FEATURES

- Meter-Bus Transceiver (for Slave) Meets Standard EN1434-3
- Receiver Logic With Dynamic Level Recognition
- Adjustable Constant-Current Sink via Resistor
- Polarity Independent
- Power-Fail Function
- Module Supply Voltage Switch
- 3.3-V Constant Voltage Source
- Remote Powering
- Up to 9600 Baud in Half Duplex for UART Protocol
- Slave Power Support
  - Supply From Meter-Bus via Output VDD
  - Supply From Meter-Bus via Output VDD or From Backup Battery
  - Supply From Battery – Meter-Bus Active for Data Transmission Only

DESCRIPTION

TSS721A is a single chip transceiver developed for Meter-Bus standard (EN1434-3) applications.

The TSS721A interface circuit adjusts the different potentials between a slave system and the Meter-Bus master. The connection to the bus is polarity independent and supports full galvanic slave isolation with optocouplers.

The circuit is supplied by the master via the bus. Therefore, this circuit offers no additional load for the slave battery. A power-fail function is integrated.

The receiver has dynamic level recognition, and the transmitter has a programmable current sink.

A 3.3-V voltage regulator, with power reserve for a delayed switch off at bus fault, is integrated.

Table 1. ORDERING INFORMATION

<table>
<thead>
<tr>
<th>T_A</th>
<th>PACKAGE</th>
<th>ORDERABLE PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C to 70°C</td>
<td>SOIC – D</td>
<td>Reel of 2500</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
**FUNCTIONAL DESCRIPTION**

![Functional Schematic](image)

**Figure 1. Functional Schematic**

**Table 2. Terminal Functions**

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSL2</td>
<td>1</td>
<td>Meter-Bus</td>
</tr>
<tr>
<td>VB</td>
<td>2</td>
<td>Differential bus voltage after rectifier</td>
</tr>
<tr>
<td>STC</td>
<td>3</td>
<td>Support capacitor</td>
</tr>
<tr>
<td>RIDD</td>
<td>4</td>
<td>Current adjustment input</td>
</tr>
<tr>
<td>PF</td>
<td>5</td>
<td>Power fail output</td>
</tr>
<tr>
<td>SC</td>
<td>6</td>
<td>Sampling capacitor</td>
</tr>
<tr>
<td>TXI</td>
<td>7</td>
<td>Data output inverted</td>
</tr>
<tr>
<td>TX</td>
<td>8</td>
<td>Data output</td>
</tr>
<tr>
<td>BAT</td>
<td>9</td>
<td>Logic level adjust</td>
</tr>
<tr>
<td>VS</td>
<td>10</td>
<td>Switch for bus or battery supply output</td>
</tr>
<tr>
<td>VDD</td>
<td>11</td>
<td>Voltage regulator output</td>
</tr>
<tr>
<td>RX</td>
<td>12</td>
<td>Data input</td>
</tr>
<tr>
<td>RXI</td>
<td>13</td>
<td>Data input inverted</td>
</tr>
<tr>
<td>RIS</td>
<td>14</td>
<td>Adjust input for modulation current</td>
</tr>
<tr>
<td>GND</td>
<td>15</td>
<td>Ground</td>
</tr>
<tr>
<td>BUSL1</td>
<td>16</td>
<td>Meter-Bus</td>
</tr>
</tbody>
</table>
Data Transmission, Master to Slave

The mark level on the bus lines $V_{BUS} = \text{MARK}$ is defined by the difference of BUSL1 and BUSL2 at the slave. It is dependent on the distance of Master to Slave, which affects the voltage drop on the wire. To make the receiver independent, a dynamic reference level on the SC pin is used for the voltage comparator TC3 (see Figure 2).

![Diagram of Data Transmission, Master to Slave](image.png)

A capacitor $C_{SC}$ at pin SC is charged by a current $I_{SC\text{charge}}$ and is discharged with a current $I_{SC\text{discharge}}$ where:

$$\frac{I_{SC\text{discharge}}}{I_{SC\text{charge}}} = \frac{40}{40} \text{ typ}$$

This ratio is necessary to run any kind of UART protocol independent of the data contents. (for example, if an 11-bit UART protocol is transmitted with all data bits at 0 and only the stop bit at 1). There must be sufficient time to recharge the capacitor $C_{SC}$. The input level detector TC3 detects voltage modulations from the master, $V_{BUS} = \text{SPACE/MARK}$ conditions, and switches the inverted output TXI and the non-inverted output TX.
Data Transmission, Slave to Master

The device uses current modulation to transmit information from the slave to the master while the bus voltage remains constant. The current source CS3 modulates the bus current and the master detects the modulation. The constant current source CS3 is controlled by the inverted input RXI or the non-inverted input RX. The current source CS3 can be programmed by an external resistor \( R_{\text{RIS}} \). The modulation supply current \( I_{\text{MS}} \) flows in addition to the current source CS3 during the modulation time.

