle Current Protection
The current is protected through on chip analog comparators COMP_D and COMP_E. It is cycle by cycle (CBC)
based. Once the analog comparator is triggered, the PWM is turned off for the remainder of the cycle, but it will
turn back on the next switching cycle. The code to configure the analog comparator for CBC is:

 // Enable ACOMP-D pin and connect to current limit on DPWM-1
 FaultMuxRegs.DPWM1CLIM.bit.ACOMP_D_EN = 1; // Connect ACOMP-D to DPWM-1
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_SEL = 0; // Use threshold register for trip
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_POL = 1; //Above thresh to trip
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_THRESH = OC_COMPARATOR; // Trip value

5 Advanced Features

5.1 Frequency Dithering
Frequency dithering refers to modulating the switching frequency to achieve a reduction in conducted EMI noise
beyond the capability of the line filter. This total range from minimum to maximum frequency is defined as the
dither magnitude, and is centered on the nominal switching frequency. The rate at which PWM traverses from
one extreme to the other and back again is defined as the dither rate. Both these two parameters are
programmable.

inline void frequency_dithering(void)
{

if(status_1.bits.dither_enabled == 1)
{
 if(iv.dither_direction == 1)
 {

SLUA708 – March 2014

14 Designing a UCD3138 Controlled Single Phase PFC

iv.period_times_2_14 = iv.period_times_2_14 + iv.dither_step;
iv.switching_period = iv.period_times_2_14 >> 14;
if(iv.switching_period > iv.dither_max_period)
{
 iv.switching_period = iv.dither_max_period;
 iv.dither_direction = 0;
}

 }
 else //if dither direction equalled 0 to start with
 {

iv.period_times_2_14 = iv.period_times_2_14 - iv.dither_step;
iv.switching_period = iv.period_times_2_14 >> 14;

if(iv.switching_period < iv.dither_min_period)
{
 iv.switching_period = iv.dither_min_period;
 iv.dither_direction = 1;
}

 }

 Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency
 Dpwm1Regs.DPWMSAMPTRIG1.all = iv.switching_period – (iv.sample_trigger_offset*4);
}

}

5.2 AC Drop Detection
The AC drop detection algorithm is shown in Figure 3. Vin is checked every 100μs. Its measurement is
compared with a predetermined threshold “AC_DROP_V_RECT_THRESHOLD”. If the consecutive samples
below this threshold are greater than a predetermined number, “AC_DROP_COUNT_MAX”, then AC drop is
detected, a AC drop signal is send out to the host through a GPIO.

The threshold and number of consecutive samples will affect the sensitivity of the AC drop detection algorithm.
They can be tuned base on the specific application requirements.

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 15

Figure 3. AC Drop Detection

The following is the code to implement this function:
inline void check_ac_drop(void)
{

if(iv.vin_filtered > AC_DROP_V_RECT_THRESHOLD)
{
 iv.ac_drop_count = 0; //if over threshold, clear counter
}
else
{
 iv.ac_drop_count++;
 if(iv.ac_drop_count > AC_DROP_COUNT_MAX)
 {

iv.ac_drop = 1;
iv.ac_drop_recovery_not_complete = 1;
iv.vin_squared_for_ac_drop = 0; //clear for ac recovery detection
MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 0;
//pull down opto to signal AC drop to primary side

 }
}

if(iv.vin_squared_for_ac_drop > AC_UNDROPPED_THRESHOLD)
//if above ac not dropped threshold
{
 iv.ac_drop = 0; // we've got enough energy, clear AC drop warning
 MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 1;
 //turn off AC drop output signal also - inactive high
}

}

SLUA708 – March 2014

16 Designing a UCD3138 Controlled Single Phase PFC

5.3 PFC ZVS or Valley Switching Control
In discontinuous conduction mode (DCM), when the MOSFET is turned off, the boost inductor current starts to
decrease. The current will not stop decreasing when it reaches zero. Rather, it will continue going to negative
value and an oscillation between the inductor and the total parasitic capacitance at the switching node occurs.

The oscillation period and amplitude are dependent on the inductance and capacitance values as well as the
operating point. This oscillation results in a significant current distortion and seriously deteriorates the THD.

A new control method developed by TI [5] can always force the MOSFET to turn on at the point shown by the
arrows in figure 4. Since the MOSFET always turns on at the same zero current position, the issue described in
previous paragraph is solved, and the current distortion is significantly reduced. Also, because of zero voltage
switching (ZVS) and zero current switching (ZCS), the efficiency is also improved.

Figure 4. A New ZVS/Valley Switching Control Algorithm.

For more details of how to implement this control, please refer to application report SLUA644.

5.4 X-CAP Reactive Current Compensation
Every PFC has an electromagnetic interference (EMI) filter on the input end. The X capacitors of the EMI filter
will cause the AC input current to lead the AC input voltage, which will degrade power factor (PF). This situation
gets worse at light-load and high-line. To increase the PF at light-load, we can force the inductor current to be
slightly delayed so that the total AC current will match the input voltage. This can be achieved by delaying the
current reference.

//stuff for EMI CAP compensation
int16 cir_buff[64]; //64buffer for vin
int32 cir_buff_ptr; //pointer for spot in cir buff;
int32 cir_buff_delay; //delay for waveform from circular buffer.

inline void calculate_current_target_shunt(void)
{

int32 pointer;

//for EMI CAP compensation
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered;
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal
iv.i_target_sensed = ((iv.cir_buff[pointer] * iv.i_target_average) >> 16) + iv.i_target_offset;
iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f;

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 17

if(iv.i_target_sensed > 0x3ff) //saturate current target at maximum current
{
 iv.i_target_sensed = 0x3ff;
}

FeCtrl0Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //disregard dithering bits.

}

There is another way to actively compensate the X-cap reactive current, please refer to TI application note [6] for
details.

 5.5 Input Power and RMS Current Measurement
The real-time energy consumption measurement, including input real power and input RMS current
measurement for off-line power supplies, is becoming ever more important nowadays. These measurements
could be used to adjust power delivery and optimize energy usage. Traditionally the input power and current are
measured by a dedicated power metering chip and extra sensing circuit. While the power metering chip proved
to be sufficient, it adds extra cost and design effort. Since the digital controller used in a digital PFC already has
analog to digital converters (ADC) and a fast CPU, it could be used to do input power and current measurements
as well. A method has been developed by TI to use the existing controller in a PFC application to do input power
and Irms measurements at the same time. It has the following features:

 Using existing PFC controller chip and hardware, eliminating the traditional dedicated power metering
chip and extra sensing circuit.

 Extreme low cost
 Simple calibration, only needs 2 points, can be AC or DC source
 Vin and Iin dual sample and hold
 Optimized mathematic calculation, overhead on CPU usage is little, no impact on normal PFC control

The proposed method has been tested on different PFC units, test results show this method give excellent
measurement accuracy. Please refer to the application note [7] for details.

5.6 A Novel Burst Mode – AC Cycle Skipping

The PFC efficiency gets lower and lower at light load, this is because the switching loss, driving loss, and
reverse recovery loss of semiconductor components become dominant at light load. In the meanwhile, the PFC
may enter from continuous conduction mode (CCM) to discontinuous conduction mode (DCM), it causes the
converter dynamics change abruptly, the current loop bandwidth will reduce significantly. The small current
feedback signal also makes the control very difficult. As a result, the THD is getting worse. To improve efficiency
and THD at light load is always a challenge in PFC design.

A special burst mode is developed once the PFC load reduced to less than a pre-defined threshold. In this mode,
depends on the load, one or more AC cycles are skipped by PFC. In other words, PFC turns off for one or more
AC cycles, and turns back on for the next AC cycle. The turn on/turn off instant is at the AC zero-crossing, such
that the whole AC cycle is skipped. Moreover, since the PFC turn on/turn off at the moment current equals to
zero, both the stress and EMI noise are low [8].

5.7 Harmonic Injection

For a high end PFC design, it not only requires the THD not exceeding a certain percentage with a specific load,
but also requires each of the individual harmonics not exceeding a specific limit, as defined in IEC 61000-3-2.

SLUA708 – March 2014

18 Designing a UCD3138 Controlled Single Phase PFC

Sometimes a new PFC design can pass the THD test, but failed with individual harmonics distortion test. How to
reduce a specific order of harmonic distortion is a big challenge in PFC design.

A harmonics injection method is developed such that the harmonics with high magnitudes will be suppressed
actively [9].

5.8 Duty Ratio Feedforward Control

Average current-mode control has been used in PFC for decades. Various analog PFC control chips employing
this control algorithm can be found in the commercial market. The performance of average current-mode control
is often considered adequate for most commercial power applications with 50/60 Hz AC line input. However, the
traditional average current-mode control causes the inductor current to lead the input voltage, resulting in a non-
unity fundamental displacement power factor and zero-crossing distortion. This situation gets worse with PFC
operating under a high-frequency AC environment, such as 400 Hz, often used in airborne systems. The high
input current quality required in these systems is difficult to achieve through traditional control methods. A new
control method, called duty ratio feedforward (DFF) control, can effectively reduce input current distortion under
high line frequencies.

An enhanced version, which combines the regular duty ratio feedforward and the hardware digital filter of a
digital controller UCD3138, has been developed. Compared to the regular duty ratio feedforward control, the
enhanced version increases the control loop bandwidth. Thus, the current waveform and THD are greatly
improved [10].

