
Design Guide: TIDM-02018
Universal Motor Control Reference Design for AM263x
Arm® Based MCU Devices

Description
This reference design offers a universal motor
control design for TI’s AM263x Arm® based MCUs.
The design shows how to use AM263x MCUs for
various types of FOC motor control techniques, such
as sensorless (eSMO) and sensored (incremental
encoder, Hall sensor). The design supports two main
hardware setups: a low-voltage setup using AM263x
LaunchPad™ with 3PHGANINV BoosterPack™ and
a high-voltage setup using AM263x controlCARD™

with TMDSHVMTRINSPIN motor control kit. The
documentation also covers instructions on migrating
the design to a custom board and porting the project
to new devices.

Resources
TIDM-02018 Design Folder
AM2634-Q1 Product Folder
AM263x MCU+ SDK Tool Folder
AM263x Academy Training Materials

Ask our TI E2E™ support experts

Features
• Comprehensive software package, tools, and

documentation with this reference design helps
reduce the development time of motor control
systems based on AM263x MCUs.

• Various FOC motor control methods: Sensorless
(eSMO) and Sensored (Incremental Encoder, Hall
sensor) control are supported.

• TI’s system features and debug interfaces that are
compatible with many three-phase inverter motor
evaluation kits are included.

• Sysconfig-based project allows for easier migration
between different devices and boards. This is
enabled by a user-friendly graphical user interface
that allows users to adjust pins, peripherals,
software stacks, clock tree, and other elements,
thus speeding up software development.

Applications
• HEV/EV Inverter and Motor Control
• Motor Drives
• AC Inverter and VF Drives
• AC Drive Control Module

+

Space

Vector

PWM

V�
*

w
*

3-phase

Inverter

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

d-q

�-�

V�
* Vd

*

Vq
*

id
*

iq
*

PI

PI

-

a-b-c

�-� d-q

�-�

eSMO

PI

FWC

+

MTPA

+

-

+

-

�e
 ^

	e
 ^

id

iq

iq

id

Vdc

i

i�

ia

ib

ic

we
 ^

we
 ^

PMSM

www.ti.com Description

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TIDM-02018
https://www.ti.com/product/AM2634-Q1
https://www.ti.com/tool/MCU-PLUS-SDK-AM263X
https://dev.ti.com/tirex/explore/node?node=A__AKM3smmsVVn7tYZAiWfuSA__AM26X-ACADEMY__t0CaxbG__LATEST
https://e2e.ti.com/support/applications/ti_designs/
https://www.ti.com/applications/automotive/hev-ev-powertrain/hev-ev-inverter-motor-control/overview.html
https://www.ti.com/applications/industrial/motor-drives/overview.html
https://www.ti.com/applications/industrial/motor-drives/ac-inverter-vf-drives/overview.html
https://www.ti.com/solution/ac-drive-control-module
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

1 System Description
The Universal Motor Control project described in this reference design is intended for you to not only experiment
with various motor control algorithms but also to use as a reference for your own design. This single project
with different Build Configuration options provides different FOC motor control techniques including sensorless
(eSMO) and Sensored (Incremental Encoder, Hall sensor) together with TI’s system features and debug
interfaces. This project offers various features such as: data logging, software frequency response analyzer
(SFRA), motor PI tune, field weakening, maximum torque per ampere (MPTA), CPU time computing, EPWM
DAC mode, step response module, and phase adjustment. This reference design evaluates two hardware kits
that can be ordered from TI.com:

• BOOSTXL-3PHGANINV + LVSERVOMTR + LP-AM263
• TMDSHVMTRINSPIN + HVPMSMMTR + TMDSCNCD263

1.1 Terminology

FOC Field Oriented Control
eSMO Enhanced Sliding-Mode Observer
PMSM Permanent Magnet Synchronous Motor
EEMF Extended Electromotive Force
PLL Phase Locked Loop
IPMS Interior PMSM
FW Field Weakening
MTPA Maximum Torque Per Ampere
SVPWM Space Vector Modulation
PWM Pulse Width Modulation
RPM Revolutions Per Minute

1.2 Key System Specifications
• For information on the 48V three-phase inverter with shunt-based in-line motor phase current sensing

evaluation module, see the BOOSTXL-3PHGANINV design files and technical documentation.
• For information on the high voltage motor control kit, refer to the TMDSHVMTRINSPIN.
• For information on the low voltage servo motor, encoder and wiring harness, refer to LVSERVOMTR data

sheet.
• For information on the high voltage permanent magnet synchronous motor, see the HVPMSMMTR data

sheet.

System Description www.ti.com

2 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LVSERVOMTR
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/HVPMSMMTR
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/LVSERVOMTR
https://www.ti.com/tool/HVPMSMMTR
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

2 System Overview

2.1 Block Diagram

+

Space

Vector

PWM

V�
*

w
*

3-phase

Inverter

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

d-q

�-�

V�
* Vd

*

Vq
*

id
*

iq
*

PI

PI

-

a-b-c

�-� d-q

�-�

eSMO

PI

FWC

+

MTPA

+

-

+

-

�e
 ^

	e
 ^

id

iq

iq

id

Vdc

i

i�

ia

ib

ic

we
 ^

we
 ^

PMSM

Figure 2-1. eSMO Based Sensorless FOC Block Diagram for PMSM Motor

2.2 Highlighted Products

2.2.1 AM263x Microcontrollers

The AM263x Arm® based Microcontrollers are built to meet the complex real-time processing needs of next
generation industrial and automotive embedded products. The AM263x MCU family consists of multiple pin-to-
pin compatible devices with up to four 400MHz Arm® Cortex®-R5F cores. The multiple Arm® cores can be
optionally programmed to run in lock-step option for different functional safety configurations. The industrial
communications subsystem (ICSS) enables integrated industrial Ethernet communications such as PROFINET
IRT, TSN, or EtherCAT® (among many others), or for standard Ethernet connectivity or custom I/O interfacing.
The AM263x family is designed for advanced motor control and digital power control applications with advanced
analog modules.

2.2.1.1 TMDSCNCD263

The AM263x Control Card Evaluation Module (EVM) is an evaluation and development board for the Texas
Instruments Sitara™ AM263x series of microcontrollers (MCUs). This EVM provides an easy way to start
developing traction inverter designs on the AM263x MCUs with on-board emulation for programming and
debugging as well as buttons and LED for a simple user interface. The control card also enables header-pin
access to key for rapid prototyping.

Figure 2-2. AM263x controlCARD™

www.ti.com System Overview

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

2.2.1.2 LP-AM263

LP-AM263 is a cost-optimized development board for Sitara™ high-performance microcontrollers (MCUs) from
the AM263x series. This board is an excellent choice for initial evaluation and prototyping as the board provides
a standardized and easy-to-use platform to develop your next application.

LP-AM263 is equipped with a Sitara AM2634 processor, along with additional components, allowing the user to
make use of various device interfaces, including industrial Ethernet (IE), standard Ethernet, fast serial interface
(FSI) and others to easily create prototypes. AM2634 supports a variety of IE protocols, such as EtherCAT,
EtherNet/IP and PROFINET®.

Figure 2-3. AM263x LaunchPad™

System Overview www.ti.com

4 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

3 System Design Theory

3.1 Three-Phase PMSM Drive
Permanent Magnet Synchronous Motor (PMSM) has a wound stator, a permanent magnet rotor assembly and
internal or external devices to sense rotor position. The sensing devices provide position feedback for adjusting
frequency and amplitude of stator voltage reference properly to maintain rotation of the magnet assembly. The
combination of an inner permanent magnet rotor and outer windings offers the advantages of low rotor inertia,
efficient heat dissipation, and reduction of the motor size.

• Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a constant
rotor flux. This rotor flux usually has a constant magnitude. The stator windings when energized create a
rotating electromagnetic field. To control the rotating magnetic field, control the stator currents.

• The actual structure of the rotor varies depending on the power range and rated speed of the machine.
Permanent magnets are an excellent choice for synchronous machines ranging up-to a few Kilowatts. For
higher power ratings the rotor usually consists of windings in which a DC current circulates. The mechanical
structure of the rotor is designed for number of poles desired, and the desired flux gradients desired.

• The interaction between the stator and rotor fluxes produces a torque. Since the stator is firmly mounted to
the frame, and the rotor is free to rotate, the rotor rotates, producing a useful mechanical output as shown in
Figure 3-1.

• The angle between the rotor magnetic field and stator field must be carefully controlled to produce maximum
torque and achieve high electromechanical conversion efficiency. For this purpose a fine tuning is needed
after closing the speed loop using sensorless algorithm to draw minimum amount of current under the same
speed and torque conditions.

• The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field; otherwise
the rotor experiences rapidly alternating positive and negative torque. This results in less than optimal torque
production, and excessive mechanical vibration, noise, and mechanical stresses on the machine parts. In
addition, if the rotor inertia prevents the rotor from being able to respond to these oscillations, the rotor stops
rotating at the synchronous frequency, and respond to the average torque as seen by the stationary rotor:
Zero. This means that the machine experiences a phenomenon known as pull-out. This is also the reason
why the synchronous machine is not self starting.

• The angle between the rotor field and the stator field must be equal to 90ºC to obtain the highest mutual
torque production. This synchronization requires knowing the rotor position to generate the right stator field.

• The stator magnetic field can be made to have any direction and magnitude by combining the contribution of
different stator phases to produce the resulting stator flux.

Figure 3-1. Interaction Between the Rotating Stator Flux and the Rotor Flux Produces a Torque

3.1.1 Mathematical Model and FOC Structure of PMSM

The FOC structure for a PMSM is illustrated in Figure 2-1. In this system, the eSMO is used for achieving
the sensorless control an IPMSM system, and the eSMO model is designed by utilizing the back EMF model
together with a PLL model for estimating the rotor position and speed.

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

An IPMSM consists of a three-phase stator winding (a, b, c axes), and permanent magnets (PM) rotor for
excitation. The motor is controlled by a standard three-phase inverter. An IPMSM can be modeled by using
phase a-b-c quantities. Through proper coordinate transformations, the dynamic PMSM models in the d-q
rotor reference frame and the α-β stationary reference frame can be obtained. The relationship among these
reference frames are illustrated in Equation 1. The dynamic model of a generic PMSM can be written in the d-q
rotor reference frame as:vdvq = Rs+ pLd −ωeLqωeLd Rs+ pLq idiq + 0ωeλpm (1)

Where vd and vq are the q-axis and d-axis stator terminal voltages, respectively; id and iq are the d-axis and
q-axis stator currents, respectively; Ld and Lq are the q-axis and d-axis inductances, respectively, p is the
derivative operator, a short notation of ddt ; λpm is the flux linkage generated by the permanent magnets, Rs is the
resistance of the stator windings; and ωe is the electrical angular velocity of the rotor.

N

S

�e =�et

Vs�
 a

b

c

�

�

dq
Vs

Vs�

Is�

Is� es�

es	
es

Is

Figure 3-2. Definitions of Coordinate Reference Frames for PMSM Modeling

By using the inverse Park transformation as shown in Figure 3-2, the dynamics of the PMSM can be modeled in
the α-β stationary reference frame as:vαvβ = Rs+ pLd ωe Ld− Lq−ωe Ld− Lq Rs+ pLq iαiβ + eαeβ (2)

Where the eα and eβ are components of extended electromotive force (EEMF) in the α-β axis and can be defined
as:eαeβ = λpm+ Ld− Lq id ωe −sin θecos θe (3)

According to Equation 2 and Equation 3, the rotor position information can be decoupled from the inductance
matrix by means of the equivalent transformation and the introduction of the EEMF concept, so that the EEMF
is the only term that contains the rotor pole position information. And then the EEMF phase information can be
directly used to realize the rotor position observation. Rewrite the IPMSM voltage Equation 4 as a state equation
using the stator current as a state variable:

System Design Theory www.ti.com

6 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

i̇αi̇β = 1Ld −Rs −ωe Ld− Lqωe Ld− Lq −Rs iαiβ + 1Ld Vα− eαVβ− eβ (4)

Since the stator current is the only physical quantity that can be directly measured, the sliding surface is selected
on the stator current path:

S x = iα− iαiβ− iβ = i αi β (5)

where iα and iβ are the estimated currents, the superscript ^ indicates the estimated value, the superscript
˜ indicates the variable error which refers to the difference between the observed value and the actual
measurement value.

3.1.2 Field Oriented Control of PM Synchronous Motor

To achieve better dynamic performance, a more complex control scheme needs to be applied, to control
the PM motor. With the mathematical processing power offered by the microcontrollers, we can implement
advanced control strategies, which use mathematical transformations to decouple the torque generation and the
magnetization functions in PM motors. Such de-coupled torque and magnetization control is commonly called
rotor flux oriented control, or simply Field Oriented Control (FOC).

In a direct current (DC) Motor, the excitation for the stator and rotor is independently controlled, the produced
torque and the flux can be independently tuned as shown in Figure 3-3. The strength of the field excitation
(for example, the magnitude of the field excitation current) sets the value of the flux. The current through the
rotor windings determines how much torque is produced. The commutator on the rotor plays an interesting part
in the torque production. The commutator is in contact with the brushes, and the mechanical construction is
designed to switch into the circuit the windings that are mechanically aligned to produce the maximum torque.
This arrangement then means that the torque production of the machine is fairly near optimal all the time. The
key point here is that the windings are managed to keep the flux produced by the rotor windings orthogonal to
the stator field.

To achieve better dynamic performance, a more complex control scheme needs to be applied, to control
the PM motor. With the mathematical processing power offered by the microcontrollers, we can implement
advanced control strategies, which use mathematical transformations to decouple the torque generation and the
magnetization functions in PM motors. Such de-coupled torque and magnetization control is commonly called
rotor flux oriented control, or simply Field Oriented Control (FOC).

In a direct current (DC) Motor, the excitation for the stator and rotor is independently controlled, the produced
torque and the flux can be independently tuned as shown in Figure 3-3. The strength of the field excitation
(for example, the magnitude of the field excitation current) sets the value of the flux. The current through the
rotor windings determines how much torque is produced. The commutator on the rotor plays an interesting part
in the torque production. The commutator is in contact with the brushes, and the mechanical construction is
designed to switch into the circuit the windings that are mechanically aligned to produce the maximum torque.
This arrangement then means that the torque production of the machine is fairly near optimal all the time. The
key point here is that the windings are managed to keep the flux produced by the rotor windings orthogonal to
the stator field.

Figure 3-3. Flux and Torque are Independently Controlled in DC Motor Model

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

The goal of the FOC (also called vector control) on synchronous and asynchronous machine is to be able to
separately control the torque producing and magnetizing flux components. FOC control allows us to decouple
the torque and the magnetizing flux components of stator current. With decoupled control of the magnetization,
the torque producing component of the stator flux can now be thought of as independent torque control. To
decouple the torque and flux, engage several mathematical transforms, and this is where the microcontrollers
add the most value. The processing capability provided by the microcontrollers enables these mathematical
transformations to be carried out very quickly. This in turn implies that the entire algorithm controlling the motor
can be executed at a fast rate, enabling higher dynamic performance. In addition to the decoupling, a dynamic
model of the motor is now used for the computation of many quantities such as rotor flux angle and rotor speed.
This means that these effects are accounted for, and the overall quality of control is better.

According to the electromagnetic laws, the torque produced in the synchronous machine is equal to vector cross
product of the two existing magnetic fields as Equation 6.

τem = B stator × B rotor (6)

This expression shows that the torque is maximum if stator and rotor magnetic fields are orthogonal meaning if
we are to maintain the load at 90 degrees. If we are able to maintain this condition all the time, if we are able to
orient the flux correctly, we reduce the torque ripple and we maintain a better dynamic response. However, the
constraint is to know the rotor position: this can be achieved with a position sensor such as incremental encoder.
For low-cost application where the rotor is not accessible, different rotor position observer strategies are applied
to get rid of position sensor.

In brief, the goal is to maintain the rotor and stator flux in quadrature: the goal is to align the stator flux with
the q axis of the rotor flux, for example, orthogonal to the rotor flux. To do this, the stator current component in
quadrature with the rotor flux is controlled to generate the commanded torque, and the direct component is set to
zero. The direct component of the stator current can be used in some cases for field weakening, which has the
effect of opposing the rotor flux, and reducing the back-emf, which allows for operation at higher speeds.

The Field Orientated Control consists of controlling the stator currents represented by a vector. This control is
based on projections which transform a three phase time and speed dependent system into a two co-ordinate (d
and q co-ordinates) time invariant system. These projections lead to a structure similar to that of a DC machine
control. Field orientated controlled machines need two constants as input references: the torque component
(aligned with the q co-ordinate) and the flux component (aligned with d co-ordinate). As Field Orientated Control
is simply based on projections, the control structure handles instantaneous electrical quantities. This makes
the control accurate in every working operation (steady state and transient) and independent of the limited
bandwidth mathematical model. The FOC thus solves the classic scheme problems, in the following ways:

• The ease of reaching constant reference (torque component and flux component of the stator current)
• The ease of applying direct torque control because in the (d, q) reference frame the expression of the torque

is defined in Equation 7.τem ∝ ψR × isq (7)

By maintaining the amplitude of the rotor flux (ψR) at a fixed value we have a linear relationship between torque
and torque component (iSq). We can then control the torque by controlling the torque component of stator current
vector.

3.1.2.1 The a, b α, β Clarke Transformation

The space vector can be reported in another reference frame with only two orthogonal axis called (α, β).
Assuming that the axis a and the axis αlpha are in the same direction we have the following vector diagram as
shown in Figure 3-4.

System Design Theory www.ti.com

8 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 3-4. Stator Current Space Vector in the Stationary Reference Frame

The projection that modifies the 3-phase system into the (α, β) 2-dimension orthogonal system is presented in
Equation 8.isα = iaisβ = 13 ia+ 23 ib (8)

The two phase (α, β) currents are still depends on time and speed.

3.1.2.2 The α, β d, q Park Transformation

This is the most important transformation in the FOC. In fact, this projection modifies a 2-phase orthogonal
system (α, β) in the (d, q) rotating reference frame. If we consider the d axis aligned with the rotor flux, Figure
3-5 shows the relationship for the current vector from the two reference frame.

Figure 3-5. Stator Current Space Vector in The d,q Rotating Reference Frame

The flux and torque components of the current vector are determined by Equation 9.isd = isαcos θ + isβsin θisq = − isαsin θ + isβcos θ (9)

where θ is the rotor flux position

These components depend on the current vector (α, β) components and on the rotor flux position; if we know
the right rotor flux position then, by this projection, the d,q component becomes a constant. Two phase currents

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

now turn into dc quantity (time-invariant). At this point the torque control becomes easier where constant isd (flux
component) and isq (torque component) current components controlled independently.

3.1.2.3 The Basic Scheme of FOC for AC Motor

Figure 3-6 summarizes the basic scheme of torque control with FOC:

Figure 3-6. Basic Scheme of FOC for AC Motor

Two motor phase currents are measured. These measurements feed the Clarke transformation module. The
outputs of this projection are designated isα and isβ. These two components of the current are the inputs of the
Park transformation that gives the current in the d,q rotating reference frame. The isd and isq components are
compared to the references isdref (the flux reference component) and isqref (the torque reference component).
At this point, this control structure shows an interesting advantage: the control structure can be used to control
either synchronous or induction machines by simply changing the flux reference and obtaining rotor flux position.
As in synchronous permanent magnet a motor, the rotor flux is fixed determined by the magnets; there is no
need to create one. Hence, when controlling a PMSM, isdref is set to zero. As an AC induction motor needs a
rotor flux creation to operate, the flux reference must not be zero. This conveniently solves one of the major
drawbacks of the classic control structures: the portability from asynchronous to synchronous drives. The torque
command isqref can be the output of the speed regulator when we use a speed FOC. The outputs of the
current regulators are Vsdref and Vsqref; these are applied to the inverse Park transformation. The outputs of
this projection are Vsαref and Vsβref which are the components of the stator vector voltage in the (α, β) stationary
orthogonal reference frame. These are the inputs of the Space Vector PWM. The outputs of this block are the
signals that drive the inverter. Note that both Park and inverse Park transformations need the rotor flux position.
Obtaining this rotor flux position depends on the AC machine type (synchronous or asynchronous machine).

3.1.2.4 Rotor Flux Position

Knowledge of the rotor flux position is the core of the FOC. In fact if there is an error in this variable the rotor flux
is not aligned with d-axis and isd and isq are incorrect flux and torque components of the stator current. Figure
3-7 shows the (a, b, c), (α, β) and (d, q) reference frames, and the correct position of the rotor flux, the stator
current and stator voltage space vector that rotates with d,q reference at synchronous speed.

System Design Theory www.ti.com

10 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 3-7. Current, Voltage and Rotor Flux Space Vectors in the (d, q) Rotating Reference Frame

The measure of the rotor flux position is different if we consider synchronous or asynchronous motor:

• In the synchronous machine the rotor speed is equal to the rotor flux speed. Then θ (rotor flux position) is
directly measured by position sensor or by integration of rotor speed.

• In the asynchronous machine the rotor speed is not equal to the rotor flux speed (there is a slip speed),
needing a particular method to calculate θ. The basic method is the use of the current model which needs
two equations of the motor model in d, q reference frame.

Theoretically, the field oriented control for the PMSM drive allows the motor torque be controlled independently
with the flux like DC motor operation. In other words, the torque and flux are decoupled from each other. The
rotor position is required for variable transformation from stationary reference frame to synchronously rotating
reference frame. As a result of this transformation (so called Park transformation), q-axis current is controlling
torque while d-axis current is forced to zero. Therefore, the key module of this system is the estimation of rotor
position using enhance Sliding-Mode Observer (eSMO).

3.1.3 Sensorless Control of PM Synchronous Motor

In home appliance applications, if the mechanical sensor is used, the sensor causes increasing cost, size,
and reliability problems. To overcome these problems, sensorless control methods are implemented. Several
estimation methods to get the rotor speed and position information without mechanical position sensor. The
sliding mode observer (SMO) is commonly used due to the various attractive features including reliability,
desired performance, and robustness against system parameter variations.

3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop

Model-based method is used to achieve position sensorless control of the IPMSM drive system when the motor
runs at middle or high speed. The model method estimates the rotor position by the back-EMF or the flux linkage
model. The sliding mode observer is an observer-design method based on sliding mode control. The structure of
the system is not fixed but purposefully changed according to the current state of the system, forcing the system
to move according to the predetermined sliding mode trajectory. The advantages include fast response, strong
robustness, and insensitivity to both parameter changes and disturbances.

3.1.3.1.1 Design of ESMO for PMSM

The conventional PLL integrated into the SMO is shown in Figure 3-8.

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Sliding Mode

Observer (SMO)

V�

Phase Locked

Loop (PLL)

V�

I�

I�

Vbus

e�
 ^

e�
 ^

�e

^

we
 ^

Figure 3-8. Block Diagram of eSMO with PLL for a PMSM

The traditional reduced-order sliding mode observer is constructed, which mathematical model is shown in
Equation 10 and the block diagram is shown in Figure 3-9.

i̇αi̇β = 1Ld −Rs −ωe Ld− Lqωe Ld− Lq −Rs iαiβ + 1Ld Vα− eα+ zαVβ− eβ+ zβ (10)

where zα and zβ are sliding mode feedback components and are defined as:

zαzβ = kαsign iα− iαkβsign iβ− iβ (11)

Where kα and kβ are the constant sliding mode gain designed by Lyapunov stability analysis. If kα and kβ are
positive and significant enough to maintain the stable operation of the SMO, the kα and kβ are usually large
enough to hold kα > max eα and kβ > max eβ .

Bang-Bang

Control

V�

w
^

V�

�I�

�I�

+ -Motor Model

Based Sliding

Mode Current

Observer

I�
 ^

I�
 ^

e�
 ^

e	
 ^

I
 I�

Z�

Z

Low

Pass

Filter

Flux

Angle

Calculator
+

+

Flux Angle

Correction

θe

^

Zβ

Zα

eα
 ^

eβ
 ^

+ -
θeu

^

Figure 3-9. Block Diagram of Traditional Sliding Mode Observer

The estimated value of EEMF in α-β axes (eα , eβ) can be obtained by low-pass filter from the discontinuous
switching signals zα and zα :eαeβ = ωcs + ωc zαzβ (12)

Where ωc = 2πfc is the cutoff angular frequency of the LPF, which is usually selected according to the
fundamental frequency of the stator current.

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, defined as follow

θe = − tan−1 eαeβ (13)

System Design Theory www.ti.com

12 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Low pass filter removes the high-frequency term of the sliding mode function, which leads to occur phase
delay resulting. This can be compensated by the relationship between the cut-off frequency ωc and back EMF
frequency ωe , which is defined as:

∆θe = − tan−1 ωeωc (14)

And then the estimated rotor position by using SMO method is:

θe = − tan−1 eαeβ + ∆θe (15)

In a digital control application, a time discrete equation of the SMO is needed. The Euler method is the
appropriate way to transform to a time discrete observer. The time discrete system matrix of Equation 10 in α-β
coordinates is given by Equation 16 as:

i̇α n + 1i̇β n + 1 = FαFβ i̇α ni̇β n + GαGβ Vα* n − eα n + zα nVβ* n − eβ n + zβ n (16)

Where the matrix F and G are given by Equation 17 and Equation 18 as:

FαFβ = e−RsLde−RsLq (17)

GαGβ = 1Rs 1 − e−RsLd1 − e−RsLq (18)

The time discrete form of Equation 12 is given by Equation 19 as:eα n + 1eβ n + 1 = eα neβ n + 2πfc zα n − eα nzβ n − eβ n (19)

3.1.3.1.2 Rotor Position and Speed Estimation with PLL

With the arc tangent method, the accuracy of the position and velocity estimations are affected due to the
existence of noise and harmonic components. To eliminate this issue, the PLL model can be used for velocity
and position estimations in the sensorless control structure of the IPMSM. The PLL structure used with SMO is
illustrated in Section 3.1.3.1.1. The back-EMF estimations eα and eβ can be used with a PLL model to estimate
the motor angular velocity and position as shown in Figure 3-10.

ε

e�
^

e�
^

+

÷
εn

eq
 ^

sign()

+

εerr
 �e

^

we
 ^

�e

^cos()

sin()�e

^

kp +
ki

s
e�

 ^
e�

 ^ +

1

s

Figure 3-10. Block Diagram of Phase Locked Loop Position Tracker

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Since eα = Ecos θe , eβ = Esin θe and E = ωeλpm , the position error can be defined as:

ε = eβcos θe − eαsin θe = Esin θe cos θe − Ecos θe sin θe = Esin θe− θe (20)

Where E is the magnitude of the EEMF, which is proportional to the motor speed ωe . When θe− θe < π2 , the
Equation 20 can be simplified asε = E θe− θe (21)

Further, the position error after the normalization of the EEMF can be obtained:εn = θe− θe (22)

According to the analysis, the simplified block diagram of the quadrature phaselocked loop position tracker can
be obtained as shown in Figure 3-11. The closed-loop transfer functions of the PLL can be expressed as:

θeθe = kps + kis2 + kps + ki = 2ξωns + ωn2s2 + 2ξωns + ωn2 (23)

where the kp and ki are the proportional and the integral gains of the standard PI regulator, the natural frequency ωn and the damping ratio ξ is given:

kp = 2ξωn, ki = ωn2 (24)

+ �n
 �e

 ^ ��e�e

Ki

Kp

we
 ^

-

+

+
Eex

1

s

1

s

Figure 3-11. Simplified Block Diagram of Phase Locked Loop Position Tracker

3.1.4 Hardware Prerequisites for Motor Drive

The algorithm for controlling the motor makes use of sampled measurements of the motor conditions, including
dc bus power supply voltage, the current of each motor phase. There are a few hardware dependent parameters
such as current scale value, voltage scale value and voltage filter pole that need to be set correctly to identify the
motor properly and run the motor effectively using Field Oriented Control (FOC).

3.1.5 Additional Control Features

3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control

Permanent magnet synchronous motor (PMSM) is widely used in home appliance applications due to the high
power density, high efficiency, and wide speed range. The PMSM includes two major types: the surface-mounted
PMSM (SPM), and the interior PMSM (IPM). SPM motors are easier to control due to the linear relationship
between the torque and q-axis current. However, the IPMSM has electromagnetic and reluctance torques due
to a large saliency ratio. The total torque is non-linear with respect to the rotor angle. As a result, the MTPA
technique can be used for IPM motors to optimize torque generation in the constant torque region. The aim
of the field weakening control is to optimize to reach the highest power and efficiency of a PMSM drive. Field
weakening control can enable a motor operation over the base speed, expanding the operating limits to reach
speeds higher than rated speed and allow optimal control across the entire speed and voltage range.

The voltage equations of the mathematical model of an IPMSM can be described in d-q coordinates as shown in
Equation 25 and Equation 26.

System Design Theory www.ti.com

14 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

vd = Lddiddt + Rsid− pωmLqiq (25)

vq = Lqdiqdt + Rsiq+ pωmLdid+ pωmψm (26)

The dynamic equivalent circuit of an IPM synchronous motor is shown in Figure 3-12.

+

-

+

-

Rs

id

Ud

Ld

�mLqiq �mLdid

Lq

�m�m

Rs

iq

Uq

+ –

+

–

+

–

Figure 3-12. Equivalent Circuit of an IPM Synchronous Motor

The total electromagnetic torque generated by the IPMSM can be expressed as Equation 27 that the produced
torque is composed of two distinct terms. The first term corresponds to the mutual reaction torque occurring
between torque current iq and the permanent magnet ψm , while the second term corresponds to the reluctance
torque due to the differences in d-axis and q-axis inductance.

Te = 32p ψmiq+ Ld− Lq idiq (27)

In most applications, IPMSM drives have speed and torque constraints, mainly due to inverter or motor rating
currents and available DC link voltage limitations respectively. These constraints can be expressed with the
mathematical equations Equation 28 and Equation 29.

Ia = id2 + iq2 ≤ Imax (28)

Va = vd2 + vq2 ≤ Vmax (29)

Where Vmax and Imax are the maximum allowable voltage and current of the inverter or motor. In a two-level
three-phase Voltage Source Inverter (VSI) fed machine, the maximum achievable phase voltage is limited by the
DC link voltage and the PWM strategy. The maximum voltage is limited to the value as shown in Equation 30 if
Space Vector Modulation (SVPWM) is adopted.

vd2 + vq2 ≤ vmax = vdc3 (30)

Usually the stator resistance Rs is negligible at high speed operation and the derivative of the currents is zero in
steady state, thus Equation 31 is obtained as shown.

Ld2 id+ ψpmLd 2+ Lq2iq2 ≤ Vmaxωm (31)

The current limitation of Equation 28 produces a circle of radius Imax in the d-q plane, and the voltage limitation
of Equation 30 produces an ellipse whose radius Vmax decreases as speed increases. The resultant d-q plane
current vector must be controlled to obey the current and voltage constraints simultaneously. According to these
constraints, three operation regions for the IPMSM can be distinguished as shown in Figure 3-13.

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

І П Ш

Constant
Torque

Constant
Power

Constant
Voltage

ωb ωc ωm

Te

Figure 3-13. IPMSM Control Operation Regions

1. Constant Torque Region: MTPA can be implemented in this operation region to maintain maximum torque
generation.

2. Constant Power Region: Field weakening control must be employed and the torque capacity is reduced as
the current constraint is reached.

3. Constant Voltage Region: In this operation region, deep field weakening control keeps a constant stator
voltage to maximize the torque generation.

In the constant torque region, according to Equation 27, the total torque of an IPMSM includes the
electromagnetic torque from the magnet flux linkage and the reluctance torque from the saliency between Ld and Lq . The electromagnetic torque is proportional to the q-axis current iq , and the reluctance torque is proportional
to the multiplication of the d-axis current id , the q-axis current iq , and the difference between Ld and Lq .
Conventional vector control systems of a SPM motors only utilizes electromagnetic torque by setting the
commanded id to zero for non-field weakening modes. But an IPMSM utilizes the reluctance torque of the motor,
d-axis current must be controlled as well. The aim of the MTPA control is to calculate the reference currents id
and iq to maximize the ratio between produced electromagnetic torque and reluctance torque. The relationship
between id and iq , and the vectorial sum of the stator current Is is shown in the following equations.

Is = id2 + iq2 (32)Id = Iscos β (33)Iq = Issin β (34)

Where β is the stator current angle in the synchronous (d-q) reference frame. Equation 27 can be expressed as
Equation 35 where Is substituted for id and iq .
Equation 35 shows that motor torque depends on the angle of the stator current vector; as such

Te = 32pIssin β ψm+ Ld− Lq Iscos β (35)

The maximum efficiency point can be calculated when the motor torque differential is equal to zero. The MTPA

point can be found when this differential, dTedβ is zero as given in Equation 36.

dTedβ = 32p ψmIscos β+ Ld− Lq Is2cos 2β = 0 (36)

Following, the current angle of the MTPA control can be derived as in Equation 37.

System Design Theory www.ti.com

16 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

βmtpa = cos−1 −ψm+ ψm2 + 8* Ld − Lq 2*Is24* Ld − Lq *Is (37)

Thus, the effective d-axis and q-axis reference currents can be expressed by Equation 38 and Equation 39 using
the current angle of the MTPA control.Id = Is*cos βmtpa (38)Iq = Is*sin βmtpa (39)

However, as shown in Equation 37, the angle of the MTPA control, βmtpa is related to d-axis and q-axis
inductance. This means that the variation of inductance impedes the ability to find the best MTPA point.
To improve the efficiency of a motor drive, the d-axis and q-axis inductance must be estimated online, but
the parameters Ld and Lq are not easily measured online and are influenced by saturation effects. A robust
Look-Up Table (LUT) method maintains controllability under electrical parameter variations. Usually, to simplify
the mathematical model, the coupling effect between d-axis and q-axis inductance can be neglected. Thus,
assumes that Ld changes with id only, and Lq changes with iq only. Consequently, d- and q-axis inductance can
be modeled as a function of the d-q currents respectively, as shown in Equation 40 and Equation 41.Ld = f1 id, iq = f1 id (40)Lq = f2 iq, id = f2 iq (41)

To reduce the ISR calculation burden by simplifying Equation 37. The motor-parameter-based constant, Kmtpa is
expressed instead as Equation 42, where Kmtpa is computed in the background loop using the updated Ld and Lq .
Kmtpa = ψm4* Lq − Ld = 0.25* ψmLq − Ld (42)

βmtpa = cos−1 Kmtpa/Is− Kmtpa/Is 2+ 0.5 (43)

A second intermediate variable, Gmtpa described in Equation 44, is defined to further simplify the calculation.
Using Gmtpa , the angle of the MTPA control, βmtpa can be calculated as Equation 45. These two calculations are
performed in the ISR to achieve a real current angle βmtpa .Gmtpa = Kmtpa/Is (44)

βmtpa = cos−1 Gmtpa− Gmtpa2 + 0.5 (45)

In all cases, the magnetic flux can be weakened to extend the achievable speed range by acting on the direct
axis current id . As a consequence of entering this constant power operating region, field weakening control is
chosen instead of the MTPA control used in constant power and voltage regions. Since the maximum inverter
voltage is limited, PMSM motors cannot operate in such speed regions where the back-electromotive force,
almost proportional to the permanent magnet field and motor speed, is higher than the maximum output voltage
of the inverter. The direct control of magnet flux is not an option in PM motors. However, the air gap flux can be
weakened by the demagnetizing effect due to the d-axis armature reaction by adding a negative id . Considering
the voltage and current constraints, the armature current and the terminal voltage are limited as Equation 28
and Equation 29. The inverter input voltage (DC-Link voltage) variation limits the maximum output of the motor.
Furthermore, the maximum fundamental motor voltage also depends on the PWM method used. In Equation 31,
the IPMSM has two factors: one is a permanent magnet value and the other is made by inductance and current
of flux.

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 3-14 shows the typical control structure is used to implement field weakening. βfw is the output of the
field weakening (FW) PI controller and generates the reference id and iq . Before the voltage magnitude reaches
the limit, the input of the PI controller of FW is always positive and therefore the output is always saturated at 0.

Speed

PI
�
�

�ref

Is_ref

Vs_ref

Vq

Vd

Vbus
FW

PI

Iq

PI

Iq_ref

Iq

Id_ref

Id

Vs

MTPA

Switching

ControlIs

Id

PI

Vq

Vd

LUT

�fw

�m

�mtpa

Kmtpa

Ld Lq

Figure 3-14. Block Diagram of Field-Weakening and Maximum Torque per Ampere Control

There are two control modules in the motor drive FOC system: one is MTPA control and the other one is
field weakening control. These two modules generate current angle βmtpa and βfw respectively based on input
parameters as show in Figure 3-15.

d

q

is_fw

is_mtpa

id_fw

iq_fw

id_mtpa

iq_mtpa

βfw
βmtpa

Figure 3-15. Current Phasor Diagram of an IPMSM During FW and MTPA

The switching control module is used to decide which angle can be applied, and then calculate the reference id and iq as shown in Equation 33 and Equation 34. The current angle is chosen as following Equation 46 and
Equation 47.β = βfw if βfw > βmtpa (46)β = βmpta if βfw < βmtpa (47)

Figure 3-16 shows the overall block diagram of sensorless FOC of PMSM using eSMO with field weakening
control (FWC) and maximum torque per ampere (MTPA) in this reference design.

System Design Theory www.ti.com

18 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

SVM

Iq

PI

Speed

PI

INV

PARK

CLARK

E

PARK

Id

PI

Traj

Ramp

eSMO

PWM

Driver

ADC

Driver

HAL_writePwmData

+

+

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Vbus

V�_in

V�_in

Iq_ref

Iq

Id_ref

Id

wref

Id

Iq

I�_in

I�_in

Angle

Speed

Flux

Rs
~

ys
~

Lsd
~

Lsq
~

q
~

w
~

y
~

w
~

y
~

Irated

~

q
~

q
~

w
~

Is_ref

HAL_readMtr1

ADCData

ISC

FWC

q
~

SpdRef

y
~

Lq

Ld

Vs

Vref

�1

�2

MTPA

Phase

Voltage

Estimator

Figure 3-16. Sensorless FOC of PMSM using eSMO with FWC and MTPA

3.1.5.2 Flying Start

Flying start (FS) is a feature that allows the drive to determine the speed and direction of a spinning motor and
begin the output voltage and frequency at that speed and direction. Without flying start, the drive begins the
output at zero volts and zero speed and attempt to ramp to the commanded speed. If the inertia or direction
of rotation of a load requires the motor to produce a large amount of torque, excess current can result and
overcurrent trips can occur on the drive. These problems can be eliminated with flying start.

Flying start is the capacity to start control at any speed other than ZERO, which is an important function in
air-condition application for fan drive.

When a motor is started in the normal mode, the control initially applies a frequency of 0Hz and ramps
to the desired frequency. If the drive is started in this mode with the motor already spinning with non-zero
frequency, large currents are generated. An over current trip can result if the current limiter cannot react quickly
enough. Even if the current limiter is fast enough to prevent an over current trip, synchronization can take an
unacceptable amount of time to occur and for the motor to reach the desired frequency. In addition, larger
mechanical stress is placed on the application.

In flying start mode, the drive’s response to a start command is to synchronize with the motor’s speed (frequency
and phase) and voltage. The motor then accelerates to the commanded frequency. This process prevents
an over current trip and significantly reduces the time for the motor to reach the commanded frequency.
Because the drive synchronizes with the motor at the rotating speed and ramps to the proper speed, little or no
mechanical stress are present.

The flying start function implements an algorithm that searches for the rotor speed. The algorithm searches for a
motor voltage that corresponds with the excitation current applied to the motor

When the motor is spinning, the speed and position information can be estimated from the BEMF voltages.
Since the stator voltage is measured, the speed and position are easily obtained by switching the inverter. A
zero torque current is applied to the motor and the generated current and stator voltage is measured, then FOC
module uses these signals to estimate rotor position and speed.

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

The block diagram of FOC with flying start is shown in Figure 3-17, the flying start module outputs a flag to
enable or disable speed close loop control. A zero reference torque current is set and the speed PI controller
output is disabled while flying start is operating.

Speed PI Iq

PI

Id

PI

Flying Start

speed_ref

Iq_ref = 0

Enable SpeedCtrl

User Id_ref

User Iq_ref

Enable FS

Vd

Vqspeed_est

Estimator

PARK

�

�

Iα

Iβ

Iα

Iβ

VαVβ Vbus

Figure 3-17. Flying Start Control Block Diagram

Figure 3-18 shows the overall block diagram of sensorless FOC of PMSM using eSMO with flying start in this
reference design.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

PARK

Id

PI

eSMO

PWM

Driver

ADC

Driver

HAL_writePwmData

+
+

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Vbus

V�_in

V�_in

Iq_ref

Iq

Id_ref

Id

wref

Id

Iq

I�_in

I�_in

Rs

~

ys
~

Lsd

~

Lsq

~

q
~

w
~

y
~

w
~

y
~

Irated

~

q
~

q
~

w
~

HAL_readMtr1

ADCData

q
~

Phase

Voltage

Estimator

Traj

Ramp

Angle

Speed

Flux

FS

SpdRef

Enable_FS

w
~

User_IdRef

Figure 3-18. Sensorless FOC of PMSM using eSMO with Flying Start

As shown in Figure 3-19, the module routine disables speed close loop control, sets the reference Iq to zero, and
enables the FOC module during starting run the motor. After the phase currents and voltages are measured, the
routine runs FOC and the real motor speed can be estimated. The program re-enables speed closed loop control
and sets the speed reference value after flying start is completed.

System Design Theory www.ti.com

20 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Start?

Disable Speed Ctrl

Id=0, Iq=0

Enable Estimator

Enable FS

Set Id=0, Iq=0

Disable Speed Ctrl

Read Speed_est

Check Time > Set

Time?

Speed_est <

Speed_fs_min

Set

Speed_int=Speed_est

Disable FS

Enable Speed Ctrl

Set Speed_int=0

End

start

Yes

Yes

No

No

No

No

Yes

Figure 3-19. Flying Start Module Program Flowchart

www.ti.com System Design Theory

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4 Hardware, Software, Testing Requirements, and Test Results

4.1 Hardware Requirements
Table 4-1 lists the current evaluation kits that are supported for the universal motor control project.

Table 4-1. Motor Drive Evaluation Kits Supported by Universal Motor Control
Motor Drive Evaluation Board

TI MCU Evaluation Module
Current Sensing

Topology
Rotor Position

Sensing Method Tested MotorsPart Number Description
BOOSTXL-3PHGAN
INV

12-60V, 3.5A 3-ph
GaN inverter

LP-AM263 Three shunt-based
inline motor phase
current sensing

eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder and
Hall Sensor are
Embedded)

TMDSHVMTRINSPI
N (1)

400V, 10A 3ph
inverter

TMDSCNCD263 with
TMDSADAP180TO100

Three low-side
current shunt

eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC

HVPMSMMTR
(Encoder is
Embedded)

(1) If you want to run a low voltage motor like LVSERVOMTR with the high voltage kit, you need to populate a jumper on J1, J2, J3 and J4
to bypass the 820k resistors for phase and dc bus voltages sensing. Also, set the parameters in user_mtr1.h as shown in the following
code. The recommendation is to not run a low voltage motor with high current and low inductance on the high voltage kit.

// Bypass the 820k resistor for low voltage motor on this kit
#define LV_JUMPER_EN // Bypass the 820k resistor

If the project is set to use Encoder or Hall based sensored-FOC, maintain that the physical connections are
connected in the correct order. If the motor, encoder, or hall wires are connected in the wrong order, the project
does not function properly, potentially resulting in the motor being unable to spin. For the motor phase wires,
verify that the motor phases are connected to the right phase on the inverter board. For the motors that are
provided with the TI Motor Control Reference Kits, the correct phase connections are provided as shown in Table
4-2.

For the encoder, verify that A is connected to A, B to B, and I to I. For the Hall sensor, maintain that A is
connected to A, B to B, and C to C. Often +5V dc and ground connections are required as well. If you are using
Hall sensors or encoders that are different than the ones specifically listed in Table 4-2, please refer to the users
manual for the Hall sensor or encoder you are using to verify that you properly connect the wires.

Make sure that for the setup and configuration of the ENC module that the number of slots per rotation for the
encoder is provided. This allows the ENC module to correctly convert the encoder signal into an angle. The
USER_MOTOR1_NUM_ENC_SLOTS constant that is defined in the user_mtr1.h file needs to be updated to the
correct value for your encoder. If this value is not correct, the motor spins faster or slower depending on the
value that was set. Note that this value is set to the number of slots on the encoder, not the resulting number of
counts after figuring the quadrature accuracy.

Table 4-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors
LVSERVOMTR HVPMSMMTR

Motor Phase Lines U BLACK (16AWG) RED

V RED (16AWG) BLUE/BLACK

W WHITE (16AWG) WHITE

Encoder GND BLACK (J4-1) BLACK

+5V RED (J4-2) RED

I BROWN (J4-3) YELLOW

B ORANGE (J4-4) GREEN

A BLUE (J4-1) BLUE

Hardware, Software, Testing Requirements, and Test Results www.ti.com

22 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Table 4-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors (continued)
LVSERVOMTR HVPMSMMTR

Hall Sensors GND BLACK (J10-1) Not support for Hall sensor based
sensored-FOC+5V RED (J10-2)

A GRAY-WHITE (J10-3)

B GREEN-WHITE (J10-4)

C GREEN (J10-5)

Get started with TI Real-Time Control Microcontrollers (MCUs) to implement motor control.

• Step 1: Order the desired motor drive evaluation board, TI MCU evaluation module, and motor as shown in
Table 4-1.

• Step 2: Download the latest version of MOTOR-CONTROL-SDK-AM263X.
• Step 3: Download the latest version of Code Composer Studio IDE.
• Step 4: Follow the instructions in technical documentation to setup the hardware and run the project

described in the following sections.
• Step 5: For answers to any design questions that you have, you can search existing answers or ask your own

question using the TI C2000 E2E design support forum.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

23

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/CCSTUDIO
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.2 Software Requirements
1. Download and install Code Composer Studio from the Code Composer Studio (CCS) Integrated

Development Environment (IDE) tools folder. Version 12.6 or above is recommended. More details about
CCS installation and implementation in CCS User's Guide.

2. Download and install MOTOR-CONTROL-SDK-AM263X software package from the link provided by TI,
install this Motor Control SDK software in the default folder. MOTOR-CONTROL-SDK-AM263X can be
installed in one of two ways:
a. Download the software through the MOTOR-CONTROL-SDK-AM263X download folder.
b. Go to CCS and under View → Resource Explorer. Under the TI Resource Explorer, go to Arm®-based

microcontrollers → MOTOR CONTROL SDK for AM263x, and click on the install button.
3. Once the installation is complete, close CCS, and create a new workspace for importing the project. Follow

the steps to build and run this project with different incremental builds as described in the following sections.

4.2.1 Importing and Configuring Project

This project is a universal motor control design that has support for TI EVM motor driver kits and can be used
in conjunction with the AM263x MCU devices. The user can run different TI EVM kits by setting the build
configurations and properties of the project. In the following sections, the LP-AM263 is used in combination with
the BOOSTXL-3PHGANINV lab to show how to import and run the example lab on this kit.

1. Import the project within CCS by clicking "Project" ➔"Import CCS Projects...", and then click "Browse..."
button to select search directory at:
a. <install_location>\examples\ to select the "universal_motorcontrol_lab" folder.

2. The project can be configured to run on two motor driver kits. You can select one of these kits by right-
clicking on the imported project name and selecting the right build configuration (such as 3phGaN_3SC) as
shown in Figure 4-1.

3. Configure the project to select the supporting functions in the project by right-clicking on the imported project
name, and then click the "Properties" command to set the pre-define symbols for the project as shown in
Figure 4-2.
a. A pre-define symbol is active or disabled by removing or adding the "_N" in the name. For example,

field weakening control is enabled by removing the "_N" in "MOTOR1_FWC_N" to change to
"MOTOR1_FWC", and field weakening control functions are disabled by changing the "MOTOR1_FWC"
symbol name to "MOTOR1_FWC_N".

b. Select the right supporting motor control algorithm based on the motor and hardware board by enabling
the related pre-define symbol as described above. The supporting algorithms and related motors matrix
are shown in Table 4-3.

c. Select the right supporting functions by enabling the pre-define symbol/s as shown in Figure 4-2.
4. Select the right target configuration file (.ccxml) as shown in Figure 4-4 by right clicking on the file name to

select "Set as Active Target Configuration" and "Set as Default Target Configuration" on the pop-up menu.
a. AM263_LP.ccxml is for the LP-AM263 based hardware kit.
b. AM263_CC.ccxml is for the TMDSCNCD263 based hardware kit.

5. Select or define the right motor model in the user_mtr1.h and user_common.h files. These files are located
under the src_board folder located in the project explorer window. Uncomment the #define that corresponds
with the motor being tested, and verify that the rest of the #define motors remain commented out. Make sure
that the motor parameters in the code match with the specifications of the connecting motor.

6. Set up the hardware kit, connect the motor, encoder, and/or hall sensor to the kit as described in Section 4.3.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

24 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/CCSTUDIO
https://software-dl.ti.com/ccs/esd/documents/users_guide_10.4.0/index.html
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Right-click on project name with

CCS. Click “Build Configurations”

to select the right build

configuration to set it active

Figure 4-1. Select the Right Build Configurations within CCS

Select one of the algorithm for

the hardware board according

the table

Enables the supporting

additional functions

Enables the debugging

functions

Right-click on project name

within CCS. Click “Properties”

on pop-up menu, navigate to

“Predefined Symbols”

Select external command and

speed input mode

Figure 4-2. Select the Desired Pre-define Symbols in Project Properties

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

25

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Table 4-3. The Supporting Algorithms, Functions and Motors Matrix in Universal Motor Control
Algorithms or Functions Pre-Define Symbols LaunchPad controlCARD

BOOSTXL-3PHGANINV TMDSHVMTRINSPIN

eSMO based Sensorless FOC MOTOR1_ESMO ✔, LVSERVOMTR ✔, HVPMSMMTR

QEP Encoder based Sensored
FOC

MOTOR1_ENC ✔, LVSERVOMTR ✔, HVPMSMMTR

Hall Sensors based Sensored
FOC

MOTOR1_HALL
HALL_CAL

✔, LVSERVOMTR ✖

Datalog with Graph Tool DATALOG_EN ✔ ✔
PWMDAC EPWMDAC_MODE ✖ ✔
SFRA Tool SFRA_ENABLE ✔ ✔
Step Response with Graph Tool STEP_RP_EN ✔ ✔

4.2.2 Project Structure

The general structure of the project is shown in Figure 4-3. The device peripherals configuration is based on
TI SysConfig. The user only needs to change the code and definitions in the hal.c and hal.h files, and the
parameters in the user_mtr1.h file, if the user wants to migrate the reference design software to a custom board
or to a different device.

AM26x MCU

Observer Library

eSMO
Encoder

Hall

Board and Motor
specific

parameters
user_mtr1.c
 user_mtr1.h

Board specific drivers
configuration
hal.c, hal.h

Motor drive control specific files
motor_common.c, motor1_drive.c
motor_common.h, motor1_drive.h

Build level setting
sys_settings.h

FOC Library

PI, PID
CLARKE

PARK/I-PARK
SVGEN

Trajectory

System solution specific files
sys_main.c
sys_main.h

SysConfig
Generated

Files

AM26x
MCU

Figure 4-3. Project Structure Overview

Once the project is imported into CCS, the project explorer appears inside CCS as shown in Figure 4-4.

The transforms folder includes the typical FOC modules including Park, Clark, and inverse Park and and SVGEN
that are part of the motor drive ISR and are independent of specific devices or boards.

The libraries folder includes the estimator library and other libraries that are not specific to any particular device
or board.

The src_control folder includes motor drive control files that call motor control core algorithm functions within the
interrupt service routines and background tasks.

The src_sys folder includes some files reserved for system control that are independent of specific devices or
boards. The user can add code for system control, communication, and so forth.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

26 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Board-specific and motor-specific files are in the src_board folder. These files consist of device specific drivers
to run the design. If the user wants to migrate the project for their own board or to other devices, the user
only needs to make changes to the hal.c, hal.h, xxx.syscfg and user_mtr1.h files based on the usage of device
peripherals for the board.

Project Name [Build Configuration]

Generated files with SysConfig

System main file

Target Configuration for debugger

connection, select one to be active

according to hardware board

Hardware board drivers for the solution

Board and motor parameters definition files

Motor drive common functions files

CAN command file

Motor drive and math libraries

Motor drive control specific files

PWMDAC driver file

Save variables list to be imported into the

Expressions window

Header files path for different components

in the project

Figure 4-4. Project Explorer View of the Universal Motor Control Project

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

27

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.2.3 Lab Software Overview

Figure 4-5 shows the project software flow diagram of the firmware that includes one ISR for real time motor
control and the main loop for motor control parameters that updates in a background loop. The ISR is triggered
by ADC End of Conversion (EOC).

System initialization (DPL, CLOCK,

Pinmux, peripherals)

Board initialization

int main

Initialize motor control parameters

Setup Fault Protection for motors

Setup Interrupts for motors control

Update motor control parameters

Main Background Loop

Save contexts and clear int flags

C – ISR

(Motor Control)

Read ADC Result, current/voltage

calculation and clark transform

Run eSMO estimators or Encoder

Run speed trajectory control

Restore Context

Return

Motor Control Loop in ISR

ADC offset calibration for motors

Run motor control

Run speed loop compensator

Run FWC and MTPA

Id and Iq reference calculation

Run I-Park, SVGEN and PWM Modulator

Run Id and Iq loop compensator

Motor Control ISR

Figure 4-5. Project Software Flowchart Diagram

To simplify the system bring up and design, the software is organized in four incremental builds, which makes
learning and getting familiar with the board and software easier. This approach is also good for debugging and
testing boards.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

28 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Table 4-4 lists the framework modules to be used in this project.

Table 4-4. Using Motor Control Modules in Project
Module Names Explanation Algorithm
ANGLE_GEN_run Ramp angle generator for open-loop running eSMO, ENC, HALL

CLARKE_run Clarke transformation for current or voltage eSMO, ENC, HALL

collectRMSData, calculateRMSData Collect sampling values to calculate the RMS
value of phase current and voltage

eSMO, ENC, HALL

DATALOG_update Stores the real-time values into for displaying
with graph tool

All Algorithms

ENC_run Calculate rotor angle based on encoder ENC

ESMO_run Enhance Sliding Mode Observer (eSMO) for
sensorless-FOC

eSMO

HAL_readMtr1ADCData Returns ADC conversion values with floating-
point format

All Algorithms

HAL_writePWMDACData Converts software variables into the PWM
signals

All Algorithms

HAL_writePWMData PWM drives for motor All Algorithms

HALL_run Calculate rotor angle ans speed based on
Hall sensors

HALL

IPARK_run Inverse Park transformation eSMO, ENC, HALL

PARK_run Park Transformation eSMO, ENC, HALL

PI_run PI Regulators for current and speed All Algorithms

PI_run_series Runs the series form of the PI controller SFRA, MPTA

SPDCALC_run Speed Measurement based on the angle
from encoder signal

ENC

SPDFR_run Speed measurement based on the angle
from observer

eSMO

SVGEN_runMin Space Vector PWM with quadrature control eSMO, ENC, HALL

TRAJ_run Trajectory for setting speed reference All Algorithms

VS_FREQ_run Generate vector voltage with v/f profile for Vd
and Vq calculation in level 2.
This can be done manually based on specific
motors.

eSMO, ENC, HALL

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

29

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Table 4-5 summarizes the modules tested in each incremental system build.

Table 4-5. Motor Control Modules Used per Incremental Build
Software Module DMC_LEVEL_1 DMC_LEVEL_2 DMC_LEVEL_3 DMC_LEVEL_4

50% PWM duty, verify
ADC offset calibration,

PWM output, and phase
shift

Open loop control to verify
the motor current and

voltage sensing signals

Closed current loop
to validate the current

sensing on the board and
the current control with the

PID

Closed-loop run with
estimators/observers

HAL_readMtr1ADCData √√ √ √ √

HAL_writePWMData √√ √ √ √

ANGLE_GEN_run √√ √ √(eSMO, ENC, HALL)*

VS_FREQ_run √√

CLARKE_run √ √ √

TRAJ_run √√ √ √√

ESMO_run √(eSMO)* √(eSMO)* √√ (eSMO)*

SPDFR_run √(eSMO)* √(eSMO)* √√ (eSMO)*

ENC_run √(ENC)* √(ENC)* √√(ENC)*

SPDCALC_run √(ENC)* √(ENC)* √√(ENC)*

HALL_run √(HALL)* √(HALL)* √√(HALL)*

PARK_run √ √ √

PI_run (Id) √√ √

PI_run (Iq) √√ √

PI_run (speed) √√

IPARK_run √√ √ √

SVGEN_runMin √√ √ √

HAL_writePWMDACData √** √** √**

DATALOG_update √ √ √

1. √ means this module is used. √√ means this module is being tested.
2. √ (eSMO)* means this module is only used by eSMO. √ (ENC)* means this module is only used by ENC. √

(HALL)* means this module is only used by HALL.
3. √** means this module is supported by some hardware kit as shown in Table 4-1.

The universal project can use one of the FOC algorithms separately for motor control, or use two of the eSMO
and encoder FOC algorithms simultaneously. The estimator in use can be switched smoothly on the fly if two
algorithms are implemented in the project.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

30 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.3 Test Setup
This section describes how to set up hardware boards for motor control when combining the motor driver
evaluation board with the TI development tools. The following sections show the detailed operation procedure on
different motor driver evaluation boards.

4.3.1 LP-AM263 Setup

LP-AM263 is a low-cost development board for the TI Arm®-based real-time microcontrollers. This LaunchPad
kit offers extra pins for development and supports the connection of two BoosterPack™ plug-in modules.

• For more details about the LP-AM263 , see the LP-AM263 LaunchPad User's Guide.
• Make sure that the boot switch on the LP-AM263 are set as shown in Figure 4-6.

– For QSPI_D0 (SOP0), position the switch to the LEFT (Logic High).
– For QSPI_D1 (SOP1), position the switch to the LEFT (Logic High).
– For SPI0_CLK_pad (SOP2), position the switch to the Right (Logic Low).
– For SPI0_D0_pad (SOP3), position the switch to the LEFT (Logic High).

• Make sure that the DAC VREF Switch (S1) on the LP-AM263 is set on AM263x on-die LDO for correct
CMPSS Operation.

Figure 4-6. LP-AM263 LaunchPad™ Board Overview and Switches Setting

4.3.2 BOOSTXL-3PHGANINV Setup

The BOOSTXL-3PHGANINV evaluation module features a 48V/10A three-phase GaN inverter with precision
in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives. The
module also has an individual DC bus and three-phase voltage sensing, making this board for BLDC/PMSM
control with TI LaunchPad™ development kits designed for use with the sensorless FOC algorithm.

• The hardware files and more details are available on the BOOSTXL-3PHGANINV page within ti.com.
• For more details about the BOOSTXL-3PHGANINV, see the corresponding User's Guide.
• Make sure that the following items are completed as described, and then connect the

BOOSTXL-3PHGANINV to J6/J8 and J5/J7 of the LP-AM263 as shown in Figure 4-7.
• Connect the motor, encoder, and Hall sensors to the BOOSTXL-3PHGANINV and the LP-AM263 as

described in Table 4-2 and shown in Figure 4-7.
• Connect a supply voltage 24V from a battery or a DC voltage source to the voltage supply pins. Follow the

operation instructions in Section 4.4 to turn on the power source.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

31

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/LP-AM263
https://www.ti.com/lit/pdf/spruj10
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/lit/pdf/sluubp1
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LP-AM263
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Motor Encoder

(J4)

Motor Hall Sensors

(J10)

D
C

+

D
C

-

M
O

T
O

R
_
U

M
O

T
O

R
_

V

M
O

T
O

R
_
W

J25 & J24

Figure 4-7. LP-AM263 Connected to the BOOSTXL-3PHGANINV

4.3.3 TMDSCNCD263 Setup

TMDSCNCD263 is an evaluation and development board for TI Arm® based MCU series of AM26x devices.
TMDSCNCD263 comes with a HSEC180 (180-pin High Speed Edge Connector) and can be used on existing
100-Pin DIMM based TMDSHVMTRINSPIN with TMDSADAP180TO100 adapter
• For more details about on TMDSCNCD263 , see AM263x Sitara Control Card Hardware User's Guide.
• Make sure that boot switches on TMDSCNCD263 are set as described in Figure 4-8.

– For SW3.1, SW3.2 and SW3.4 position switches to the LEFT, and SW3.2 to theRight for using the
on-Card XDS110 emulator in Quad Read UART Fallback Mode

• Make sure that the DAC VREF Switch (SW6) on the TMDSCNCD263 is switched to UP to set reference
voltage on AM263x on-die LDO for right CMPSS Operation.

Figure 4-8. TMDSCNCD263 controlCARD and Switches Setting

Hardware, Software, Testing Requirements, and Test Results www.ti.com

32 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/lit/pdf/spruj09
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.3.4 TMDSADAP180TO100 Setup

The TMDSADAP180TO100 adapter allows the use of 180-Pin TI controlCARDs with existing 100-Pin DIMM
based evaluation tools. The TMDSCNCD263 controlCARD needs TMDSADAP180TO100 to be used on
TMDSHVMTRINSPIN.

• Hardware files are located in the <install_location>\boards\controlCARDs\TMDSADAP180TO100
folder of C2000Ware.

• Make sure that switches TMDSADAP180TO100 are set as described or shown in Figure 4-9.
– The S1, S2 and S3 switches need to be positioned to the RIGHT, and S4 switch needs to be positioned to

the LEFT.

Up

Right

S1 �� cCard-30&33

Selection Switch

(On Right)

S2 �� cCard-80&83

Selection Switch

(On Right)

S3 �� cCard-31&84

Selection Switch

(On Right)

S4 �� cCard-81&34

Selection Switch

(On Left)

Figure 4-9. TMDSADAP180TO100 Adapter and Switches Setting

4.3.5 TMDSHVMTRINSPIN Setup

WARNING
• This EVM is meant to be operated in a lab environment only and is not considered by TI to be a

finished end-product fit for general consumer use.
• This EVM must be used only by qualified engineers and technicians familiar with risks associated

with handling high voltage electrical and mechanical components, systems and subsystems.
• This EVM operates at voltages and currents that can result in electrical shock, fire hazard and/or

personal injury if not properly handled. Equipment must be used with necessary caution and
appropriate safeguards must be employed to avoid personal injury or property damage.

• Always use caution when using the EVM electronics due to presence of high voltages. DC bus
Capacitors remain charged for a long time after the mains supply is disconnected.

• The EVM can accept power from the AC Mains/wall power supply, only uses the live and
neutral line from the wall supply, the protective earth is unconnected (floating). The power
ground is floating from the protective earth ground, all of the ground planes are the same.
Hence appropriate caution must be taken and proper isolation requirements must be met before
connecting scopes and other test equipment to the board. Isolation transformers must be used
when connecting grounded equipment to the EVM.

• The power stages on the board are individually rated. The user is responsible to make sure that
these ratings (for example, voltage, current and power levels) are well understood and complied
with, prior to connecting these power blocks together and energizing the board. When energized,
the EVM or components connected to the EVM must not be touched.

TMDSHVMTRINSPIN is a DIMM100 controlCARD based motherboard evaluation module showcasing control of
the most common types of high voltage, three-phase motors including AC induction (ACI), brushless DC (BLDC),
and permanent magnet synchronous motors (PMSM). The High Voltage Motor Control Kit has individual DC bus
and three-phase voltage sensing making this board for BLDC/PMSM control with TI controlCARD™ an excellent
choice for use with the sensorless FOC algorithm.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

33

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

• The hardware Files are in the <install_location>\solutions\tmdshvmtrinspin\hardware folder
of C2000WARE-MOTORCONTROL-SDK.

This section explains the steps needed to run the TMDSHVMTRINSPIN with the software supplied through
MotorControl SDK. The kit ships with the jumper and switch settings correctly positioned for connecting with
the controlCARD. Make sure that these settings are valid on the board as described in the following, and then
insert the controlCARD with the TMDSADAP180TO100 adapter into the TMDSHVMTRINSPIN board as shown
in Figure 4-10.

Connect BS5 and BS6 to the

DC power supply

Insert the ControlCard-

TMDSCNCD263 with a

TMDSADAP180TO100

adapter to high voltage kit

M
O

T
O

R
_
U

M
O

T
O

R
_
V

M
O

T
O

R
_
W

J3

On card USB isolation JTAG

emulator connector

Figure 4-10. TMDSHVMTRINSPIN Connected to the TMDSCNCD263 with TMDSADAP180TO100

• Make sure nothing is connected to the board, and no power is being supplied to the board.
• Insert the Control card with TMDSADAP180TO100 adapter into the [Main]-J1 controlCARD connector if not

already populated.
• Make sure the following jumpers & connector settings are correctly implemented as shown in Figure 4-11.

– [Main]-J3, J4, J5 and J8 are populated.
– [Main]-J9 and [M3]-J5 are not populated for using a controlCARD with the onboard emulation to disable

the XDS100 on HVKIT.
– [Main]-J7 is populated between pins 2-3 (pins furthest from the DIMM 100 socket).
– Make sure that the DC Fan shipped with the kit is connected to the DC Fan Jumper [Main]-J17 when

operating the motor under load > 150W.
• Two options to get DC Bus power are as follows, recommend using the external 15V DC power supply.

– [Main]-J2 is not populated if using the +15V from an external 15VDC power supply. Verify that [M6]-SW1
is in the “Off” position, connect 15V DC power supply to [M6]-JP1.

– [Main]-J2 is populated with a jumper between bridge and the middle pin if using the +15V power supply
from aux power supply module.

• Turn on [M6]-SW1. Now [M6]-LD1 turns on. Notice the control card LED lights up as well indicating the
control card is receiving power from the board.

• Connect the motor, encoder, and Hall sensors to the kits as described in Table 4-2 and shown in Figure 4-11.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

34 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

• Connect a supply voltage from an AC or a DC voltage source to the voltage supply pins. Power is applied
when instructed to do so in Section 4.4, keep disconnected otherwise.

Table 4-6 shows the various connections available on the board. The location of these connections on the board
are shown in Figure 4-11.

Table 4-6. Key Jumpers, Connectors Explanation
[Main]-P1 AC input connector (110V – 220VAC)

[Main]-TB3 Terminal Block to connect motor

[Main]-BS1 Banana Jack for Output from AC Rectifier

[Main]-BS2, BS6 Banana Jack for GND Connection

[Main]-BS3 Banana Jack for connecting an input voltage for the PFC stage, this is typically rectified AC voltage from
the [Main]-BS1 connector.

[Main]-BS4 Banana Jack for connecting a load to the output from the PFC stage, When using PFC+Motor project the
output of the PFC stage is connected to the input for the inverter bus for example [Main]-BS5

[Main]-BS5 Banana Jack for input of DC bus voltage for the inverter

[Main]-J2 Aux power supply module input voltage selection jumper,
• When jumper connected to Bridge position the aux power supply module sources power from the AC

rectifier bridge output.
• When Jumper connected to PFC position the aux power supply module sources power from the output

of the PFC stage.

[Main]-J3, J4, J5 Jumpers J3,J4 and J5 are used for sourcing 15V, 5V and 3.3V power respectively for the board from the
15V DC Power supply.

[Main]-J7 J7 is used to select the over current protection threshold source

[Main]-J8 J8 is used to enable/disable the IPM over current protection

[Main]-J9 JTAG TRSTn disconnect jumper, populating the jumper enables JTAG connection to the Microcontroller.
The jumpers need to be unpopulated when no JTAG connection is required such as when booting from
FLASH.

[Main]-J14 PWMDAC outputs: Gives voltage outputs that result from a PWM being attached to a first-order low-pass
filter. Pins 1,2,3 and 4 are attached to low pass filtered PWM output pins respectively to observe system
variables on an oscilloscope.

[Main]-J16 Isolated CAN bus connector

[Main]-J17 Connector to supply power to the DC fan (shipped with the board) that is attached to the IPM heat sink.

[Main]-H1 QEP connector: connects with a 0-5V QEP sensor to gather information on a motor’s speed and position.
CAP/Hall effect sensor connector: connects with a 0-5V sensor to gather information on a motor’s speed
and position.

[M1]-F1 Fuse for the AC input

[M3]-JP1 USB connection for on-board emulation

[M3]-J2 External JTAG interface: this connector gives access to the JTAG emulation pins. If external emulation is
desired, place a jumper across [M3]-J5 and connect the emulator to the board. To power the emulation
logic a USB connector still needs to be connected to [M3]-JP1.

[M3]-J5 On-board emulation disable jumper: Place a jumper here to disable the on-board emulator and give
access to the external interface.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

35

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

J3 J4 J5

QEP Encoder

CAP Hall Sensors

Main] TB3 – Motor

Connector

(220V 3Phase AC,

1.5KW Max)

[M6] JP1 – DC

Jack for 15V DC

power supply

[Main] P1 –

85-132VAC/

170-250VAC

(750W Max input)

[Main] H1 – CAP/QEP

and Hall sensor output

connector

[M3] J5 – On-board

emulation disable jumper

[Main] J9– JTAG TRSTn

Option Jumper

[M3] J2 – External JTAG

emulator interface

[Main] J1–controlCARD

connector

[Main] J3, J4, J5 –

jumper to enable

controller power (15, 5

and 3.3VDC) from the

15V DC power supply

[Main] J16 –

CAN Bus

Connector

[M3] JP1 - USB

Connection for

onboard emulation

[Main] J17 –

DC Fan

[Main] J14 –

DAC outputs

[M6] SW1 –

5 , 3.3VDC

power switch

[M1] F1 –

AC input fuse

(250VAC 4 Amps

slow acting)

Main] BS1 –

Rectified AC Out

(750W Max Output)

Main] BS3 –

Banana Connector

jack for PFC input

(750W Max Input)

[Main] BS6

Banana Connector

jack for GND

[Main] BS4 –

Banana Connector

Jack for PFC

Output (750W Max

Output)

[Main] BS5 –

Banana Connector

Jack for Inverter

DC Bus (1.5KW

Max input)

[Main] BS2

Banana Connector

jack for GND

[Main] J7 –OCP

threshold setting jumper

[Main] J8 – IPM OCP

enable jumper

[Main] VR1 – OCP

threshold setting

VR1

[Main] J2 –

Aux power supply

input selection

jumper

Figure 4-11. TMDSHVMTRINSPIN Kit Jumpers and Connectors Diagram

Hardware, Software, Testing Requirements, and Test Results www.ti.com

36 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.4 Test Results
The system is gradually tested and verified in multiple stages so that the final system can be confidently
operated. To select a particular build option, change the value of the DMC_BUILDLEVEL define to the desired
DMC_LEVEL_X option in the sys_settings.h file. After the build option is selected, compile the project by
right-clicking on the project name and clicking Rebuild Project.
4.4.1 Level 1 Incremental Build

Objectives for this build level:

• Use the HAL object to initialize the peripherals of the MCU for the motor drive hardware.
• Verify the PWM and ADC driver modules
• Verify the ADC Offset validation
• Become familiar with the operation of CCS. More details about CCS can be found in the CCS User's Guide.

In this build level, the board is executed in open loop mode with a fixed PWM duty cycle. The duty cycles are
set to 50%. This build level verifies the sensing of feedback values from the power stage and also operation of
the PWM gate driver and maintains there are no hardware issues. Additionally, calibration of input and output
voltage sensing can be performed in this build level. During this process the motor must remain disconnected.
The software block diagram of this build level is shown in Figure 4-12.

PWM

Driver

HAL_writePwmData

Ta = 0

HAL_read

Mtr1ADCData

Tb = 0

Tc = 0

Ia

Ib

Ic

Va

Vb

Vc

Vbus

ADC

Driver

Three

Phase

Inverter

M

Figure 4-12. Build Level 1 Software Block Diagram - Offset Validation

4.4.1.1 Build and Load Project

1. Set up the motor driver hardware board and the TI LaunchPad or controlCARD as described in Section 4.3,
except the motor does NOT need to be connected to the motor driver board in this build level.

2. Connect a USB cable from the computer to the onboard USB connector on the TI LaunchPad or
controlCARD to enable isolation JTAG emulation to the MCU.

3. Power on the motor driver board by applying the appropriate voltage to the bus voltage input terminal as
described in Section 4.3.

4. Import the universal motor control project into CCS and select the correct build configuration as described in
Section 4.2.1. Open the sys_settings.h file and set DMC_BUILDLEVEL to DMC_LEVEL_1. This can make
sure the project is configured to run the first incremental build.

5. In the Project Explorer window, make sure the correct target configuration file is set as Active by right-
clicking on the desired target configuration file name and selecting Set as Active Target Configuration. The
recommendation is to also set the desired target configuration file as default by right-clicking on the file
name and selecting Set as Default Target Configuration. One reason for doing this is because there is no
visible indicator to show which file is active, but if the file is set to default then the [default] indicator appears
next to the file name in the project explorer window. Setting the file as default can also cause the file to be

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

37

Copyright © 2024 Texas Instruments Incorporated

http://software-dl.ti.com/ccs/esd/documents/users_guide/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

used by default unless a different configuration file is specifically set to Active. You can also link a target
configuration to a project in the workspace by going to View > Target Configurations and right-clicking on the
target configuration name in the Target Configurations view and selecting Link to Project.

6. Right-click the project name and click Rebuild Project. Watch the Console window. Any errors in the project
are displayed in the Console window.

7. On successful completion of the build, click the Debug button or click Run → Debug. The IDE now
automatically connects to the target, load the output file into the device, and change to the Debug
perspective. The CCS Debug icon appears in the upper right corner, indicating that the user is now in
the Debug Perspective view. The program needs to be halted at the start of main().

4.4.1.2 Setup Debug Environment Windows

The standard debug practice is to watch local and global variables while debugging code. There are various
methods for doing this in CCS, such as memory views and watch views. Additionally, CCS has the ability to
create time (and frequency) domain plots. This ability allows the user to view waveforms using the graph tool.
For information on how to set up and configure the graph tool, see Section 4.5.1. For information on setting up
the Expressions window, see the following instructions.

1. Setup watch window: Click View → Expressions on the menu bar to open an Expressions watch window.
Variables can be added to the Expressions window by clicking Add new expression within the Expressions
window and entering the name of the variable and then pressing enter. The number format that the variable
value is displayed in is based on the number format associated with the variable when the variable value
was declared. You can change the desired number format for a particular variable by right clicking on the
variable and navigating to Number Format and selecting the desired format.

2. Alternately, a group of variables can be imported into the Expressions window by
right clicking within the Expressions window and clicking Import, browse to the directory
of the project at <workspace>\universal_motorcontrol_am263x_r5fss0-0_nortos_ti-arm-
clang\src_control\debug\, select the universal_motor_control_level1.txt file, and click OK to import
the variables shown in Figure 4-13.

Note
Some of the variables have not been initialized at this point in the main code and can contain
some useless values.

3. Note: the structure of variables motorVars_M1 has references to most variables that are related to
controlling motor drive.

4. Click on the Continuous Refresh button in the top right corner of the Expressions Window tab to enable
periodic capture of data from the Microcontroller. By clicking the View Menu button (the 3 dots in the upper
right hand corner of the Expressions window),you can select Continuous Refresh Interval and edit the
refresh rate of the Expressions window. Note that choosing too fast an interval can affect performance.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

38 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.4.1.3 Run the Code

1. Disable the data cache by unchecking the Data Cache Enabled in the Tools > ARM Advanced Features.
2. Run the code by pressing on the Resume button, or click Run → Resume in the Debug tab.
3. The project now runs, and the values in the graph and watch window keep updating.
4. In the Expressions window, set the variables motorVars_M1.flagEnableRunAndIdentify to 1 after

systemVars.flagEnableSystem was automatically set to 1 in the watch window.
5. The project now runs, and the values in the graphs and expressions window continuously update as shown

in Figure 4-13 while using this project. You can re-size the windows according to your preference.
6. In the watch view, the variables motorVars_M1.flagRunIdentAndOnLine is set to 1 automatically if there are

no faults. The ISRCount increases continuously.
7. Check the calibration offsets of the motor driver board. The offset values of the motor phase current sensing

values are equal to approximately half of the ADC scale current as shown in Figure 4-13.
8. If using the graph tool, the variables shown in the graphs are the FOC angle and phase currents for phase u,

v and w.
9. Expand and check the MotorVars_M1.faultMtrPrev.bit structure to maintain that there are no fault flags set.
10. Using an oscilloscope, probe the PWM outputs that are used for motor drive control. The duty cycles

of the three PWMs are set to 50% in this build level. The expected PWM output waveforms are as
shown in Figure 4-14. The PWM switching frequency are the same as the value that was set for the
USER_M1_PWM_FREQ_kHz define in the user_mtr1.h file.

11. Set the motorVars_M1.flagEnableRunAndIdentify variable to 0 to disable the PWMs.
12. If any of the previous steps provide unexpected results, additional debug is necessary. A few things to check

are:
a. Make sure that the motor driver board being used is the same as the board selected in the build

configurations.
b. Make sure that the proper predefines are set.
c. Make sure that the switches are configured properly on the Lunchpad/ControlCARD as described in

Section 4.3.
13. Once the previous steps are complete, the controller can now be halted, and the debug connection

terminated. Halt the controller by first clicking the Halt button on the toolbar or by clicking Target → Halt.
Finally, reset the controller by clicking on the button or clicking Run → Reset→CPU Reset.

14. Close the CCS debug session by clicking the Terminate Debug Session button or clicking Run → Terminate.
This halts the program and disconnect Code Composer from the MCU.

15. Terminating the debug session each time the user changes or runs the code again is not necessary.
Instead, the following procedure can be followed. After rebuilding the project, press the button or click Run
→ Reset→CPU Reset, and then press the Restart button or click Run → Restart. The project must be
terminated if the target device or the configuration is changed, and before shutting down CCS.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

39

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Click this button to enable

periodic capture of data from

the microcontroller

Check if these variables meet the

board, estimator, library selection

Current and voltage sampling values

are near 0.0 with removing offset

The sensing conversion value should

be equal to the dc bus voltage

The variable keeps increasing

Set this variable value equal

to 1 to start the motor

Current offset values are near 2048

(half of 12bit ADC scale value)

Figure 4-13. Build Level 1: Variables in Expressions Window

Hardware, Software, Testing Requirements, and Test Results www.ti.com

40 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

The PWM with deadband outputs to the input of the gate drive are shown in Figure 4-14.

Figure 4-14. Build Level 1: PWM Output Waveforms

4.4.2 Level 2 Incremental Build

Objectives learned in this build level:

• Implements a simple scalar v/f control of motor to drive motor for validating current and voltage sensing
circuit, and gate driver circuit.

• Test eSMO modules for motor control.

In this build level the system is running with open-loop control, so the ADC values are only used for verification
and validation, the ADC values are not actually used in the control loop of the motor. The software flow for this
build level is shown in Figure 4-15.

RG

SVM
INV

PARK

CLARKE

CLARKE

Traj

Ramp

PWM

Driver

HAL_writePwmData

User_Vq

User_Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

�ref

I�_in

I�_in

Angle

Speed

�
�

�
�

�
�

�
�

�
�

SpdRef

Var1

Var3
PWMDAC

DATALOG
DlogCh1

DlogCh3
Scope

Graph

Window

Var2

Var4

HAL_read

Mtr1ADCData

eSMO

or

ENC

or

HALL

ADC

Driver

Three

Phase

Inverter

M

DlogCh2

DlogCh4

Vbus

Figure 4-15. Build Level 2 Software Block Diagram - Open Loop Control

4.4.2.1 Build and Load Project

Connect the motor to the appropriate terminals on the motor driver evaluation board. Follow steps 2-7 of Section
4.4.1.1 to build and load the project. In step 4, set the DMC_BUILDLEVEL to DMC_LEVEL_2.

4.4.2.2 Setup Debug Environment Windows

Follow the steps in Section 4.4.1.2 to import the variables into the Expressions window. For build level 2, select
the universal_motor_control_level2.txt file. The Expressions window appears as shown in Figure 4-16.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

41

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.4.2.3 Run the Code

1. Power on the appropriate power supply, and gradually increase the output voltage of the power supply to get
an appropriate DC-bus voltage.

2. If using the graph tool, level 2 uses the same graph configurations and parameters as lab 1 to monitor 2 of
the phase currents.

3. Disable the data cache by unchecking the Data Cache Enabled in Tools > ARM Advanced Features.
4. Run the project by clicking on the Resume button, or click Run → Resume in the Debug tab. The

systemVars.flagEnableSystem is set to 1 after a fixed time, that means the offsets calibration has completed.
The fault flags, motorVars_M1.faultMtrUse.all is equal to 0. If this is not the case, the user must double
check the current and voltage sensing circuit in level 1 as described in Section 4.4.1.3. Also, if the
moduleOverCurrent in motorVars_M1.faultMtrPrev.bit is 1, then motorSetVars_M1.overCurrent_A needs to
be set to higher value to avoid initial high current fault.

5. To verify the current and voltage sensing circuits of the motor driver, set the variable
motorVars_M1.flagEnableRunAndIdentify to 1 in the Expressions window as shown in Figure 4-16. The
motor runs with voltage/frequency (v/f) open loop. If the motor does not spin smoothly, tune the v/f profile
parameters in the user_mtr1.h file as shown in the following according to the specification of the motor. Note:
modification of these parameters requires rebuilding the project. See step 15 of Section 4.4.1.3 for more
information on rebuilding the project in debug mode.

#define USER_MOTOR1_FREQ_LOW_HZ (5.0) // Hz
#define USER_MOTOR1_FREQ_HIGH_HZ (400.0) // Hz
#define USER_MOTOR1_VOLT_MIN_V (1.0) // Volt
#define USER_MOTOR1_VOLT_MAX_V (24.0) // Volt

6. The motorVars_M1.speedRef_Hz variable is used to set the speed reference for the motor. Check the
value of the motorVars_M1.speed_Hz variable in the Expressions window to maintain that the motor speed
(motorVars_M1.speed_Hz) is close to the reference speed (motorVars_M1.speedRef_Hz) as shown in
Figure 4-16.

7. In this build level, the current sensing, voltage sensing, rotor angle estimator, and generator need to be
validated. This can be done using the PWMDAC in HV motor kit as described in Section 4.5.2. Additionally,
the DATALOG module can be used to view these sensing waveforms. For more information on using the
DATALOG to view the currents, voltages, and angle signals, see step 8.

8. If using the DATALOG module with the graph tool to check the current sensing signals, voltage sensing
signals, and the angle outputs, follow the steps described in the following. For more info on the datalog
module, see Section 4.5.1. Note:You must rebuild the project in between each of the following steps after
modifying the code.
a. To test the phase currents using the DATALOG module, the following code must be set up in the

sys_main.c file. Note: this code is already configured by default for build level 2. The phase current
sampling signals waveform displayed on the graph tool as shown in Figure 4-18.

datalogObj->iptr[0] = (float32_t*) &motorVars_M1.adcData.I_A.value[0];
datalogObj->iptr[1] = (float32_t*) &motorVars_M1.adcData.I_A.value[1];

b. To test the phase voltage using the DATALOG module, the following code must be set up in the
sys_main.c file. The phase voltage sampling signals waveform displayed on graph tool as shown in
Figure 4-19.

datalogObj->iptr[2] = (float32_t*) &motorVars_M1.adcData.V_V.value[0];

c. The angle from the force angle generator or estimator can be monitored on the graph tool as shown
in Figure 4-21. Notice that the angle of the force angle generator is very similar as the estimated rotor
angle of the eSMO estimator.

datalogObj->iptr[3] = (float32_t*) &motorVars_M1.angleFOC_rad;

9. Verify the over current fault protection by decreasing the value of the variable motorVars_M1.overCurrent_A,
the over current protection is implemented by the CMPSS modules. The over current fault triggers if the
motorVars_M1.overCurrent_A is set to a value less than the motor phase current actual value, the PWM
output is disabled, the motorVars_M1.flagEnableRunAndIdentify is cleared to 0, as shown in Figure 4-17.

10. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

42 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

11. Once complete, the controller can now be halted, and the debug connection terminated. Fully halting the
controller by first clicking the Halt button on the toolbar Suspend or by clicking Target → Halt. Finally, reset
the controller by clicking on CPU Reset or clicking Run → Reset.

12. Close CCS debug session by clicking on Terminate Debug Session button or clicking Run → Terminate.
13. Power off the power supply to the inverter kit.

Click this button to enable periodic capture of

data from the microcontroller

Check if these variables meet the board and

estimator selections

Set this variable value equal to 1 to start run

the motor

The threshold value of the over current

protection

Means the inverter/controller has fault when

run the motor if the variable value is not zero

Set target speed value (Hz) to this variable

The sensing conversion value should be

equal to the dc bus voltage

Check if the estimation speed (Hz) is equal/

close to the setting traget speed (Hz)

Figure 4-16. Build Level 2: Variables in Expressions Window

Adjust the value of motorVars_M1.overCurrent_A in Expression window to trigger the over current fault as
shown in Figure 4-17.

The value will be non-zero if there

is an over-current fault

The values will be non-zero if

there is an over-current fault

Set the right current threshold

value to verify the over current

function

Figure 4-17. Build Level 2: Current Protection Setting

Use Datalog with Graph Tool to monitor three phase sensing current of the motor as shown in Figure 4-18.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

43

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-18. Build Level 2: Motor Phase Current Waveforms with Graph Tool

Use Datalog with Graph Tool to monitor three phase sensing voltage of the motor as shown in Figure 4-19. The
SVM mode selected here is DPWM with minimum modulation.

Figure 4-19. Build Level 2: Motor Phase Voltage Waveforms with Graph Tool - DPWM Minimum

Use Datalog with Graph Tool to monitor three phase sensing voltage of the motor with SVPWM Common
modulation as shown in Figure 4-20. SVM type can be selected in motor1_drive.c file.

Figure 4-20. Build Level 2: Motor Phase Voltage Waveforms with Graph Tool - SVPWM Common

Use Datalog with Graph Tool to monitor rotor angle of the motor from the angle generator and angle from the
eSMO estimator as shown in Figure 4-21.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

44 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-21. Build Level 2: Motor Rotor Angle Waveforms With Graph Tool

4.4.3 Level 3 Incremental Build

Objectives learned in this build level:

• Evaluate the closed current loop operation of the motor.
• Verify the current sensing parameters settings

In this build level, the motor is controlled by using i/f control that the rotor angle is generated from ramp
generator module. The software flow for this build level is shown in Figure 4-22.

SVM

Iq

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

eSMO

or

ENC

or

HALL

PWM

Driver

HAL_writePwmData

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

user_Iq_ref

Iq

user_Id_ref

Id

Id

Iq

I�_in

I�_in

Angle

Speed

EST_run

Rs

�

�s
�

Lsd

�

Lsq
�

�
�

�
� �

�

�
�

�
�

�
�

RG
Traj

Ramp

�ref
SpdRef

Var1

Var3PWMDACScope

Var2

Var4

HAL_read

Mtr1ADCData

ADC

Driver

Three

Phase

Inverter

M

DATALOG
DlogCh1

DlogCh3
Graph

Window

DlogCh2

DlogCh4

Vbus

Figure 4-22. Build Level 3 Software Block Diagram - Current Close Loop Control

4.4.3.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
4.4.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_3 in the sys_settings.h file.

4.4.3.2 Setup Debug Environment Windows

Follow operation steps in Section 4.4.1.2 to import the variables into the Expressions window by picking
universal_motor_control_level3.txt. The Expressions window appears as shown in Figure 4-23.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

45

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.4.3.3 Run the Code

1. Power on the AC or DC power supply, gradually increase output voltage at power supply to get an
appropriate DC-bus voltage.

2. Disable the data cache by unchecking the Data Cache Enabled in Tools > ARM Advanced Features.
3. Run the project by clicking on Resume button, or click Run → Resume in the Debug tab. The

systemVars.flagEnableSystem must be set to 1 after a fixed time, that means the offsets calibration have
been done. The fault flags motorVars_M1.faultMtrUse.all are equal to 0 , if not, the user have to check the
current and voltage sensing circuit as described in Section 4.4.1.

4. To verify run the motor with current closed-loop control, set the variable
motorVars_M1.flagEnableRunAndIdentify to 1 in the Expressions window as shown in Figure 4-23. The
motor runs with a closed-loop control using the angle from the angle generator at a setting speed in the
variable motorVars_M1.speedRef_Hz. Check the value of motorVars_M1.speed_Hz in Expressions window.
The values of both variables are very close.

5. Connect oscilloscope probes to the EPWMDAC (for HV kit) outputs and motor phase line to probe the
angles and current signals, and current. These waveforms on the oscilloscope appear as shown in Figure
4-24. Change the motorVars_M1.Idq_set_A.value[1] in the Expressions window to set the reference torque
current, the motor phase current increases with the same percentage accordingly.

6. If the motor cannot run with current-closed loop control and an over current fault appears, check if the
sign of motorVars_M1.adcData.current_sf and the value of userParams_M1.current_sf are set correctly
according to the hardware board. The values of both variables are related to the definition constant
USER_M1_ADC_FULL_SCALE_CURRENT_A in the user_mtr1.h file.

7. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
8. Once complete, the controller can now be halted and the debug connection terminated. Fully halting the

controller by first clicking the Suspend button on the toolbar or by clicking Target → Halt. Finally, reset the
controller by clicking on CPU Reset button or clicking Run → Reset.

9. Close CCS debug session by clicking on Terminate Debug Session button or clicking Run → Terminate.

Click this button to enable periodic capture

of data from the microcontroller

Check if these variables meet the board

and estimator selections

Set this variable value equal to 1 to start

run the motor

Tune these Kp or Ki to achieve the required

response

Set the reference torque current value to

this variable

Means the inverter/controller has fault

when run the motor if the variable value is

not zero

Set target speed value (Hz) to this variable

The sensing conversion value should be

equal to the dc bus voltage

Check if the estimation speed (Hz) is equal/

close to the setting traget speed (Hz)

The threshold value of the over current

protection

Figure 4-23. Build Level 3: Variables in Expressions Window

Hardware, Software, Testing Requirements, and Test Results www.ti.com

46 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

The rotor angle value output with PWMDAC The phase A current sensing value output

with PWMDAC

Figure 4-24. Build Level 3: Motor Rotor Angle and Phase Current Waveforms Monitoring by EPMWDAC

4.4.4 Level 4 Incremental Build

Objectives learned in this build level:

• Evaluate the complete motor drive with eSMO based sensorless-FOC, encoder based sensored-FOC or hall
based sensored-FOC.

• Evaluate the additional features, such as field weakening control, flying start, MTPA, and braking.

In this build level, the outer speed loop is closed with the inner current loop for motor that the rotor angle is from
eSMO, encoder or Hall sensors modules. The software flow for this build level is shown in Figure 4-25.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

eSMO

or

ENC

or

HALL

PWM

Driver

ADC

Driver

HAL_writePwmData

+

+

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

Iq_ref

Iq

Id_ref

Id

�ref

Id

Iq

I�_in

I�_in

Angle

Speed

Flux

Rs
�

�s
�

Lsd
�

Lsq
�

�
�

�
�

�
�

�
�

�
�

Irated

�

�
�

�
�

�
�

Is_ref

FWC

FWC

�
�

SpdRef

�
�

Lq

Ld

Vs

Vref

�1

�2

MTPA

HAL_read

Mtr1ADCData

Var1

Var3
PWMDACScope

Var2

Var4

Three

Phase

Inverter

M

DATALOG
DlogCh1

DlogCh3
Graph

Window

DlogCh2

DlogCh4

Vbus

Figure 4-25. Build Level 4 Software Block Diagram - Speed and Current Close Loop Control

4.4.4.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
4.4.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_4 in the sys_settings.h file.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

47

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.4.4.2 Setup Debug Environment Windows

Follow operation steps in Section 4.4.1.2 to import the variables into the Expressions window by picking
universal_motor_control_level4.txt. The Expressions window appears as shown in Figure 4-26.

4.4.4.3 Run the Code

1. Power on the AC or DC power supply, gradually increase output voltage at power supply to get an
appropriate DC-bus voltage.

2. The required motor parameters must be defined in the user_mtr1.h header file as shown in the following
example code.

#define USER_MOTOR1_TYPE MOTOR_TYPE_PM
#define USER_MOTOR1_NUM_POLE_PAIRS (4)
#define USER_MOTOR1_Rr_Ohm (NULL)
#define USER_MOTOR1_Rs_Ohm (0.38157931f)
#define USER_MOTOR1_Ls_d_H (0.000188295482f)
#define USER_MOTOR1_Ls_q_H (0.000188295482f)
#define USER_MOTOR1_RATED_FLUX_VpHz (0.0396642499f)

3. Build the project and load the code into the controller, disable the data cache by unchecking the "Data
Cache Enabled" in Tools > ARM Advanced Features, run the project by clicking on Resume button, or click
Run → Resume in the Debug tab. The systemVars.flagEnableSystem is set to 1 after a fixed time, that
means the offsets calibration have been done and the power relay for inrush is turned on. The fault flags
motorVars_M1.faultMtrUse.all is equal to 0 , if not, the user must check the current and voltage sensing
circuit as described in Section 4.4.1.

4. Set the variable motorVars_M1.flagEnableRunAndIdentify to 1 in the Expressions window as shown in
Figure 4-26.

5. After you start running the motor:
a. Set the target speed value to the variable motorVars_M1.speedRef_Hz and watch how the motor shaft

speed follow the setting speed.
b. To change the acceleration, enter a different acceleration value for the variable

motorVars_M1.accelerationMax_Hzps.
c. Use PWMDAC module to display the monitoring variables as described in Section 4.5.2. The motor

angle and current waveforms are shown in Figure 4-27.
6. The default proportional gain (Kp) and integral gain (Ki) for the current controllers of the FOC system

are calculated in the function setupControllers(). After setupControllers() is called, the global variables
motorSetVars_M1.Kp_Id, motorSetVars_M1.Ki_Id, motorSetVars_M1.Kp_Iq, and motorSetVars_M1.Ki_Iq
are initialized with the newly calculated Kp and Ki gains. Tune the Kp and Ki value of these four variables
in Expressions Watch Window as shown in Figure 4-26 for the current controllers to achieve the expected
current control bandwidth and response. The Kp gain creates a zero that cancels the pole of the motor’s
stator and can easily be calculated. The Ki gain adjusts the bandwidth of the current controller-motor system.
When a speed controlled system is needed for a certain damping, the Kp gain of the current controller
relates to the time constant of the speed controlled system.

7. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
8. Once complete, the controller can now be halted and the debug connection terminated. Fully halting the

controller by first clicking the Suspend button on the toolbar or by clicking Target → Halt. Finally, reset the
controller by clicking on CPU Reset button or clicking Run → Reset.

9. Close CCS debug session by clicking on Terminate Debug Session button or clicking Run → Terminate.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

48 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Click this button to enable periodic

capture of data from the microcontroller

Supporting estimator

Set this variable value equal to 1 to start

motor

Set target speed value (Hz) to this

variable

Estimation feedback speed (Hz)

The threshold value of the over current

protection

Tune these Kp or Ki of current and

speed regulators to achieve the required

response

Motor operation state

Using estimator

Measured speed when encoder is

enabled

Measured speed when Hall sensor is

enabled

Figure 4-26. Build Level 4: Variables in Expressions Window

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

49

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Rotor angle value output with Data Log
module

Rotor angle value output with Data
Log module

Figure 4-27. Build Level 4: Phase Current and Rotor Angle with eSMO Waveforms at Forward Move

As illustrated in Section 4.2.2, multiple FOC algorithms can be supported in the project. The user can use one
(eSMO or Hall or Encoder) algorithm or two algorithms (eSMO + Encoder) for motor control in the project.

The user can implement eSMO and Encoder estimators in the project simultaneously by adding the pre-define
name MOTOR1_ESMO and MOTOR1_ENC in project properties as described in Section 4.2.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_ESMO_ENC that means eSMO and Encoder
estimators are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_ESMO that means the eSMO estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_ENC that means the encoder estimator is using
for sensored-FOC.

• The estimated rotor angles from eSMO and Encoder are shown in Figure 4-28. The motor is running with
eSMO at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The user can change the value to ESTIMATOR_MODE_ENC to select the Encoder estimator for sensored-
FOC. And also the user can change the value to switch the using estimator on the fly.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

50 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Feedback speed with

Data Log module

eSMO rotor angle value

output with Data Log

module

Encoder rotor angle value

output with Data Log

module

Figure 4-28. Build Level 4: Rotor Angle with eSMO and Encoder, Phase Current Waveforms at Forward
Rotation

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

51

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.5 Adding Additional Functionality to Motor Control Project

4.5.1 Using DATALOG Function

The DATALOG module stores the real-time values of user selectable software variables (by default four
variables) in the data RAM provided on the TI MCU as shown in Figure 4-29. The four variables are selected
by configuring the module inputs to the address of the four variables. The starting addresses of the four
RAM buffer locations are &((datalog).datalogBuff)[0], &((datalog).datalogBuff)[1], &((datalog).datalogBuff)[2] and
&((datalog).datalogBuff)[3]. These Datalog buffers are large arrays that contain value-triggered data that can
then be displayed to a graph. The datalog prescalar is configurable, which allows the data log function to only log
one out of every prescalar samples. The number of data log buffers, buffer size and data type can be selected in
the datalog_input.h file.

DATLOG

Update

GSx

RAM

H/W

datalogObj.iptr[0]

datalogObj.iptr[1]

datalogObj.iptr[2]

datalogObj.iptr[3]

Figure 4-29. DATALOG Module Block Diagram

To enable the datalog functionality, the predefine symbol DATALOG_EN must be added in the project properties
as shown in Figure 4-2.

The following code shows the declaration of one DATALOG object and handle. This code is located in the
datalog.c file.

__attribute__ ((section("datalog_data"))) DATALOG_Obj datalog;
DATALOG_Handle datalogHandle; //!< the handle for the Datalog object

This puts data log object in the datalog_data section of memory. This section can be either TCM or OCRAM.
Generally, we recommend to use OCRAM as TCM has limited size and needed by time critical part of software.
Disable Data Cache to be able logging data in OCRAM in CCS12.6. To disable the data cache, Data Cache
Enabled must be unchecked in the Tools > ARM Advanced Features as shown in Figure 4-30.

Disable cache to be able real time

debugging of variables stored in OCRAM

Figure 4-30. Disable Data Cache for Real Time Debugging

Hardware, Software, Testing Requirements, and Test Results www.ti.com

52 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

The following code shows the initialization and setting up of the datalog object, handle and parameters. This
code is located in the sys_main.c file.

// Initialize Datalog
datalogHandle = DATALOG_init(&datalog, sizeof(datalog), manual, 0, 1);
DATALOG_Obj *datalogObj = (DATALOG_Obj *)datalogHandle;

The following code shows the configuration of the module inputs to point to the address of variables. The
datalog module inputs point to different system variables depending on the build level. This code is located in the
sys_main.c file:

datalogObj->iptr[0] = (float32_t*) &motorVars_M1.adcData.V_V.value[0];
datalogObj->iptr[1] = (float32_t*) &motorVars_M1.adcData.I_A.value[0];
datalogObj->iptr[2] = (float32_t*) &motorVars_M1.adcData.I_A.value[1];
datalogObj->iptr[3] = (float32_t*) &motorVars_M1.angleFOC_rad;

The following code shows the periodic updating of the datalog buffer with the new data during the execution of
the motor1ctrlISR() interrupt. This code is located in the motor1_drive.c file.

#if defined(DATALOG_EN)
DATALOG_update(datalogHandle);
#endif // DATALOG_EN

The datalog module is used with the graph tool, which provides a means to visually inspect the variables and
judge system performance. The graph tool is available in CCS, which can display arrays of data in various
graphical types. The arrays of data are stored in a device’s memory in various formats.

While the project is in debug mode, open and setup time graph windows to plot the data log buffers as
shown in Figure 4-31. Alternatively, the user can import the graph configurations files that are located in
the project folder. To import them, Click: Tools -> Graph -> Single Time… and select import and browse
to the following location <workspace>\universal_motorcontrol_am263x_r5fss0-0_nortos_ti-arm-
clang\src_control\debug\ and select datalog.graphProp file. Hit OK, this adds the Graphs to your debug
perspective. Click on Continuous Refresh button on the top left corner of the graph tab.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

53

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-graphs.html
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

The start address of the data log

buffer

Equals to the size of he data log

buffer

Set the data type as the

software variables

Equals to datalog update

frequency

Equals to the size of he data log

buffer

Import the example .graphProp

file

Figure 4-31. Graph Window Settings

Hardware, Software, Testing Requirements, and Test Results www.ti.com

54 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.5.2 Using PWMDAC Function

The PWMDAC module converts the software variables into PWM signals using ePWM 5A, 5B, 6A, and 6B as
shown in Figure 4-32. The PWMDAC module is only supported on the high voltage kit (TMDSHVMTRINSPIN)
since the module has extra PWM outputs with RC filters available on the board. If the PWMDAC module is used
with a motor driver board that does not support the PWMDAC module, then the PWM signals is routed to spare
PWMs on the TI LaunchPad and the user needs to add RC filters to those pins to utilize the PWMDAC design.

PWMDAC

Update

PWM

H/W

pwmDACData.ptrData[0]
EPWM5A

pwmDACData.ptrData[1]

pwmDACData.ptrData[2]

EPWM5B

EPWM6A

Figure 4-32. PWMDAC Module Block Diagram

The PWMDAC module can be used to view the signal, represented by the variable, at the outputs of the related
pins through the external low-pass filters. Therefore, the external low-pass filters are necessary to view the
actual signal waveforms as seen in Figure 4-33. The (1st-order) RC low-pass filter is used to filter out the
high frequency component embedded in the actual low frequency signals. To select R and C values, the time
constant can be expressed in terms of the cut-off frequency (fc) as shown in the following equations.

τ = RC = 12πfc (48)

fc = 2πRC (49)

470�

0.47μF

GND

PWM

Scope

Scope

Figure 4-33. External RC Low-Lass Filter Connecting to a PWM Pin

To enable the ePWM DAC functionality, the predefined symbol EPWMDAC_MODE must be added in the project
properties as shown in Figure 4-2.

The following code shows the declaration of the PWMDAC object. This code is located in the sys_main.c file.

#if defined(EPWMDAC_MODE)
#if defined(HVMTRPFC_REV1P1)
__attribute__ ((section("sys_data"))) HAL_PWMDACData_t pwmDACData;
 // HVMTRPFC_REV1P1
#else
#error EPWMDAC is not supported on this kit!
#endif // !HVMTRPFC_REV1P1
#endif // EPWMDAC_MODE

The following code shows the initialization and setting up of the PWMDAC object, handle and parameters. Four
module inputs, ptrData[0], ptrData[1], ptrData[2], and ptrData[3] are configured to point to the addresses of four
variables. The PWMDAC module inputs point to different system variables depending on the build level. This
code is located in the sys_main.c file.

// set DAC parameters
pwmDACData.periodMax =
 PWMDAC_getPeriod(halHandle->pwmDACHandle[PWMDAC_NUMBER_1]);

pwmDACData.ptrData[0] = &motorVars_M1.angleFOC_rad; // PWMDAC1
pwmDACData.ptrData[1] = &motorVars_M1.speedAbs_Hz; // PWMDAC2

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

55

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

pwmDACData.ptrData[2] = &motorVars_M1.speedAbs_Hz; // PWMDAC3
pwmDACData.ptrData[3] = &motorVars_M1.adcData.I_A.value[1]; // PWMDAC4

pwmDACData.offset[0] = 0.5f; // PWMDAC1
pwmDACData.offset[1] = 0.0f; // PWMDAC2
pwmDACData.offset[1] = 0.0f; // PWMDAC3
pwmDACData.offset[3] = 0.5f; // PWMDAC4

pwmDACData.gain[0] = 1.0f / MATH_TWO_PI; // PWMDAC1
pwmDACData.gain[1] = 1.0f / USER_MOTOR1_FREQ_MAX_Hz; // PWMDAC2
pwmDACData.gain[2] = 1.0f / USER_MOTOR1_FREQ_MAX_Hz; // PWMDAC3
pwmDACData.gain[3] = 2.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A; // PWMDAC4

The following code shows the updating of the PWM outputs with new data during the execution of the
motor1ctrlISR() interrupt. This code is located in the motor1_drive.c file.

// connect inputs of the PWMDAC module.
HAL_writePWMDACData(halHandle, &pwmDACData);

4.5.3 Adding CAN Functionality

CAN functionality can be added into the lab project to provide the user a communication bus for sending
the start/stop command and getting the feedback running states. To utilize this, enable the pre-define symbol
CMD_CAN in project build properties as shown in Figure 4-2. PCAN-View is used to simply monitor, transmit,
and record CAN data traffic. Different type of command messages can be defined in motor_common.hfile. In this
project as an example, sender specifies a starting command and defines a target speed value. The recipient
then receives a message containing the target speed.

Please be noted that depending on whether you are using the LaunchPad or EVM in the kit, certain
pin mux settings are required. These configurations are achieved using the mcanEnableTransceiver and
tca6416ConfigOutput functions, as outlined in the following code:

#if defined(AM263_CC)
void tca6416ConfigOutput(uint16_t port, uint16_t pin, uint16_t level);
#endif // AM263_CC

#if defined(CMD_CAN)
#if defined(AM263_LP)

void mcanEnableTransceiver(void)
{
 uint32_t gpioBaseAddr, pinNum;

 gpioBaseAddr = (uint32_t)AddrTranslateP_getLocalAddr(MCAN_ENABLE_BASE_ADDR);
 pinNum = MCAN_ENABLE_PIN;

 GPIO_setDirMode(gpioBaseAddr, pinNum, GPIO_DIRECTION_OUTPUT);

 GPIO_pinWriteLow(gpioBaseAddr, pinNum);
}
#endif // AM263_LP

#if defined(AM263_CC)
/* == */
/* Macros & Typedefs */
/* == */

/* Input status register */
#define TCA6416_REG_INPUT0 ((UInt8) 0x00U)
#define TCA6416_REG_INPUT1 ((UInt8) 0x01U)

/* Output register to change state of output BIT set to 1, output set HIGH */
#define TCA6416_REG_OUTPUT0 ((uint8_t) 0x02U)
#define TCA6416_REG_OUTPUT1 ((uint8_t) 0x03U)

/* Configuration register. BIT = '1' sets port to input, BIT = '0' sets
 * port to output */
#define TCA6416_REG_CONFIG0 ((uint8_t) 0x06U)
#define TCA6416_REG_CONFIG1 ((uint8_t) 0x07U)

/* == */

Hardware, Software, Testing Requirements, and Test Results www.ti.com

56 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

/* Function Declarations */
/* == */
static void SetupI2CTransfer(I2C_Handle handle, uint32_t targetAddr,
 uint8_t *writeData, uint32_t numWriteBytes,
 uint8_t *readData, uint32_t numReadBytes);

void mcanEnableTransceiver(void)
{
 I2C_Handle i2cHandle;
 uint8_t dataToSlave[4];

 i2cHandle = gI2cHandle[CONFIG_I2C0];
 dataToSlave[0] = TCA6416_REG_CONFIG0;
 dataToSlave[1] = 0x0U;
 SetupI2CTransfer(i2cHandle, 0x20, &dataToSlave[0], 1, &dataToSlave[1], 1);
 /* set the P00 to 0 make them output ports. */
 dataToSlave[1] &= ~(0x1U);
 SetupI2CTransfer(i2cHandle, 0x20, &dataToSlave[0], 2, NULL, 0);

 /* Get the port values. */
 dataToSlave[0] = TCA6416_REG_INPUT0;
 dataToSlave[1] = 0x0U;
 SetupI2CTransfer(i2cHandle, 0x20, &dataToSlave[0], 1, &dataToSlave[1], 1);

 /* Set P10 and P11 to 0.
 */
 dataToSlave[0] = TCA6416_REG_OUTPUT0;
 dataToSlave[1] &= ~(0x1);
 SetupI2CTransfer(i2cHandle, 0x20, &dataToSlave[0], 2, NULL, 0);
}

static void SetupI2CTransfer(I2C_Handle handle, uint32_t targetAddr,
 uint8_t *writeData, uint32_t numWriteBytes,
 uint8_t *readData, uint32_t numReadBytes)
{
 int32_t status;
 I2C_Transaction i2cTransaction;

 /* Enable Transceiver */
 I2C_Transaction_init(&i2cTransaction);
 i2cTransaction.targetAddress = targetAddr;
 i2cTransaction.writeBuf = (uint8_t *)&writeData[0];
 i2cTransaction.writeCount = numWriteBytes;
 i2cTransaction.readBuf = (uint8_t *)&readData[0];
 i2cTransaction.readCount = numReadBytes;
 status = I2C_transfer(handle, &i2cTransaction);
 DebugP_assert(SystemP_SUCCESS == status);
}

#endif // AM263_CC
#endif // CMD_CAN

After launching "PCAN-View", make setup the CAN adaptor as Figure 4-34:

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

57

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-34. PCAN-View Setup

Double click to initiate the CAN data transmission as shown in Figure 4-35.

Double click on the

message to transmit the

commands

Figure 4-35. CAN Data Transmission Start

As shown in Figure 4-36, the motorVars_M1.flagEnableRunAndIdentify is configured with a value of 1, and the
motorVars_M1.speedRef_Hz is set to 40Hz. This speed value is then transmitted back to the recipient through
the CAN communication.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

58 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Start command received from CAN

Speed value (Hz) received from CAN

command

Figure 4-36. CAN Command: Variables in Expressions Window

4.5.4 Adding SFRA Functionality

Texas Instruments' software frequency response analyzer (SFRA) library is designed to enable frequency
response analysis on power converters using software only and without the need for an external frequency
response analyzer. The optimized library can be used in high frequency power conversion applications to identify
the plant, the closed loop and the open loop gain characteristics of a closed loop power converter, which can be
used to get stability information such as gain margin, phase margin and open loop gain crossover frequency, to
evaluate the control loop performance.

Consider a digitally controlled closed loop power converter, as shown in Figure 4-37, where:

• H is the transfer function of the plant that needs to be controlled
• G is the digital compensator
• GH is referred to as the open loop transfer function
• CL is referred to as the closed loop transfer function and is GH/(1+GH)
• r is the instantaneous set point or the reference of the converter
• Ref is the DC set point reference
• y the analog-to-digital converter (ADC) feedback
• e the instantaneous error
• d the sensor noise and disturbance
• u the PWM duty cycle

The key objectives of the compensator in a closed loop system can be summarized as:
• Make sure that the system is stable (for example, the system tracks the reference asymptotically)

lim () lim 0
(1)

r
e e t

GHt t

= = ®

+® ¥ ® ¥ (50)

• System provides disturbance rejection to maintain robust operation

1
0

1

y
S

d GH
= = ®

+ (51)

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

59

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

H(s)

G(z)

ADC

yu

PWM

r
+-

Analog

Domain

Digital

Domain

e

d

Figure 4-37. Digitally Controlled Power Converter

Whether or not the system meets the objectives can be determined by knowing the open loop transfer function
(GH), as shown in Equation 50 and Equation 51.

A Bode plot of the open loop transfer function GH is frequently used for this purpose and quantities such as gain
margin (GM), phase margin (PM) and open loop gain crossover frequency (Folg_cf) are often used to comment
on the stability and robustness of a closed loop power converter.

The closed loop transfer function (GH/(1+GH)) provides an idea of the tracking that is how good the system is
able to track to the reference commanded.

The SFRA library can enable measurements of the GH, GH/(1+GH) and H frequency response by software. This
data can be used to:

• Verify the plant model (H) or extract the plant model (H)
• Design a compensator (G) for the closed loop plant
• Verify the close loop performance of the system by plotting the open loop (GH) or Closed Loop (GH/(1+GH))

Bode diagram

As the frequency response of GH and H carry information of the plant, the data can be used to comment on the
health of the power stage by periodically measuring the frequency response.

The SFRA library is based on sinusoidal injection principle, where the assumption is that the injection amplitude
causes very small deviation to the normal operating point of the converter. The SFRA library can be integrated
into the control code of the power converter, this document details the steps to do so. All computations for the
GH, H and CL calculations are done on the MCU and the entire arrays of the GH, H and CL magnitude and
phase response are stored on the controller.

Once integrated into the code, the SFRA library can be used to design or fine tune the controller. For this, a
typical flow of using SFRA library is:

1. Initiate a SFRA sweep in open loop and store the data in an excel file. This information can then be used to
identify the plant model for the steady state operating point at which the SFRA sweep has been conducted.

2. The MATLAB® script provided with this project can be used to read that data into MATLAB and then curve fit
the response to a transfer function. Sisotool can then be used to design the compensator.

3. New compensator values can be copied from the MATLAB into the Code Composer Studio™ project.
4. Compile and load the code with new coefficients into the microcontroller controlling the power stage. SFRA

algorithm (Step 1) can be re-run to verify the closed loop system performance by measuring the open loop
gain GH (also referred to as loop gain in literature).

In summary, TI’s software frequency response analyzer provides a methodology to tune power converters in
a systematic way and enables quick and easy frequency response analysis for power converters without the
need of external connections and equipment. Since no external connections are used, the SFRA can be run
repeatedly to periodically assess the health of the power converter and get diagnostic information.

4.5.4.1 Principle of Operation

The software frequency response analyzer is based on the principle of small signal sinusoidal injection. A small
signal is injected on the reference of the controller, as shown in Figure 4-38, and the frequency response on
feedback and controller outputs are calculated. This provides the plant frequency response characteristics and
the open loop frequency response of the closed loop system.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

60 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Small Signal Frequency Plant

Controller Ref

Injection

Figure 4-38. SFRA Principle of Operation

4.5.4.2 Object Definition

The SFRA library defines the floating-point-based SFRA structure as discussed in the following:

typedef struct{
 float32_t *h_magVect; //!< Plant Mag SFRA Vector
 float32_t *h_phaseVect; //!< Plant Phase SFRA Vector
 float32_t *gh_magVect; //!< Open Loop Mag SFRA Vector
 float32_t *gh_phaseVect; //!< Open Loop Phase SFRA Vector
 float32_t *cl_magVect; //!< Closed Loop Mag SFRA Vector
 float32_t *cl_phaseVect; //!< Closed Loop Phase SFRA Vector
 float32_t *freqVect; //!< Frequency Vector
 float32_t amplitude; //!< Injection Amplitude
 float32_t isrFreq; //!< SFRA ISR frequency
 float32_t freqStart; //!< Start frequency of SFRA sweep
 float32_t freqStep; //!< Log space between frequency points (optional)
 int16_t start; //!< Command to start SFRA
 int16_t state; //!< State of SFRA
 int16_t status; //!< Status of SFRA
 int16_t vecLength; //!< No. of Points in the SFRA
 int16_t freqIndex; //!< Index of the frequency vector
 int16_t storeH; //!< Flag to indicate if H vector is stored
 int16_t storeGH; //!< Flag to indicate if GH vector is stored
 int16_t storeCL; //!< Flag to indicate if CL vector is stored
 int16_t speed; //!< variable to change the speed of the sweep
}SFRA_F32;

4.5.4.3 Module Interface Definition

Table 4-7. Floating Point Module Interface Definition
Module Element Name Type Description Acceptable Range

h_magVect,gh_magVect,
cl_magVect

Input Pointer to the array that stores the magnitude of H, GH
and CL measurements by SFRA . Pass NULL if you do
not want SFRA to save that vector.

Pointer to 32 bit location, the
location stores the value of
the magnitude vectors in single
precision (32-bit) floating point

h_phaseVect,gh_phaseVect,
cl_phaseVect

Input Pointer to the array that stores the phase of H, GH and
CL measurements by SFRA . Pass NULL if you do not
want SFRA to save that vector.

Pointer to 32 bit location, the
location stores the value of the
phase vectors in single precision
(32-bit) floating point

freqVect Input Pointer to array of frequency values at which SFRA is
performed.

Pointer to 32 bit location, the
location stores the value of
the frequency vectors in single
precision (32-bit) floating point

amplitude Input Amplitude of small signal injection in pu. Single precision (32-bit) floating
point(-1,1)

isrFreq Input Frequency at which SFRA routine is called. Single precision (32-bit) floating
point

freqStart Input Frequency of the first frequency sweep data point. Single precision (32-bit) floating
point

freqStep Input 10^(1/(no of steps per decade)). Single precision (32-bit) floating
point

start Input Command to start SFRA. int16_t

state Output SFRA state. Non zero when SFRA injection is in
progress, '0' if SFRA injection is not active/ in progress.

int16_t

status Output SFRA status. '1' is SFRA injection is in progress, '0' if
SFRA injection is not active/ in progress.

int16_t

vecLength Input No of points for which SFRA is performed. int16_t

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

61

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Table 4-7. Floating Point Module Interface Definition (continued)
Module Element Name Type Description Acceptable Range

freqIndex Output Frequency index number of freqVect at which SFRA is
being performed.

int16_t (0-vecLength)

storeH Output Reflects the SFRA configuration, If one, H vector is
stored If zero, H vector is not stored this happens when a
NULL vector is passed for H mag or phase vector during
SFRA configuration.

int16_t (0 or 1)

storeGH Output Reflects the SFRA configuration, If one, GH vector is
stored If zero, GH vector is not stored this happens when
a NULL vector is passed for GH mag or phase vector
during SFRA configuration.

int16_t (0 or 1)

storeCL Output Reflects the SFRA configuration, If one, CL vector is
stored If zero, CL vector is not stored this happens when
a NULL vector is passed for CL mag or phase vector
during SFRA configuration.

int16_t (0 or 1)

speed Input Used to change the speed of the sweep, need to be
greater than 1. With 1 the STB example template sweep
takes about 58 seconds. Actual speed in the system
depends on the frequency point being measured and the
ISR rate used for calling the SFRA module. Higher the
speed number the slower the sweep.

int16_t (Greater than 1)

4.5.4.4 Using SFRA

Use the following steps to integrate the SFRA in the project:

1. To enable the SFRA functionality, the predefine symbol SFRA_ENABLE must be added in the project
properties as shown in Figure 4-2.

2. To start an SFRA sweep, put the SFRA object in the watch window.
3. Write SFRA_OBJ.start to 1, when you want the SFRA sweep to start as shown in Figure 4-39.

Figure 4-39. Start SFRA Functionality
4. Monitor the SFRA_OBJ.FreqIndex variable; the variable gradually increments as SFRA sweep is performed.
5. Once the SFRA_OBJ.FreqIndex reaches Vec_Length, the SFRA sweep is complete.

Figure 4-40. SFRA Data Arrays

Hardware, Software, Testing Requirements, and Test Results www.ti.com

62 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

6. As part of the SFRA initialization, the Open Loop and Plant Magnitude and phase are stored in arrays called.

__attribute__ ((section(".sfradata"))) float32_t plantMagVect[SFRA_FREQ_LENGTH];
__attribute__ ((section(".sfradata"))) float32_t plantPhaseVect[SFRA_FREQ_LENGTH];
__attribute__ ((section(".sfradata"))) float32_t olMagVect[SFRA_FREQ_LENGTH];
__attribute__ ((section(".sfradata"))) float32_t olPhaseVect[SFRA_FREQ_LENGTH];
__attribute__ ((section(".sfradata"))) float32_t freqVect[SFRA_FREQ_LENGTH];

7. Put these in the watch window to inspect and study the response.
8. Once the sweep is complete, click on View-> MemoryBrowser inside CCS.
9. Inside Memory Browser, enter &freqVect to see the frequency vector and select 32-bit floating point,

Figure 4-41. Memory Browser View of Stored SFRA Vectors
10. Click on save memory, shown encircled in Figure 4-41.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

63

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

11. A pop-up window appears. Select TI data and specify the file name *.dat in the location you prefer.

Figure 4-42. Save Memory Pop-Up Window
12. Click on Next and specify the address from the memory browser for the start of the array and then the

length.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

64 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

13. Make sure 32-bit floating point is selected. Click Finish.

Figure 4-43. Save Memory Options
14. This saves the data in *.dat file.
15. Repeat this step for plantMagVect, plantPhaseVect, olMagVect, olPhaseVect, so you have 5 *.dat files.
16. If you want to use this data in MATLAB or other tools, the data can be populated to an excel file.
17. Open the SFRA.xlsx file located at <project directory>\libraries\SFRA\scripts in excel.
18. You can choose to re-name and save the file.
19. This excel sheet has five columns, in the first column is the frequency data.
20. Open the *dat file that was saved.

Figure 4-44. Selecting Data From .dat File to Put in the Excel
21. Select the data from the second line onwards to the end of the file and do Ctrl+C to copy the data.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

65

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

22. Open the Excel File, go to the first element under the corresponding vector and do Ctrl+V to copy the array.

Figure 4-45. SFRA Data Copied in Excel File
23. Repeat the steps for each column.
24. Once the excel file is updated for all five columns, use the MATLAB script to import the SFRA data. Then,

use the script inside sisotool to design compensator and carry out stability analysis.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

66 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

4.6 Building a Custom Board
4.6.1 Building a New Custom Board

This section discusses how the user can design an application board to drive a motor, and how to migrate this
project for use with their own board.

4.6.1.1 Hardware Setup

If using a custom board, make sure that the power supply to the microcontroller and to the gate driver is correct,
and that the JTAG emulator can be connected successfully. Modify the reference code to be compatible with
the custom board as described in the following sections, and then run the code starting with build level 1 and
working the way to build level 4 as shown in Section 4.4.

4.6.1.2 Migrating Reference Code to a Custom Board

To migrate the reference code to a new TI motor driver kit or to a custom board, the user needs to configure
the hardware parameters and the motor control parameters in the user_mtr1.h file according to the motor driver
circuit, and configure the relevant peripherals in the AM263_xxx.syscfg, hal.h and hal.c files as described in the
following sections.

The following block diagram summarizes the function calls that are used to configure the motor control settings
and the TI MCU peripherals (Figure 4-46).

In this project, there are several HAL functions that are called only once, related to the configuration of the
Hardware. All of these functions deal with the configuration of either a peripheral or of a motor driver IC.

Initialize the HAL Handle: HAL_init()

(call in sys_main.c, define in hal.c)

Setup HAL with user parameters:

HAL_MTR_setParams()

(call in sys_main.c, define in hal.c)

initialize motor control parameters:

initMotor1CtrlParameters()

(call in sys_main.c, define in motor1_drive.c)

Hardware interrupt instance

Forever Loop Start

run offset calibration: runMotor1OffsetsCalculation()

(call in sys_main.c, define in motor1_drive.c)

Project Start

Figure 4-46. HAL Configuration and Motor Control Setting Block Diagram

4.6.1.2.1 Setting Hardware Board Parameters

The user_mtr1.h file is where all the user parameters are stored for motor control. The maximum phase current
and phase voltage at the input to the AD converter are hardware dependent and must be based on the current
and voltage sensing circuitry and scaling at the ADC input. The number of phase current sensors and phase
voltage sensors are also defined in the user_mtr1.h file. These values are hardware-dependent.

All of the configurable parameters defined in the user_mtr1.h file can be calculated using the Motor
Control Parameters Calculation.xlsx Excel® spreadsheet. This file is included in the project folder:
\examples\universal_motorcontrol_lab\doc. Copy parameters marked in bold to the user_mtr1.h file
as shown in the following code.

//! \brief Defines the maximum voltage at the AD converter
#define USER_M1_ADC_FULL_SCALE_VOLTAGE_V (57.52845691f)

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

67

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

//! \brief Defines the analog voltage filter pole location, Hz
#define USER_M1_VOLTAGE_FILTER_POLE_Hz (680.4839141f) // 47nF

//! \brief Defines the maximum current at the AD converter
#define USER_M1_ADC_FULL_SCALE_CURRENT_A (47.14285714f) // gain=10

4.6.1.2.2 Modifying Motor Control Parameters

The parameters provided in the user_mtr1.h file for a PMSM motor are listed as shown in the following code.
The motor parameters can be identified from the motor data sheet.

#define USER_MOTOR1_TYPE MOTOR_TYPE_PM
#define USER_MOTOR1_NUM_POLE_PAIRS (4)

#define USER_MOTOR1_Rs_Ohm (0.38157931f)
#define USER_MOTOR1_Ls_d_H (0.000188295482f)
#define USER_MOTOR1_Ls_q_H (0.000188295482f)
#define USER_MOTOR1_RATED_FLUX_VpHz (0.0396642499f)
#define USER_MOTOR1_MAX_CURRENT_A (6.0f)

4.6.1.2.3 Changing Pin Assignment

AM263_xxx.syscfg file configures the function of the GPIO pins and sets the direction and mode of the specified
pin according to the hardware motor driver board/kit that is used. For modifying the code for a custom board, a
TI motor driver EVM that does not currently have universal lab code support, or for use with a different TI MCU,
these GPIO assignments need to be changed to correspond properly with the motor driver board.

4.6.1.2.4 Configuring the PWM Module

The SysConfig file configures the PWM channels. The base addresses of the PWM channels that are used
for the motor controller PWM inputs are defined in the hal.h file, and the base addresses are assigned to
the PWM handles in the hal.c file. The connection diagram for the PWM signals between the LP-AM263 and
BOOSTXL-3PHGANINV is shown in Figure 4-47.

LP-AM263 and BOOSTXL-3PHGANINV

Combination

INHA/UHEPWM13B

EPWM13A

EPWM3B

EPWM3A

EPWM9B

EPWM9A

INLA/UL

INHB/VH

INLB/VL

INHC/WH

INLC/WL

Figure 4-47. PWM Connection Diagram

The code to configure the PWM signals is shown in the following, taken from the .syscfg, hal.h and hal.c files.

1. The base addresses of the PWM modules are defined in the hal.h file as shown in the following.

#define MTR1_PWM_U_BASE CONFIG_EPWM13_BASE_ADDR
#define MTR1_PWM_V_BASE CONFIG_EPWM3_BASE_ADDR
#define MTR1_PWM_W_BASE CONFIG_EPWM9_BASE_ADDR

2. The GPIOs are set up as PWM outputs in the .syscfg file.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

68 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-48. GPIO Configuration for PWM Modules
3. The following code assigns the corresponding base addresses of the PWM modules to the PWM handle

in the HAL_MTR1_init() function that is located in the hal.c file. The following code does not need to be
changed when adapting the code to a new board or TI MCU, the following code block shows how the PWM
handle is initialized in the code.

 // initialize PWM handles for Motor 1
 obj->pwmHandle[0] = MTR1_PWM_U_BASE; //!< the PWM handle
 obj->pwmHandle[1] = MTR1_PWM_V_BASE; //!< the PWM handle
 obj->pwmHandle[2] = MTR1_PWM_W_BASE; //!< the PWM handle

4. Figure 4-49 shows the EPWM time base configuration. Sync out pulse for phase A is used as sync in pulse
source for other PWMs.

Figure 4-49. EPWM Time Base Configuration

EPWM Action Qualifier Configurationshows the EPWM action qualifier output event configuration forLP-
AM263 and BOOSTXL-3PHGANINV combination. PWM action qualifier outputs need to be set up based on
the hardware board.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

69

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-50. EPWM Action Qualifier Configuration

Figure 4-51 shows the EPWM dead-band configuration for LP-AM263 . Swap output is checked for
EPWMxA-B to match the high side and low side PWMs in LaunchPad™ and Booster Pack™.

Figure 4-51. EPWM Dead-Band Configuration
4.6.1.2.5 Configuring the ADC Module

Similar to the previous PWM section, the ADC connections can also be changed for a custom board or a TI
motor control kit that is not supported with the universal motor control project. The .syscfg file configures the
ADC channels to correctly correspond with the motor driver board. As an example, the connection diagram

Hardware, Software, Testing Requirements, and Test Results www.ti.com

70 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-AM263
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

for the LP-AM263 and BOOSTXL-3PHGANINV combination is shown in Figure 4-52. The ADC modules
configuration is described in the following steps.

LP-AM263 and BOOSTXL-3PHGANINV

Combination

ADC2_IN2

ADC3_IN2

ADC3_IN1

ADC4_IN1

ADC0_IN2

ADC2_IN1

ISENA

ISENB

ISENC

VSENA

VSENB

VSENC

ADC1_IN2

VSENVM

Figure 4-52. ADC Connection Diagram

1. The following code shows the defines of the base addresses, assigned channels, and SOCs of the ADC
modules in the hal.h file. Note that for the SOC number, multiple ADCs can be associated with the same
SOC number as long as they belong to different ADC modules (in the following case, module A and module
C). Try to sample all the currents and all the voltages as close together as possible, so configure the SOC
numbers with this in mind. The following code does not need to be changed when adapting the code to a
new board or TI MCU, the following code is just to show how the ADC is initialized and the change can be
done in the .syscfg file.

#define MTR1_IU_ADC_BASE CONFIG_ADC1_BASE_ADDR //J7.67 ADC1_AIN2
#define MTR1_IV_ADC_BASE CONFIG_ADC2_BASE_ADDR //J7.68 ADC2_AIN2
#define MTR1_IW_ADC_BASE CONFIG_ADC3_BASE_ADDR //J7.69 ADC3_AIN2
#define MTR1_VU_ADC_BASE CONFIG_ADC3_BASE_ADDR //J7.64 ADC3_AIN1
#define MTR1_VV_ADC_BASE CONFIG_ADC4_BASE_ADDR //J7.65 ADC4_AIN1
#define MTR1_VW_ADC_BASE CONFIG_ADC0_BASE_ADDR //J7.66 ADC0_AIN2
#define MTR1_VDC_ADC_BASE CONFIG_ADC2_BASE_ADDR //J7.63 ADC2_AIN1

#define MTR1_IU_ADCRES_BASE CONFIG_ADC1_RESULT_BASE_ADDR
#define MTR1_IV_ADCRES_BASE CONFIG_ADC2_RESULT_BASE_ADDR
#define MTR1_IW_ADCRES_BASE CONFIG_ADC3_RESULT_BASE_ADDR
#define MTR1_VU_ADCRES_BASE CONFIG_ADC3_RESULT_BASE_ADDR
#define MTR1_VV_ADCRES_BASE CONFIG_ADC4_RESULT_BASE_ADDR
#define MTR1_VW_ADCRES_BASE CONFIG_ADC0_RESULT_BASE_ADDR
#define MTR1_VDC_ADCRES_BASE CONFIG_ADC2_RESULT_BASE_ADDR

#define MTR1_IU_ADC_CH_NUM ADC_CH_ADCIN2
#define MTR1_IV_ADC_CH_NUM ADC_CH_ADCIN2
#define MTR1_IW_ADC_CH_NUM ADC_CH_ADCIN2
#define MTR1_VU_ADC_CH_NUM ADC_CH_ADCIN1
#define MTR1_VV_ADC_CH_NUM ADC_CH_ADCIN1
#define MTR1_VW_ADC_CH_NUM ADC_CH_ADCIN2
#define MTR1_VDC_ADC_CH_NUM ADC_CH_ADCIN1

#define MTR1_IU_ADC_SOC_NUM ADC_SOC_NUMBER0 // SOC0-PPB1
#define MTR1_IV_ADC_SOC_NUM ADC_SOC_NUMBER0 // SOC0-PPB1
#define MTR1_IW_ADC_SOC_NUM ADC_SOC_NUMBER0 // SOC0-PPB2
#define MTR1_VU_ADC_SOC_NUM ADC_SOC_NUMBER1 // SOC1
#define MTR1_VV_ADC_SOC_NUM ADC_SOC_NUMBER1 // SOC1
#define MTR1_VW_ADC_SOC_NUM ADC_SOC_NUMBER1 // SOC1
#define MTR1_VDC_ADC_SOC_NUM ADC_SOC_NUMBER1 // SOC1

#define MTR1_IU_ADC_PPB_NUM ADC_PPB_NUMBER1 // SOC0-PPB1
#define MTR1_IV_ADC_PPB_NUM ADC_PPB_NUMBER1 // SOC0-PPB1
#define MTR1_IW_ADC_PPB_NUM ADC_PPB_NUMBER1 // SOC0-PPB2

2. Figure 4-53 shows the defines for the interrupt sources for the ISR in the .syscfg file.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

71

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-53. ADC Interrupt Configuration
3. Figure 4-54 defines the source of the ADC start of conversion trigger. This ePWM SOC trigger must

correspond to the same ePWM SOC that was enabled in the code and the same ePWM that is associated
with pwmHandle[0]. In this case, EPWM3 A is used as the SOC for the ADC.

Figure 4-54. ADC Start of Conversion Configuration
4.6.1.2.6 Configuring the CMPSS Module

The CMPSS module is used for overcurrent monitoring for the phase currents. A threshold is set using the
CMPSS DAC, and if the output of the current sense amplifier exceeds that threshold then the CMPSS output
trips.

If using a custom motor driver board, or migrating the code to a TI MCU or a TI motor driver EVM that is
not supported with the current Universal Motor Control Project, then the connections between the ADC pins
and the CMPSS modules need to be properly modified in the .syscfg file based on the motor driver and TI
MCU connections. For more details on the internal connections of the CMPSS module, see the ADC Signal
Descriptions tables in the AM263x Sitara™ Microcontrollers data sheet.

The .syscfg file configures the CMPSS modules according to the motor driver board that is used. For example,
the diagram of the connections between the LP-AM263 and BOOSTXL-3PHGANINV are shown in Figure 4-55.
Figure 4-56 shows the CMPSSA block diagram. CMPSSA has the additional support of INH and INL as a
muxable input for the COMPL positive signal.

Hardware, Software, Testing Requirements, and Test Results www.ti.com

72 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/ds/symlink/am2634.pdf
https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

LP-AM263 and BOOSTXL-3PHGANINV Combination

ADC2_IN2 (CMPSSA5: inH (+IN))

ADC3_IN2 (CMPSSA7: inH (+IN))

ISENA

ISENB

ISENC

ADC1_IN2 (CMPSSA3: inH (+IN))

Figure 4-55. CMPSS Connection Diagram

Figure 4-56. CMPSSA Block Diagram

Each CMPSS comparator has a high and low comparator, so the signals must be muxed appropriately to the
desired input of the desired comparator. For more information on these connections, please refer to the Analog
Pins and internal connections table in the data sheet of the microcontroller that is being used. Figure 4-57
shows the CMPSS comparator configuration for the LP-AM263 and BOOSTXL-3PHGANINV combination to do
window comparison for phase currents. DAC values are updated in the code based on the defined maximum
current. Note that for AM263x devices, the ADCx_AIN1 and ADCx_AIN3 are only connected to the (INL) which
results limitation for both positive and negative overcurrent trips. For TMDSHVMTRINSPIN and TMDSCNCD263
combination, the ADC used for U-pahse current measurement are connected to ADC1_AIN3.

Also, please note that to select the right voltage reference in Launch Pad or EVM Control Card matching the
DAC Reference Voltage. For example, in AM263x LaunchPad, use DAC VREF Switch (S1) to choose AM263x
on-die LDO.

www.ti.com Hardware, Software, Testing Requirements, and Test Results

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

73

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-AM263
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

Figure 4-57. CMPSS Comparator Configuration

Figure 4-58 shows the selecting corresponding CMPSS CTRIPL and CTRIPH for the EPWM XABR to generate
trip in the event of overcurrent and undercurrent.

Figure 4-58. EPWM XBAR Configuration

Hardware, Software, Testing Requirements, and Test Results www.ti.com

74 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

5 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety
Guidelines

WARNING

Always follow TI’s setup and application instructions, including use of all interface components within the
recommended electrical rated voltage and power limits. Always use electrical safety precautions to help
maintain your personal safety and those working around you. Contact TI's Product Information Center for further
information.

WARNING
Failure to follow warnings and instructions can result in personal injury, property damage or death
due to electrical shock and burn hazards.

The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed
circuit board assembly. The TI HV EVM is intended strictly for use in development laboratory environments,
solely for qualified professional users having training, expertise and knowledge of electrical safety risks in
development and application of high voltage electrical circuits. Any other use and/or application are strictly
prohibited by Texas Instruments. If you are not qualified, you must immediately stop from further use of the HV
EVM.

1. Work Area Safety
a. Keep work area clean and orderly.
b. Qualified observer(s) must be present anytime circuits are energized.
c. Effective barriers and signage must be present in the area where the TI HV EVM and the interface

electronics are energized, indicating operation of accessible high voltages can be present, for the
purpose of protecting inadvertent access.

d. All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related
apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located
within a protected Emergency Power Off EPO protected power strip.

e. Use stable and non conductive work surface.
f. Use adequately insulated clamps and wires to attach measurement probes and instruments. No

freehand testing whenever possible.
2. Electrical Safety

As a precautionary measure, assume that the entire EVM has fully accessible and active high voltages.
a. De-energize the TI HV EVM and all the inputs, outputs and electrical loads before performing any

electrical or other diagnostic measurements. Re-validate that TI HV EVM power has been safely de-
energized.

b. With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring,
measurement equipment connection, and other application needs, while still assuming the EVM circuit
and measuring instruments are electrically live.

c. After EVM readiness is complete, energize the EVM as intended.

WARNING

While the EVM is energized, never touch the EVM or the electrical circuits, as these can be at
high voltages capable of causing electrical shock hazard.

3. Personal Safety
a. Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or

protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch.

Limitation for safe use:

EVMs are not to be used as all or part of a production unit.

www.ti.com General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

75

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/info/contact-us.html
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

6 Design and Documentation Support
6.1 Design Files

6.1.1 Schematics

To download the BOOSTXL-3PHGANINV schematics, see the design files at BOOSTXL-3PHGANINV.

To download the TMDSHVMTRINSPIN schematics, see the hardware files located in
<install_location>\solutions\tmdshvmtrinspin\hardware> folder of C2000WARE-MOTORCONTROL-SDK.

6.1.2 BOM

To download the BOOSTXL-3PHGANINV bill of materials (BOM), see the design files at
BOOSTXL-3PHGANINV .

To download the TMDSHVMTRINSPIN bill of materials (BOM), see the hardware files are in
<install_location>\solutions\tmdshvmtrinspin\hardware> folder of C2000WARE-MOTORCONTROL-SDK.

6.1.3 PCB Layout Recommendations

6.1.3.1 Layout Prints

To download the BOOSTXL-3PHGANINV layout prints, see the design files at BOOSTXL-3PHGANINV.

To download the TMDSHVMTRINSPIN layout prints, see the hardware files are in
<install_location>\solutions\tmdshvmtrinspin\hardware> folder of C2000WARE-MOTORCONTROL-SDK.

6.2 Tools and Software

Tools

TMDSCNCD263 TMDSCNCD263 is an HSEC180 controlCARD based evaluation and development
tool for the AM263x series Sitara™ high-performance microcontrollers. This board is
designed for initial evaluation and prototyping as the board provides a standardized and
easy-to-use platform to develop your next application.

Code Composer
Studio™

The Code Composer Studio™ IDE is a complete integrated suite that enables
developers to create and debug applications of all Texas Instruments Embedded
Processors (Sitara, DSP, Automotive, Keystone), Microcontrollers (SimpleLink™, C2000
Digital Control, MSP430, TM4C, Hercules), as well as Digital Power (UCD) and
Programmable Gain Amplifier (PGA) devices.

ARM-CGT-CLANG The tiarmclang compiler tools provide software development tools including the compiler,
assembler, and linker, among others, which can be used to develop applications with
C/C++ source code for loading and running on Arm Cortex-M and Cortex-R series core
processors.

SYSCONFIG SysConfig is a configuration tool designed to simplify hardware and software
configuration challenges to accelerate software development. SysConfig provides an
intuitive graphical user interface for configuring pins, peripherals, radios, software stacks,
RTOS, clock tree and other components. SysConfig automatically detects, expose and
resolve conflicts to speed software development.

Software

MCU-PLUS-SDK-
AM263X

The AM263x microcontroller (MCU) plus software development kit (SDK) is a unified
software platform for embedded processors providing easy setup and fast out-of-the-box
access to examples, benchmarks and demonstrations.

MOTOR-CONTROL-
SDK-AM263X

The Motor Control SDK for AM263X contains examples, libraries and tools to develop
RTOS and no-RTOS based applications enabling real-time communication for position
sense from motors, and real-time control libraries for Arm R5F CPU and related
peripherals.

Design and Documentation Support www.ti.com

76 Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

TIDUF67 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/TMDSCNCD263
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/ARM-CGT
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/tool/MCU-PLUS-SDK-AM263X
https://www.ti.com/tool/MCU-PLUS-SDK-AM263X
https://www.ti.com/tool/download/MOTOR-CONTROL-SDK-AM263X
https://www.ti.com/tool/download/MOTOR-CONTROL-SDK-AM263X
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

6.3 Documentation Support
1. Texas Instruments: Motor Control SDK Universal Project and Lab, user's guide.
2. Texas Instruments: AM263x Sitara™ Microcontrollers data sheet.
3. Texas Instruments: AM263x Sitara™ Microcontrollers Texas Instruments Families of Products, technical

reference manual.
4. Texas Instruments: AM263x Control Card Hardware, user's guide.

6.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.

6.5 Trademarks
LaunchPad™, BoosterPack™, controlCARD™, TI E2E™, Sitara™, Code Composer Studio™, and are trademarks
of Texas Instruments.
Arm® and Cortex® are registered trademarks of Arm Limited.
EtherCAT® and PROFINET® are registered trademarks of Beckhoff Automation GmbH.
MATLAB® is a registered trademark of The MathWorks, Inc.
All trademarks are the property of their respective owners.

7 About the Author
Masoud Farhadi is a system engineer at Automotive Application Specific MCUs, where he contributes to the
designs for some of the semiconductor industry’s most pressing needs. A graduate of the University of Texas
at Dallas, Masoud holds a PhD degree in electrical engineering – power electronics. He is passionate about
designing power electronics systems and leveraging latest patent trends to advance the EV technology.

www.ti.com Design and Documentation Support

TIDUF67 – APRIL 2024
Submit Document Feedback

Universal Motor Control Reference Design for AM263x Arm® Based MCU
Devices

77

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/lit/pdf/SPRSP74
https://www.ti.com/lit/pdf/spruj17
https://www.ti.com/lit/pdf/spruj09
https://e2e.ti.com
https://www.ti.com/corp/docs/legal/termsofuse.shtml
https://www.ti.com
https://www.ti.com/lit/pdf/TIDUF67
https://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUF67&partnum=TIDM-02018

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Description
	Resources
	Features
	Applications
	1 System Description
	1.1 Terminology
	1.2 Key System Specifications

	2 System Overview
	2.1 Block Diagram
	2.2 Highlighted Products
	2.2.1 AM263x Microcontrollers
	2.2.1.1 TMDSCNCD263
	2.2.1.2 LP-AM263

	3 System Design Theory
	3.1 Three-Phase PMSM Drive
	3.1.1 Mathematical Model and FOC Structure of PMSM
	3.1.2 Field Oriented Control of PM Synchronous Motor
	3.1.2.1 The (a , b) ⇒ (α , β) Clarke Transformation
	3.1.2.2 The α , β ⇒ (d , q) Park Transformation
	3.1.2.3 The Basic Scheme of FOC for AC Motor
	3.1.2.4 Rotor Flux Position

	3.1.3 Sensorless Control of PM Synchronous Motor
	3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop
	3.1.3.1.1 Design of ESMO for PMSM
	3.1.3.1.2 Rotor Position and Speed Estimation with PLL

	3.1.4 Hardware Prerequisites for Motor Drive
	3.1.5 Additional Control Features
	3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
	3.1.5.2 Flying Start

	4 Hardware, Software, Testing Requirements, and Test Results
	4.1 Hardware Requirements
	4.2 Software Requirements
	4.2.1 Importing and Configuring Project
	4.2.2 Project Structure
	4.2.3 Lab Software Overview

	4.3 Test Setup
	4.3.1 LP-AM263 Setup
	4.3.2 BOOSTXL-3PHGANINV Setup
	4.3.3 TMDSCNCD263 Setup
	4.3.4 TMDSADAP180TO100 Setup
	4.3.5 TMDSHVMTRINSPIN Setup

	4.4 Test Results
	4.4.1 Level 1 Incremental Build
	4.4.1.1 Build and Load Project
	4.4.1.2 Setup Debug Environment Windows
	4.4.1.3 Run the Code

	4.4.2 Level 2 Incremental Build
	4.4.2.1 Build and Load Project
	4.4.2.2 Setup Debug Environment Windows
	4.4.2.3 Run the Code

	4.4.3 Level 3 Incremental Build
	4.4.3.1 Build and Load Project
	4.4.3.2 Setup Debug Environment Windows
	4.4.3.3 Run the Code

	4.4.4 Level 4 Incremental Build
	4.4.4.1 Build and Load Project
	4.4.4.2 Setup Debug Environment Windows
	4.4.4.3 Run the Code

	4.5 Adding Additional Functionality to Motor Control Project
	4.5.1 Using DATALOG Function
	4.5.2 Using PWMDAC Function
	4.5.3 Adding CAN Functionality
	4.5.4 Adding SFRA Functionality
	4.5.4.1 Principle of Operation
	4.5.4.2 Object Definition
	4.5.4.3 Module Interface Definition
	4.5.4.4 Using SFRA

	4.6 Building a Custom Board
	4.6.1 Building a New Custom Board
	4.6.1.1 Hardware Setup
	4.6.1.2 Migrating Reference Code to a Custom Board
	4.6.1.2.1 Setting Hardware Board Parameters
	4.6.1.2.2 Modifying Motor Control Parameters
	4.6.1.2.3 Changing Pin Assignment
	4.6.1.2.4 Configuring the PWM Module
	4.6.1.2.5 Configuring the ADC Module
	4.6.1.2.6 Configuring the CMPSS Module

	5 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
	6 Design and Documentation Support
	6.1 Design Files
	6.1.1 Schematics
	6.1.2 BOM
	6.1.3 PCB Layout Recommendations
	6.1.3.1 Layout Prints

	6.2 Tools and Software
	6.3 Documentation Support
	6.4 Support Resources
	6.5 Trademarks

	7 About the Author

