Application Brief Using the MSP430FR5969 EVM to Program the LMX2594 PLL Synthesizer

TEXAS INSTRUMENTS

Narala Reddy, Nihil Joshi

This brief covers on how to interface RF synthesizers with Microcontroller. In general, USB2ANY is used for this interfacing. But USB2ANY has some limitations namely low frequency SPI write and wait-time between two SPI writes in burst mode. For some applications, this low frequency SPI and wait-time might not be acceptable. For this brief, register writes present in the script shared is applicable for LMX2594 Synthesizer. In general, same approach can be used for all RF synthesizers.

Components Required:

- LMX2594EVM
- USB2ANY with 10-pin JTAG cable
- TICS Pro GUI (Downloadable from ti.com)
- Code Composer Studio (CCS) Latest Version downloadable from ti.com
- MSP430W are (Downloadable from ti.com)
- LMX2594_MSP430 Script (extractable from TI Drive)
- Programmable DC Power Supply (Output should be capable to give 3.3V at 0.6A current limit)
- 40GHz SMA Cable (Optional)
- Spectrum Analyzer/Phase Noise Analyzer (Optional)
- 100MHz Wenzel/Clean reference input source (optional if crystal is mounted on the LMX2594 EVM)

Test Setup:

Connect the MSP430FRxxxx EVM to the LMX2594EVM through the JTAG connection pins as per the figure below:

```
MSP430FR5969

/ \\ XIN -

B 32KHz Crystal

--- RST XOUT -

P2.0 -> Data Out (UCA0SIMO)

P2.1 <- Data In (UCA0SOMI) [Not used]

P1.5 -> Serial Clock Out (UCA0CLK)

P1.4 -> GPIO - for LMX CSB
```

Figure 1. MSP430FR5969 Pins on EVM

The USB2ANY 10-pin adapter cable pinout is shown below for reference. The connections are summarized in the following table:

Table 1. Mapping of JTAG to MSP EVM pins

MCU Pins	JTAG Adapter Pinout	LMX2594EVM Header
P1.4 GPIO	SPI_CS, Pin 2	Right Row, Header 1

1

Table 1. Mapping of JTAG to MSP EVM pins (continued)MCU PinsJTAG Adapter PinoutLMX2594EVM HeaderGNDGND, Pin 6Right Row, Header 3P1.5 GPIOSPI_SCLK, Pin 8Right Row, Header 4P2.0 GPIOSPI_SIMO, Pin 4Right Row, Header 2

Figure 2. 10-Pin Cable Pinouts

Table 2. 10-Pin Cable Pinouts

Schematic Pin Number	Cable Pin Number	Signals Available
J4-10	1	GPIO7, PWM0, INT2, OW2, OW5
J4-9	2	GPIO6, PWM1, RFFE:SCLK, SPI:CS, INT1, µWIRE:CS, OW1
J4-8	3	GPIO5, SPI:SOMI, UART:RXD, µWIRE:SOMI
J4-7	4	GPIO4, SPI:SIMO, UART:TXD, µWIRE:SOMI
J4-6	5	3.3VEXT
J4-5	6	GND
J4-4	7	GPIO3, PWM2, RFFE:SDATA, INT0
J4-3	8	GPIO2, ES:DOUT, SPI:SCLK, µWIRE:SCLK

Procedure:

2

- 1. Connect the USB2ANY to a host PC/laptop with the 10-pin adapter cable connected to the LMX2594EVM.
- 2. Supply power to the LMX2594EVM with the output set to 3.3V and 0.6A current limit.
- 3. If a 100MHz crystal is not mounted on the EVM, then use a 100MHz Wenzel to give a reference input to the EVM through the OSCINP pin. A signal generator set to 10dBm at 100MHz also works here.
- 4. With the TICS Pro GUI installed, select the LMX2594 device under the PLL+VCO section. Set the desired output frequency in full assist mode as per the EVM instructions given here.
- 5. In the "Raw Registers" section, record the following register values:

Corresponding Function
N Divider
Denominator
Numerator

Table 3. LMX2594 Register Mapping

Table 3. LMX2594 Register Mapping (continued)		
Register Name	Corresponding Function	
R45	OUT_ISET	
R20	VCO_SEL_FORCE	
R19	VCO_CAPCTRL	
R16	VCO_DACISET	

6. Open CCS and enter the recorded values of the register into the LMX_MSP430 script shared via TI Drive as shown below. You can use the shared excel sheet on TI Drive to quickly copy and paste the writeLMX commands:

\blacksquare config_LMX_v1.c \times	
466 #if 1	CO DACIDET. 200
467	
i 468	delay cycles(2000):
469	
470//	writeLMX(0x0F,0x065F);
471//	// Call function to lock at 7 GHz
472	writeLMX(42,0x0000);
473	writeLMX(43,0x0000);
474	writeLMX(39,0xDA80);
475	writeLMX(38,0xFD51);
476	writeLMX(45,0xC0DF);
477	writeLMX(36,0x0046);
478	writeLMX(20,0xF448);
479	writeLMX(19,0x2725);
480//	<pre>delay_cycles(5);</pre>
481	
482//	writeLMX(36,0x0098);
483	writeLMX(0x0F,0x065F);
484	writeLMX(16,0x00AE);
485	delay_cycles(5);
486	writeLMX(0x0F,0x064F);
487	
488	
100	

Figure 3. Sequence of Register Writes for Switching Between Two Frequencies.

- 7. Remove the USB2ANY connection from the laptop/PC and connect the MSP430 to the LMX2594EVM as per the Test Setup section given in this document.
- 8. Run the CCS script and check the device LED to verify the lock state of the PLL Synthesizer to the desired output frequency.

3

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated