
Subsystem Design
MSPM0 Cookbook UART to SPI

1 Description
This subsystem demonstrates how to implement the MSPM0 device as a UART to SPI bridge. Incoming UART
packets are expected to be in a specific format in order to facilitate SPI communication. This example also has
the ability to determine error conditions and communicate them back to the UART device. The code for this
example can be found in the MSPM0 SDK.

2 Required Peripherals
Peripheral Used Notes

UART Called UART_BRIDGE_INST in code

SPI Called SPI_0_INST in code

3 Compatible Devices
Based on the requirements in required peripherals, this example is compatible with the devices shown in the
below table. Generally, any device with the capabilities listed in the required peripherals table can support this
example.

Compatible Devices EVM

MSPM0Lxxxx LP-MSPM0L1306

MSPM0Gxxxx LP-MSPM0G3507

4 Design Steps
1. Set up the SPI module in Sysconfig. Put the device in controller mode, and leave the rest of the settings

on default. In the Advanced Configuration tab, make sure that the RX FIFO Threshold level is set to "RX
FIFO contains ≥1 entry. Make sure that the TX FIFO Threshold level is set to "TX FIFO contains ≤ 2 entries."
Now navigate to the Interrupt configuration tab, and enable the Receive, Transmit, RX Timeout, Parity Error,
Receive FIFO Overflow, Receive FIFO Full, and Transmit FIFO Underflow interrupts.

2. Set up the UART module in Sysconfig. Set the baud rate to 9600. Enable the Receive interrupt.

5 Design Considerations
1. In the application code, make sure you checked the SPI and UART maximum packet sizes against the

requirements of your application.
2. To increase the UART baud rate, adjust the value in the SysConfig UART tab labeled Target Baud Rate.

Below this, observe the calculated baud rate change to reflect the target baud rate. This is calculated using
the available clocks and dividers.

3. Check error flags and handle them appropriately. The UART and I2C peripherals are both capable of
throwing informative error interrupts. For easy debugging, this subsystem uses an enum and a global
variable to save error codes when error codes are thrown. In real-world applications, handle errors in the
code so the errors do not break down the project.

4. The current form of the project defines all of the formatted parts of the packet, such as
UART_START_BYTE, UART_READ_SPI_BYTE, and UART_WRITE_SPI_BYTE. These are accompanied
by definitions to specify where in the packet header these commands are found. In your implementation you

www.ti.com Description

SLAAEK3 – JANUARY 2024
Submit Document Feedback

MSPM0 Cookbook UART to SPI 1

Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__ALyPeNcgTQHHgrTzIpVMFA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK3&partnum=MSPM0G3507

may want to change some of these values. Ensure that the UART start and read/write bytes are bytes that
you would not expect to see in your application.

6 Software Flowchart
Figure 6-1 shows the code flow diagram for this example and explains the different UART Bridge wait states and
the actions the device takes in each state. The flowchart also shows the Interrupt Service Routines for UART
and SPI.

Uart_Bridge()

Switch:

Uart Bridge

Status

Wai�ng Start SPI Write SPI Read TX Uart Error

Received

[header length]

bytes

Break

True

False
0 < Msg Length <

Max Length

Read or Write?

Set length, R/W,

UART Bridge

Status = Start

Error =

improper

length, Bridge

status = Error

True

False

Wait for full

message

Fill transmit

bu�er,

Bridge Status

= SPI Write

Bridge status

= SPI Read

Reset UART Controls

Transmit

each byte

Any failed

transmissions?

Write

Read

Bridge

Status =

Error

Yes

No

Reset SPI Controls

Break

Send dummy

data to fetch

read data

Set

Controller

status to TX

Uart

Transmit

each

received byte

Reset UART

Controls,

Bridge

status =

wai�ng

Break

Has error message

been transmi�ed?

Bridge

Status =

Wai�ng

Reset UART

Controls

Yes

No

Ini�alize

peripherals

and state

machine

Wait for �rst

received

UART byte

Transmit

error code

via UART

Error detected?

No

Yes

SPI IRQ

Handler

SPI RX?

Save data to

Bu�er

UART IRQ

Handler

Break

Save

received

byte

UART RX?

Bu�er

overflow?

Error

status =

UART full

Break

No

Yes

No

Yes

Figure 6-1. Software Flowchart

Software Flowchart www.ti.com

2 MSPM0 Cookbook UART to SPI SLAAEK3 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK3&partnum=MSPM0G3507

Device Configuration

This application makes use of the TI System Configuration Tool (Sysconfig) graphical interface to generate the
configuration code of the device peripherals. Using a graphical interface to configure the device peripherals
streamlines the application prototyping process.

The code described in the software flowchart is found in the uart_to_spi_bridge.c file.

Required UART Packets

The figure below shows the required UART packet for performing reads and writes with the SPI. The values
shown are the default header values defined in the example.

• Start Byte: The value used by the bridge to indicate a new transaction in starting. UART transmissions are
ignored until this value is seen by the bridge.

• SPI Read or Write Indicator: This value tells the bridge whether to perform a read from or a write to the SPI
peripheral device.

• Message Length N: The length of the data being transferred in bytes.
• D0, D1, ..., D(N-1): Data being transferred to the bridge

Note
the Read packet includes only the header. When conducting a read, there is no need to send data
after the packet. The bridge device automatically sends the correct amount of dummy data to the SPI
peripheral to fetch the read data.

Start Byte

(0xF8)

SPI Write Byte

0xFB

Length Byte

N
D0 D1 D(N-1)D...

UART Header Data

Start Byte

(0xF8)

SPI Read Byte

0xFA

Length Byte

N

UART Header

Write Packet

Read Packet

Figure 6-2. UART Write and Read Packet Format

www.ti.com Software Flowchart

SLAAEK3 – JANUARY 2024
Submit Document Feedback

MSPM0 Cookbook UART to SPI 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK3&partnum=MSPM0G3507

7 Application Code
Some users may want to change the specific values that are used by the UART packet header, or the maximum
packet size. This can be done by modifying the #define values found in the beginning of the uart_to_spi_bridge.c
file as shown below.

/* Define UART Header and Start Byte*/
#define UART_HEADER_LENGTH 0x02
#define UART_START_BYTE 0xF8
#define UART_READ_SPI_BYTE 0xFA
#define UART_WRITE_SPI_BYTE 0xFB
#define RW_INDEX 0x00
#define LENGTH_INDEX 0x01

/*Define max packet sizes*/
#define SPI_MAX_PACKET_SIZE (16)
#define UART_MAX_PACKET_SIZE (SPI_MAX_PACKET_SIZE + UART_HEADER_LENGTH)

Many portions of the code are intended to be used for error detection and handling. At these points in the code,
the user may want to use additional error handling or reporting for a more robust application. For example, the
code segment shown below demonstrates a way to check for errors in SPI transmissions, and sets and error flag
in the event of an error. The user may want to quit sending and change the UART Bridge Status here to reflect
the error. This and many other areas in the code have options for error consideration.

for(int i = 0; i < gMsgLength; i++){
 if(!DL_SPI_transmitDataCheck8(SPI_0_INST, gSPIData[i])){
 gError = ERROR_SPI_WRITE_FAILED;
 }
}

8 Additional Resources
1. Texas Instruments, Download the MSPM0 SDK
2. Texas Instruments, Learn more about SysConfig
3. Texas Instruments, MSPM0L LaunchPad™

4. Texas Instruments, MSPM0G LaunchPad™

5. Texas Instruments, MSPM0 SPI Academy
6. Texas Instruments, MSPM0 UART Academy

9 E2E
Please visit TI's E2E website to view discussions and post new threads in order to get technical support for
utilizing MSPM0 devices in your design.

10 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE REVISION NOTES
January 2024 * Initial Release

Application Code www.ti.com

4 MSPM0 Cookbook UART to SPI SLAAEK3 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/MSPM0-SDK
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://dev.ti.com/tirex/explore/node?node=A__ATVK38.wD6w8se0XEf1NAQ__MSPM0-ACADEMY__2f1Egw1__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AVkPxX6hRXRpPST-l6LGfQ__MSPM0-ACADEMY__2f1Egw1__LATEST
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK3&partnum=MSPM0G3507

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flowchart
	7 Application Code
	8 Additional Resources
	9 E2E
	10 Revision History