6 Firmware structure
The firmware is divided as 3 major parts: background loop, standard interrupt loop and fast interrupt loop, as
shown below:

Background Loop
System initialization
Voltage feed forward
System monitoring
Dynamic system optimization
PMBus communication
UART transmit data
Power metering calculation

Standard interrupt
ADC measurement
State machine
Vrms calculation
Voltage loop calculation
Current reference calculation
AC drop detection
UART receive data
Frequency dithering
ZVS control
Input power measurement

Fast interrupt
OVP

Figure 5. Firmware Structure

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 19

6.1 Background Loop
The firmware starts from function main(). In this function, after the system initialization, it goes to an infinite loop.
All the non-time critical tasks are put in this loop, it includes:

 Calculate voltage feed forward
 System monitoring
 Dynamic system optimization
 PMBus communication
 UART transmit data
 Power metering calculation

The user can always add any additional non-time critical functions in this loop

void main()
{

MiscAnalogRegs.IOMUX.all = 0; //enable JTAG
look_for_interrupted_dflash_erase(); //Check to see if the last DFLASH erase was interrupted
pmbus_write_restore_default_all(); //load PFC configuration from data flash
init_miscellaneous();
init_adc_polled();
init_uart();
init_front_ends();
init_dpwms();
init_filters();
init_loop_mux();
init_fault_mux();
init_timer_interrupt();
init_pmbus();

string_out_0("\033[2J"); //clear screen

for(;;)
{
 pmbus_handler();

 emi_current_calculation();

 pmbus_handler();

 input_current_calculation();

 pmbus_handler();

 input_power_calculation();

 pmbus_handler();

 voltage_feed_forward();

 pmbus_handler();

 system_monitoring();

 pmbus_handler();

 if(iv.supply_state == STATE_PFC_ON)
 {

dynamic_system_optimization();//change compensation based on Vin

SLUA708 – March 2014

20 Designing a UCD3138 Controlled Single Phase PFC

 }

 pmbus_handler();

 if (erase_segment_counter > 0)
 {

erase_task(); // Handle the DFlash segment erases
 }

 pmbus_handler();

 if(uart_tx_timeout >= UART_TX_TIME)
 {

output_primary_secondary_message();
 }
 else
 {

process_uart_rx_data();
 }
}

}

6.2 Standard Interrupt Loop (IRQ)
Standard interrupt loop is triggered by a timer at every 20μs. It is used to handle all the time critical tasks. It
includes:

 ADC measurements
 PFC State machine
 Vin_rms calculation
 Voltage loop calculation
 Current reference calculation
 Vin drop detection
 UART receive data
 Frequency dithering
 ZVS control
 Input power measurement

However, to handle all these tasks in 20μs will cause interrupt overflow. To deal with this issue, the tasks
distribution state machine is used to handle different task at different time interval.

6.2.1 Tasks Distribution State Machine
void standard_interrupt(void)
{

poll_adc();
rectify_vac();
calculate_current_target_shunt();

#ifdef ZVS_CONTROL
if(ipm_or_zvs) //switch between ipm and zvs, IRQ will overflow if do them together
{
 input_power_measurement();
 ipm_or_zvs = 0;
}
else
{
 handle_zvs_control();
 ipm_or_zvs = 1;

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 21

}
#else

input_power_measurement();
#endif

switch(iv.interrupt_state)
{
 case I_STATE_1 :
 handle_voltage_loop();
 iv.interrupt_state = I_STATE_2;
 break;

 case I_STATE_2 :
 half_cycle_processing();
 iv.interrupt_state = I_STATE_3;
 break;

 case I_STATE_3 :
 check_ac_drop();
 iv.interrupt_state = I_STATE_4;
 break;

 case I_STATE_4 :
 uart_receive_data();
 iv.interrupt_state = I_STATE_5;
 break;

 case I_STATE_5 :
 supply_state_handler(); //run PFC state machine

 if(zvs_flag == 0) //only do dither when zvs control is disabled
 {

frequency_dithering();
 }

 iv.interrupt_state = I_STATE_1;
 break;

 default: //if it's in an illegal state
 iv.interrupt_state = I_STATE_1; //start it up again
 break;
}
TimerRegs.T16PWM0CMPCTRL.all = 3; //clear interrupt bit by a read/write.

}

6.2.2 PFC State Machine
PFC state machine is only one of the tasks in standard interrupt, it is called every 100μs. A typical PFC state
machine is shown below:

SLUA708 – March 2014

22 Designing a UCD3138 Controlled Single Phase PFC

Figure 6. PFC State Machine

As soon as Vin is greater than 85V, the relay closes and the PFC starts up. A 100ms delay is added after relay
closes to deal with the relay bouncing issue. After that, the PFC will gradually ramp up its output voltage until
Vout reaches its setpoint. At this point, the PFC enters its final regulation state and will stay there until some
abnormal conditions occurs, such as Vout over voltage or Vin under voltage.

inline void supply_state_handler(void)
{

switch(iv.supply_state)
{
 case STATE_IDLE :
 idle_state_handler();
 break;

 case STATE_RELAY_BOUNCE:
 relay_bounce_state_handler();
 break;

 case STATE_RAMP_UP :
 ramp_up_state_handler();
 break;

 case STATE_PFC_ON:
 pfc_on_state_handler();
 break;

 case STATE_PFC_HICCUP:
 pfc_hiccup_state_handler();
 break;

 case STATE_PFC_SHUT_DOWN:
 pfc_shut_down_state_handler();

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 23

 break;

 default:
 break;
}

}

6.3 Fast Interrupt (FIQ)
The FIQ is triggered by the comparator on AD06 (Comparator F). Since DPWM1B is already turned off to
protect the PFC, what the FIQ does is only to report an OVP failure through a GPIO and set the PFC state into a
shut down latched state. The customer can always add more time critical tasks in function:

#pragma INTERRUPT(fast_interrupt,FIQ)
void fast_interrupt(void)
{

volatile int32 temp;

turn_off_pfc();

iv.supply_state = STATE_PFC_SHUT_DOWN;

temp = FaultMuxRegs.FAULTMUXINTSTAT.all; //read to clear the interrupt flag

}

7 Graphical User Interface (GUI)

A graphical user interface (GUI) named “Fusion Digital Power Designer” is provided by Texas Instruments to
facilitate UCD3138 controlled power converter designed. By talking to the GUI through the PMBus, the PFC
operating status can be monitored, its operation setpoints can be configured, and the control loop can be tuned
on the fly.

The GUI is deigned to support the most popular topologies, including PFC. Different topologies will have different
interfaces. A setup id is used in the PFC firmware to tell the GUI that this is a PFC, so that when the GUI starts, it
will open a interface to accommodate the PFC topology. In addition, the setup id specifies the PFC topology
(single phase, interleaved or bridgeless), and it also includes the hardware modules used in the PFC current
loop: which front end, which CLA and which DPWM modules are used. The following setup id is used in the
single phase PFC EVM PWR026:

#define SETUP_ID "VERSION1|PFC001"
In this case, the “PFC001” is defined as a single phase PFC, with FE0, CLA1 and DPWM1 consist the current
loop.

SLUA708 – March 2014

24 Designing a UCD3138 Controlled Single Phase PFC

Figure 7. Monitor PFC Operating Status

Figure 8. Configure PFC Operation Setpoints

 SLUA708 – March 2014

 Designing a UCD3138 Controlled Single Phase PFC 25

Figure 9. Tune PFC Control Loop

The current and voltage loop can be tuned through GUI. As shown in Figure 9, This GUI provides interface to
tune the current and voltage control loop compensator, it also shown the loop bode plot, as well as bandwidth,
phase margin, and gain margin. The loop tuning is much simplified. For details of the GUI, please refer to [11].

8 PFC Tuning and THD Reduction

PFC current loop tuning can be a time consuming and challenging task for the PFC design engineer. It requires
the current waveform not only to be stable, but also to be smooth with very low THD and high PF. It gets more
and more challenging with the ever increasing THD and PF requirements. The digital controller provides more
flexibility and additional ways to achieve these increasing performance requirements. To make this task easier TI
provides a GUI that greatly simplifies the work involved in these tasks. Additionally, application note [12] also
provides a step by step guide of how to tune the current loop of a UCD3138 controlled PFC, it also summarizes
some of the most common but effective methods to reduce the current distortion in a digitally controlled PFC. All
the methods are analyzed and tested.

Reference:
[1] UCD3138 datasheet
[2] TI application note: Design a UCD3138 Controlled Interleaved PFC
[3] TI application note: Design a UCD3138 Controlled Bridgeless PFC
[4] SLUU995: UCD3138 Digital Power Peripherals Programmer’s Manual
[5] TI application note: SLUA644,
[6] TI application note: A Novel EMI Filter X-CAP Reactive Current Compensation Method to increase PF
[7] TI application note: A Low Cost Input Power and RMS Current Measurement Solution
[8] TI application note: A Special PFC Burst Mode - AC Cycle Skipping
[9] TI application note: A Harmonic Injection Method to Reduce PFC Harmonics and Improve THD
[10] B. Sun, “Duty-ratio Feedforward Control of digitally controlled PFC”, Power Systems Design Europe, Dec. 2012.

SLUA708 – March 2014

26 Designing a UCD3138 Controlled Single Phase PFC

[11] TI user guide: SLUA676
[12] TI application note: UCD3138 PFC Tuning.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