Because the TSS721A is configured for half-duplex only, the current modulation from RX or RXI is repeated concurrently as ECHO on the outputs TX and TXI. If the slave, as well as the master, is trying to send information via the lines, the added signals appear on the outputs TX and TXI, which indicates the data collision to the slave (see Figure 1).

The bus topology requires a constant current consumption by each connected slave.

To calculate the value of the programming resistor \( R_{\text{RIS}} \), use the formula shown in Figure 4.
Slave Supply, 3.3 V

The TSS721A has an internal 3.3-V voltage regulator. The output power of this voltage regulator is supplied by the storage capacitor $C_{STC}$ at pin STC. The storage capacitor $C_{STC}$ at pin STC is charged with constant current $I_{STC, use}$ from the current source CS1. The maximum capacitor voltage is limited to REF1. The charge current $I_{STC}$ has to be defined by an external resistor at pin RIDD.

The adjustment resistor $R_{RIDD}$ can be calculated using Equation 2.

$$R_{RIDD} = 25 \frac{V_{RIDD}}{I_{STC}} = 25 \frac{V_{RIDD}}{I_{STC, use} + I_{IC1}}$$

(2)

Where,

- $I_{STC}$ = current from current source CS1
- $I_{STC, use}$ = charge current for support capacitor
- $I_{IC1}$ = internal current
- $V_{RIDD}$ = voltage on pin RIDD
- $R_{RIDD}$ = value of adjustment resistor

The voltage level of the storage capacitor $C_{STC}$ is monitored with comparator TC1. Once the voltage $V_{STC}$ reaches $V_{VDD\_on}$, the switch $S_{VDD}$ connects the stabilized voltage $V_{VDD}$ to pin VDD. VDD is turned off if the voltage $V_{STC}$ drops below the $V_{VDD\_off}$ level.

Voltage variations on the capacitor $C_{STC}$ create bus current changes (see Figure 5).

![Figure 5. Single Mode Bus Load](image)

At a bus fault the shut down time of VDD ($t_{off}$) in which data storage can be performed depends on the system current $I_{VDD}$ and the value of capacitor $C_{STC}$. See Figure 6, which shows a correlation between the shutdown of the bus voltage $V_{BUS}$ and $V_{DD\_off}$ and $t_{off}$ for dimensioning the capacitor.

The output VS is meant for slave systems that are driven by the bus energy, as well as from a battery should the bus line voltage fail. The switching of VS is synchronized with VDD and is controlled by the comparator TC1. An external transistor at the output VS allows switching from the Meter-Bus remote supply to battery.
Power Fail Function

Because of the rectifier bridge BR at the input, BUSL1, and BUSL2, the TSS721A is polarity independent. The pin VB to ground (GND) delivers the bus voltage \( V_{VB} \) less the voltage drop over the rectifier BR. The voltage comparator TC2 monitors the bus voltage. If the voltage \( V_{VB} > V_{STC} + 0.6 \text{ V} \), then the output PF = 1. The output level PF = 0 (power fail) provides a warning of a critical voltage drop to the microcontroller to save the data immediately.

\[
t_{on} = \text{typical threshold voltage for power fail PF}
\]

\[
t_{off} = C_{STC} \frac{V_{STC} - V_{DDoff}}{I_{VDD} + I_{C11}}
\]

Figure 6. Power On/Off Timing
**ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{MB}$</td>
<td>Voltage, BUSL1 to BUSL2</td>
<td>±50 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_I$</td>
<td>Input voltage range</td>
<td>RX and RXI</td>
<td>−0.3 V to 5.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BAT</td>
<td>−0.3 V to 5.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_J$</td>
<td>Operating junction temperature range</td>
<td>−25°C to 150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_A$</td>
<td>Operating free-air temperature range</td>
<td>−25°C to 85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{STG}$</td>
<td>Storage temperature range</td>
<td>−65°C to 150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**RECOMMENDED OPERATING CONDITIONS**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Receiver</th>
<th>Transmitter</th>
<th>MIN</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{MB}$</td>
<td>Bus voltage,</td>
<td>BUSL2 − BUSL1</td>
<td></td>
<td>10.8</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>$V_I$</td>
<td>Input voltage</td>
<td>VB (receive mode)</td>
<td></td>
<td>9.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BAT(2)</td>
<td></td>
<td>2.5</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>$R_{RIDD}$</td>
<td>RIDD resistor</td>
<td></td>
<td></td>
<td>13</td>
<td>80</td>
<td>kΩ</td>
</tr>
<tr>
<td>$R_{RIS}$</td>
<td>RIS resistor</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>$T_A$</td>
<td>Operating free-air temperature</td>
<td></td>
<td></td>
<td>−25</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) All voltage values are measured with respect to the GND terminal unless otherwise noted.
(2) $V_{BAT(max)} \leq V_{STC} − 1$ V

**ELECTRICAL CHARACTERISTICS**

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta V_{BR}$</td>
<td>Voltage drop at rectifier BR</td>
<td>$I_{BUS} = 3$ mA</td>
<td></td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta V_{CS1}$</td>
<td>Voltage drop at current source CS1</td>
<td>$R_{RIDD} = 13$ kΩ</td>
<td></td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{MC} = 0$ mA, $R_{RIDD} = 13$ kΩ</td>
<td></td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>$I_{BUS}$</td>
<td>BUS current</td>
<td>$V_{STC} = 6.5$ V, $I_{MC} = 0$ mA, $V_{BAT} = 3.8$ V, $R_{RIDD} = 13$ kΩ</td>
<td></td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>$I_{BUS}^{(2)}$</td>
<td>BUS current accuracy</td>
<td>$\Delta V_{BUS} = 10$ V, $I_{MC} = 0$ mA, $R_{RIDD} = 13$ kΩ to 30 kΩ</td>
<td></td>
<td>2</td>
<td>%</td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Supply current</td>
<td>$V_{STC} = 6.5$ V, $I_{MC} = 0$ mA, $V_{BAT} = 3.8$ V, $R_{RIDD} = 13$ kΩ</td>
<td></td>
<td>650</td>
<td>µA</td>
</tr>
<tr>
<td>$I_{CL1}$</td>
<td>Cl1 current</td>
<td>$V_{STC} = 6.5$ V, $I_{MC} = 0$ mA, $V_{BUS} = 6.5$ V, $RX/RXI = off^{(3)}$</td>
<td></td>
<td>350</td>
<td>µA</td>
</tr>
<tr>
<td>$I_{BAT}$</td>
<td>BAT current</td>
<td></td>
<td></td>
<td>−0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$I_{BAT} + I_{VDD}$</td>
<td>BAT plus VDD current</td>
<td>$V_{BUS} = 0$ V, $V_{STC} = 0$ V</td>
<td></td>
<td>−0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$I_{VDD}$</td>
<td>VDD voltage</td>
<td>$-I_{VDD} = 1$ mA, $V_{STC} = 6.5$ V</td>
<td></td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>$R_{VDD}$</td>
<td>VDD resistance</td>
<td>$-I_{VDD} = 2$ to 8 mA, $V_{STC} = 4.5$ V</td>
<td></td>
<td>5</td>
<td>Ω</td>
</tr>
<tr>
<td>$V_{STC}$</td>
<td>STC voltage</td>
<td>$V_{DD} = on$, $VS = on$</td>
<td></td>
<td>5.6</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = off$, $VS = off$</td>
<td></td>
<td>3.8</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{VDD} &lt; I_{STC use}$</td>
<td></td>
<td>6.5</td>
<td>7.5</td>
</tr>
<tr>
<td>$I_{STC use}$</td>
<td>STC current</td>
<td>$V_{STC} = 5$ V, $R_{RIDD} = 30$ kΩ</td>
<td></td>
<td>0.65</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{RIDD} = 13$ kΩ</td>
<td></td>
<td>1.85</td>
<td>2.4</td>
</tr>
<tr>
<td>$V_{RIDD}$</td>
<td>RIDD voltage</td>
<td>$R_{RIDD} = 30$ kΩ</td>
<td></td>
<td>1.23</td>
<td>1.33</td>
</tr>
<tr>
<td>$V_{VS}$</td>
<td>VS voltage</td>
<td>$V_{DD} = on$, $I_{VS} = −5$ µA</td>
<td></td>
<td>$V_{STC} − 0.4$</td>
<td>$V_{STC}$</td>
</tr>
<tr>
<td>$R_{VS}$</td>
<td>VS resistance</td>
<td>$V_{DD} = off$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{PF}$</td>
<td>PF voltage</td>
<td>$V_{STC} = 6.5$ V, $V_{VB} = V_{STC} + 0.8$ V, $I_{PF} = −100$ µA</td>
<td></td>
<td>$V_{BAT} − 0.6$</td>
<td>$V_{BAT}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{VB} = V_{STC} + 0.3$ V, $I_{PF} = 1$ µA</td>
<td></td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{VB} = V_{STC} + 0.3$ V, $I_{PF} = 5$ µA</td>
<td></td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

(1) All voltage values are measured with respect to the GND terminal unless otherwise noted.
(2) Inputs RX/RXI and outputs TX/TXI are open, $I_{CC} = I_{CL1} + I_{CL2}$
ELECTRICAL CHARACTERISTICS\(^{(1)}\) (continued)
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{on}})</td>
<td>Turn-on time (C_{\text{STC}} = 50 , \mu \text{F}, ) Bus voltage slew rate: 1 V/µs</td>
<td>3</td>
<td></td>
<td></td>
<td>s</td>
</tr>
</tbody>
</table>

RECEIVER SECTION ELECTRICAL CHARACTERISTICS\(^{(1)}\)
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{T}})</td>
<td>See Figure 2</td>
<td>MARK</td>
<td>MARK –</td>
<td>– 8.2</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{SC}})</td>
<td>SC voltage</td>
<td>(V_{\text{SC}} = 24 , \text{V}, ) (V_{\text{VB}} = 36 , \text{V})</td>
<td>–15</td>
<td>–40</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{SCcharge}})</td>
<td>SC charge current</td>
<td>(V_{\text{SC}} = 24 , \text{V}, ) (V_{\text{VB}} = 24 , \text{V})</td>
<td>0.3</td>
<td>–0.033 (I_{\text{SCcharge}})</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{SCdischarge}})</td>
<td>SC discharge current</td>
<td>(V_{\text{SC}} = V_{\text{VB}} = 24 , \text{V})</td>
<td>0.3</td>
<td>–0.033 (I_{\text{SCcharge}})</td>
<td>µA</td>
</tr>
<tr>
<td>(V_{\text{OL}})</td>
<td>Low-level output voltage (TX, TXI)</td>
<td>(I_{\text{TX}}/I_{\text{TXI}} = 100 , \mu \text{A}) (see Figure 2)</td>
<td>0</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{OH}})</td>
<td>High-level output voltage (TX, TXI)</td>
<td>(I_{\text{TX}}/I_{\text{TXI}} = 100 , \mu \text{A})</td>
<td>0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{TX}})</td>
<td>TX, TXI current</td>
<td>(V_{\text{TX}} = 7.5, ) (V_{\text{VB}} = 12 , \text{V}, ) (V_{\text{STC}} = 6 , \text{V}, ) (V_{\text{BAT}} = 3.8 , \text{V})</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

(1) All voltage values are measured with respect to the GND terminal, unless otherwise noted.

TRANSMITTER SECTION ELECTRICAL CHARACTERISTICS\(^{(1)}\)
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{MC}})</td>
<td>MC voltage</td>
<td>(R_{\text{RIS}} = 100 , \Omega)</td>
<td>11.5</td>
<td>19.5</td>
<td>mA</td>
</tr>
<tr>
<td>(V_{\text{RIS}})</td>
<td>RIS voltage</td>
<td>(R_{\text{RIS}} = 100 , \Omega)</td>
<td>1.4</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{IN}})</td>
<td>High-level input voltage (RX, RXI)</td>
<td>See Figure 3, see (2)</td>
<td>(V_{\text{BAT}} = 0.8)</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{IL}})</td>
<td>Low-level input voltage (RX, RXI)</td>
<td>See Figure 3</td>
<td>0</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{RX}})</td>
<td>RX current</td>
<td>(V_{\text{RX}} = V_{\text{BAT}} = 3 , \text{V}, ) (V_{\text{VB}} = V_{\text{STC}} = 0 , \text{V})</td>
<td>–0.5</td>
<td>0.5</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{RXI}})</td>
<td>RXI current</td>
<td>(V_{\text{RXI}} = V_{\text{BAT}} = 3 , \text{V}, ) (V_{\text{VB}} = V_{\text{STC}} = 6.5 , \text{V})</td>
<td>–10</td>
<td>–40</td>
<td>µA</td>
</tr>
</tbody>
</table>

(1) All voltage values are measured with respect to the GND terminal, unless otherwise noted.

(2) \(V_{\text{IN}}(\text{max}) = 5.5 \, \text{V}\) is valid only when \(V_{\text{STC}} \geq 6.5 \, \text{V}\).
APPLICATION INFORMATION

NOTE: Transistor T1 should be a BSS84.

Figure 7. Basic Application Circuit Using Support Capacitor $C_{STC} > 50 \, \mu F$

Figure 8. Basic Application Circuit for Supply From Battery

$C_{stb}$: system stabilising capacitor
$C_{SSC}$: support capacitor
$C_{Ssc}$: sampling capacitor
$C_{stab}$: stabilising capacitor (100 nF)
$C_{stab}/C_{ssb} >= 4:1$

$R_{ss}$: slave-current adjustment resistor
$R_{ss}$: modulation-current resistor
RL1, RL2: protection resistors
$R_{dis}$: discharge resistor (100 kΩ recommended)
NOTE: \( R_{DSon} \) of the transistor T1 (BSS84) at low battery voltage must be considered during application design.

**Figure 9. Basic Applications for Different Supply Modes**

**Figure 10. Basic Optocoupler Application**
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/Ball material (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS721ADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-25 to 85</td>
<td>TSS721A</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material**: Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer**: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
D (R-PDSO-G16) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
   △ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
   △ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AC.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated