采用RLF QFN封装的TPSM53604 36V输入、4A电源模块

1 特性

- 5mm x 5.5mm x 4mm 可路由引线框 (RLF) QFN封装
- 低EMI: 符合CISPR11辐射发射标准
- 出色的热性能:
 - 在85°C且无空气流量的情况下具有高达20W的输出功率
- 标准封装尺寸：单个大散热垫和所有引脚均分布在封装外围
- 输入电压范围: 3.8V至36V
- 输出电压范围: 1V至7V
- 效率高达95%
- 电源正常状态标志
- 精密能使端
- 内置断续模式短路保护、过热保护、启动至预偏置输出、软启动和UVLO
- IC工作结温范围: -40°C至+125°C
- 工作环境温度范围: -40°C至+105°C
- 通过了Mil-STD-883D冲击和振动测试
- 与以下器件引脚兼容: 3A TPSM53603和2A TPSM53602
- 借助WEBENCH®电源设计器并使用TPSM53604创建定制设计方案

2 应用

- 通用宽输入电压电源
- 工厂自动化和控制
- 测试和测量
- 航天和国防
- 负输出电压应用

3 说明

TPSM53604电源模块是一款高度集成的4A电源解决方案，在热增强型QFN封装内整合了一个带有功率MOSFET的36V输入降压直流/直流转换器、一个屏蔽式电感器和多个无源器件。5mm x 5.5mm x 4mm、15引脚QFN封装采用可路由引线框技术，实现增强的热性能、小尺寸和低EMI。该封装尺寸的所有引脚均分布在外围，具有单个大散热垫，实现简单的布局和制造中的轻松处理。

总体解决方案仅需四个外部组件，并且省去了设计流程中的环路补偿和磁性元件选择过程。全套功能集包括正常电源、可编程UVLO、预偏置启动、过流和过热保护，使得TPSM53604成为各种应用供电的出色器件。

器件信息(1)

<table>
<thead>
<tr>
<th>器件型号</th>
<th>封装</th>
<th>封装尺寸 (标称值)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPSM53604</td>
<td>QFN-RLFMD (15)</td>
<td>5.0mm x 5.5mm</td>
</tr>
</tbody>
</table>

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

简化的原理图

5Vout效率

本文档旨在为方便起见，提供有关TI产品中文版本的信息，以确认产品的概要。有关适用的官方英文版本的最新信息，请访问www.ti.com。其内容始终优先。TI不保证翻译的准确性和有效性。在实际设计之前，请务必参考最新版本的英文版本。
目录

1 特性 .. 1
2 应用 .. 1
3 说明 .. 1
4 修订历史记录 ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 5
 6.5 Electrical Characteristics .. 5
 6.6 Typical Characteristics (V_{IN} = 5 V) 7
 6.7 Typical Characteristics (V_{IN} = 12 V) 8
 6.8 Typical Characteristics (V_{IN} = 24 V) 9
 6.9 Typical Characteristics (V_{IN} = 36 V) 10
7 Detailed Description ... 11
 7.1 Overview .. 11
 7.2 Functional Block Diagram 11
 7.3 Feature Description ... 12
 7.4 Device Functional Modes 19
8 Application and Implementation 20
 8.1 Application Information 20
 8.2 Typical Application ... 20
9 Power Supply Recommendations 22
10 Layout .. 23
 10.1 Layout Guidelines .. 23
 10.2 Layout Examples ... 23
 10.3 Theta JA versus PCB Area 24
 10.4 Package Specifications 25
 10.5 EMI ... 25
11 器件和文档支持 ... 27
 11.1 器件支持 .. 27
 11.2 文档支持 .. 27
 11.3 接收文档更新通知 ... 27
 11.4 支持资源 .. 27
 11.5 商标 .. 27
 11.6 静电放电警告 ... 27
 11.7 Glossary ... 27
12 机械、封装和可订购信息 ... 28

4 修订历史记录
注：之前版本的页码可能与当前版本有所不同。

Changes from Original (November 2019) to Revision A

- 将器件状态从“预告信息”更改为“生产数据”...

Page

1
5 Pin Configuration and Functions

The pin configuration and functions for the TPSM53604 are shown in the diagram below. The table provides a detailed description of each pin:

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>AGND</td>
<td>G</td>
<td>Analog ground. Zero voltage reference for internal references and logic. All electrical parameters are measured with respect to this pin. This pin must be connected to PGND at a single point. See the Layout section for a recommended layout.</td>
</tr>
<tr>
<td>4, 5</td>
<td>DNC</td>
<td>—</td>
<td>Do not connect. Do not connect these pins to ground, to another DNC pin, or to any other voltage. These pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>I</td>
<td>Enable pin. This pin turns the converter on when pulled high and turns off the converter when pulled low. This pin can be connected directly to VIN. Do not float. This pin can be used to set the input under voltage lockout with two resistors. See the Programmable Undervoltage Lockout (UVLO) section.</td>
</tr>
<tr>
<td>9</td>
<td>FB</td>
<td>I</td>
<td>Feedback input. Connect the mid-point of the feedback resistor divider to this pin. Connect the upper resistor (R_{FBT}) of the feedback divider to (V_{OUT}) at the desired point of regulation. Connect the lower resistor (R_{FBB}) of the feedback divider to AGND.</td>
</tr>
<tr>
<td>3, 10, 11</td>
<td>NC</td>
<td>—</td>
<td>Not connected. These pins are not connected to any circuitry within the module. It is recommended that these pins be connected to the PGND plane on the application board to enhance shielding and thermal performance.</td>
</tr>
<tr>
<td>15</td>
<td>PGND</td>
<td>G</td>
<td>Power ground. This is the return current path for the power stage of the device. Connect this pad to the input supply return, the load return, and the capacitors associated with the VIN and VOUT pins. See the Layout section for a recommended layout.</td>
</tr>
<tr>
<td>6</td>
<td>PGOOD</td>
<td>O</td>
<td>Power-good pin. Open-drain output that asserts low if the feedback voltage is not within the specified window thresholds. A 10-k(\Omega) to 100-k(\Omega) pullup resistor is required and can be tied to the V5V pin or other DC voltage less than 22 V. If not used, this pin can be left open or connected to PGND.</td>
</tr>
<tr>
<td>1, 14</td>
<td>VIN</td>
<td>I</td>
<td>Input supply voltage. Connect the input supply to these pins. Connect input capacitors between these pins and PGND in close proximity to the device.</td>
</tr>
<tr>
<td>7, 8</td>
<td>VOUT</td>
<td>O</td>
<td>Output voltage. These pins are connected to the internal output inductor. Connect these pins to the output load and connect external output capacitors between these pins and PGND.</td>
</tr>
<tr>
<td>13</td>
<td>V5V</td>
<td>O</td>
<td>Internal 5-V LDO output. Supplies internal control circuits. Do not connect to external loads. This pin can be used as logic supply for PGOOD pin.</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
Over the recommended operating junction temperature range\(^{(1)}\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN to PGND</td>
<td>–0.3</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>EN to AGND(^{(2)})</td>
<td>–0.3</td>
<td>(V_{\text{IN}} + 0.3)</td>
<td></td>
</tr>
<tr>
<td>PGOOD to AGND(^{(2)})</td>
<td>–0.3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>FB to AGND</td>
<td>–0.3</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>AGND to PGND</td>
<td>–0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>VOUT to PGND(^{(2)})</td>
<td>–0.3</td>
<td>(V_{\text{IN}} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>VSV to AGND</td>
<td>0</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Operating IC junction temperature, (T_J)(^{(3)})</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{\text{stg}})</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Peak reflow case temperature</td>
<td>245</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Maximum number or reflows allowed</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>MIL-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted</td>
<td>500</td>
<td>G</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.

(3) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the module is never exceeded.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{\text{ESD}})</th>
<th>Electrostastic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM)(^{(1)})</td>
<td>±2500</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Charged-device model (CDM)(^{(2)})</td>
<td>±1000</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
Over operating ambient temperature range (unless otherwise noted) \(^{(1)}\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, (V_{\text{IN}})</td>
<td>3.8 (^{(2)})</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, (V_{\text{OUT}})</td>
<td>1</td>
<td>7 (^{(3)})</td>
<td>V</td>
</tr>
<tr>
<td>Output current, (I_{\text{OUT}})</td>
<td>0</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>EN voltage, (V_{\text{EN}})(^{(4)})</td>
<td>0</td>
<td>(V_{\text{IN}})</td>
<td>V</td>
</tr>
<tr>
<td>PGOOD pullup voltage, (V_{\text{PGOOD}})(^{(4)})</td>
<td>0</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>PGOOD sink current</td>
<td>3</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Operating ambient temperature, (T_A)</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td>Input capacitance, (C_{\text{IN}})</td>
<td>20 (^{(5)})</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Output capacitance, (C_{\text{OUT}}) (^{(6)})</td>
<td>min</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

(1) Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications, see Electrical Characteristics.

(2) The recommended minimum \(V_{\text{IN}}\) is 3.8 V or (\(V_{\text{OUT}} + 1\) V), whichever is greater. See the Voltage Dropout section for more information.

(3) The recommended maximum output voltage varies depending input voltage. See the Voltage Dropout section for more information.

(4) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.

(5) Minimum \(C_{\text{IN}}\) of 20 µF must be ceramic type.

(6) The minimum amount of required output capacitance varies depending on the output voltage (see 表 1).
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TPSM53604 RDA (QFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JA}</td>
<td>19.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>1.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>5.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>T_{SHDN}</td>
<td>165</td>
<td>°C</td>
</tr>
<tr>
<td>Recovery temperature</td>
<td>148</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) The junction-to-ambient thermal resistance, R_{JA}, applies to devices soldered directly to a 75 mm x 75 mm four-layer PCB with 2 oz. copper and natural convection cooling. Additional airflow and PCB copper area reduces R_{JA}. For more information, see the Theta JA versus PCB Area section.

(3) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature, T_{J}, of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). $T_{\text{J}} = \psi_{\text{JT}} \times P_{\text{dis}} + T_{\text{T}}$; where P_{dis} is the power dissipated in the device and T_{T} is the temperature of the top of the device.

(4) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature, T_{J}, of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). $T_{\text{J}} = \psi_{\text{JB}} \times P_{\text{dis}} + T_{\text{B}}$; where P_{dis} is the power dissipated in the device and T_{B} is the temperature of the board 1mm from the device.

6.5 Electrical Characteristics

Limits apply over $T_{\text{A}} = -40^\circ\text{C}$ to $+105^\circ\text{C}$, $V_{\text{IN}} = 12$ V, $V_{\text{OUT}} = 3.3$ V, $I_{\text{OUT}} = I_{\text{OUT}}$ maximum, (unless otherwise noted); $C_{\text{IN1}} = 2\times10$ µF, 50-V, 1206 ceramic; $C_{\text{IN2}} = 100$ nF, 50-V, 0603 ceramic; $C_{\text{OUT}} = 3\times22$ µF, 25-V, 1210 ceramic. Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm and are provided for reference only.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT VOLTAGE (V_{IN})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage range</td>
<td>Over I_{OUT} range</td>
<td>3.8 (1)</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN} turn on</td>
<td>V_{IN} increasing, $I_{\text{OUT}} = 0.2$ A</td>
<td>3.55</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IN} turn off</td>
<td>V_{IN} decreasing, $I_{\text{OUT}} = 0.2$ A</td>
<td>3.05</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{Q}</td>
<td>Quiescent current</td>
<td>Non-switching, $V_{\text{FB}} = 1.2$ V</td>
<td>24</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown supply current</td>
<td>$V_{\text{EN}} = 0$ V, $I_{\text{OUT}} = 0$ A</td>
<td>5</td>
<td>10</td>
<td>µA</td>
</tr>
</tbody>
</table>

INTERNAL LDO (V5V)

| V5V | Internal LDO output voltage appearing at the V5V pin | 6 V ≤ V_{IN} ≤ 36 V | 4.75 | 5 | 5.25 | V |

FEEDBACK

<table>
<thead>
<tr>
<th>VFB</th>
<th>Feedback voltage (2)</th>
<th>−40°C ≤ T_{A} ≤ +125°C, $I_{\text{OUT}} = 0.75$ A</th>
<th>0.985</th>
<th>1</th>
<th>1.015</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load regulation</td>
<td>$T_{\text{A}} = +25$°C, 0.8 A ≤ I_{OUT} ≤ 4 A</td>
<td>0.06</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>$T_{\text{A}} = +25$°C, $I_{\text{OUT}} = 0.75$ A Over V_{IN} range</td>
<td>0.15</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Current into FB pin</td>
<td>FB = 1 V</td>
<td>0.2</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

CURRENT

<table>
<thead>
<tr>
<th>I_{OUT}</th>
<th>Output current</th>
<th>$T_{\text{A}} = 25$°C</th>
<th>0</th>
<th>4</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OUT}</td>
<td>Over-current threshold</td>
<td></td>
<td>5.5</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>V_{NC}</td>
<td>FB pin voltage required to trip short-circuit hiccup mode</td>
<td>0.4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>t_{HC}</td>
<td>Time between current-limit hiccup burst</td>
<td>94</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

ENABLE (EN PIN)

<table>
<thead>
<tr>
<th>$V_{\text{EN-LDO-H}}$</th>
<th>EN input level required to turn on internal LDO</th>
<th>Rising threshold</th>
<th>1</th>
<th></th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{\text{EN-LDO-L}}$</td>
<td>EN input level required to turn off internal LDO</td>
<td>Falling threshold</td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{EN-H}}$</td>
<td>EN input level required to start switching</td>
<td>Rising threshold</td>
<td>1.2</td>
<td>1.23</td>
<td>1.26</td>
</tr>
<tr>
<td>$V_{\text{EN-HYS}}$</td>
<td>Hysteresis below $V_{\text{EN-H}}$</td>
<td>Falling</td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>$I_{\text{LKG-EN}}$</td>
<td>Enable input leakage current $V_{\text{EN}} = 3.3$ V</td>
<td>0.2</td>
<td></td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

(1) The recommended minimum V_{IN} is 3.8 V or ($V_{\text{OUT}} + 1$ V), whichever is greater. See the Voltage Dropout section for more information.

(2) The overall output voltage tolerance will be affected by the tolerance of the external R_{FBT} and R_{FBB} resistors.
Electrical Characteristics (continued)

Limits apply over $T_A = -40^\circ\text{C}$ to $+105^\circ\text{C}$, $V_{IN} = 12$ V, $V_{OUT} = 3.3$ V, $I_{OUT} = I_{OUT}$ maximum, (unless otherwise noted); $C_{IN1} = 2\times10\ \mu\text{F}, 50$-V, 1206 ceramic; $C_{IN2} = 100\ \text{nF}, 50$-V, 0603 ceramic; $C_{OUT} = 3\times22\ \mu\text{F}, 25$-V, 1210 ceramic. Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm and are provided for reference only.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{PG,\text{HIGH-UP}}$</td>
<td>V_{OUT} rising (fault)</td>
<td>% of FB voltage</td>
<td>107</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>$V_{PG,\text{HIGH-DN}}$</td>
<td>V_{OUT} falling (good)</td>
<td>% of FB voltage</td>
<td>105</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>$V_{PG,\text{LOW-UP}}$</td>
<td>V_{OUT} rising (good)</td>
<td>% of FB voltage</td>
<td>94</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>$V_{PG,\text{LOW-DN}}$</td>
<td>V_{OUT} falling (fault)</td>
<td>% of FB voltage</td>
<td>92</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>R_{PG}</td>
<td>Power-good flag R_{ISON}</td>
<td>$V_{EN} = 0$ V</td>
<td>35</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>$V_{IN,PG}$</td>
<td>Minimum input voltage for proper PGOOD function</td>
<td>50-µA, $EN = 0$ V</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{PG}</td>
<td>PGOOD logic low output</td>
<td>50-µA, $EN = 0$ V, $V_{IN} = 2$ V</td>
<td>0.2</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>$I_{OUT} = 2$ A, $T_A = 25^\circ\text{C}$</td>
<td>91</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

SOFT START

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{SS}</td>
<td>Internal soft-start time</td>
<td></td>
<td>4</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

SWITCHING FREQUENCY

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SW}</td>
<td>Switching frequency</td>
<td>$I_{OUT} = 2$ A, $T_A = 25^\circ\text{C}$</td>
<td>1.4(3)</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

(3) The typical switching frequency of this device will change based on operating conditions. See the Auto Mode section for more information.
6.6 Typical Characteristics ($V_{IN} = 5\ V$)
The typical characteristic data has been developed from actual products tested at $T_A = 25\ ^\circ C$. This data is considered typical for the device.
6.7 Typical Characteristics ($V_{IN} = 12$ V)

The typical characteristic data has been developed from actual products tested at $T_A = 25^\circ$C. This data is considered typical for the device.

![Efficiency versus Output Current](image1)

![Power Dissipation versus Output Current](image2)

![Voltage Ripple versus Output Current](image3)

![Safe Operating Area](image4)
6.8 Typical Characteristics ($V_{IN} = 24$ V)

The typical characteristic data has been developed from actual products tested at $T_A = 25^\circ$C. This data is considered typical for the device.

![Efficiency vs. Output Current](image1)

Graph 13. Efficiency versus Output Current

![Power Dissipation vs. Output Current](image2)

Graph 15. Power Dissipation versus Output Current

![Voltage Ripple vs. Output Current](image3)

Graph 16. Voltage Ripple versus Output Current

![Safe Operating Area](image4)

Graph 17. Safe Operating Area

![Safe Operating Area](image5)

Graph 18. Safe Operating Area
6.9 Typical Characteristics ($V_{IN} = 36$ V)

The typical characteristic data has been developed from actual products tested at $T_A = 25^\circ$C. This data is considered typical for the device.

![Diagram 19. Efficiency versus Output Current](image19)

![Diagram 20. Efficiency versus Output Current](image20)

![Diagram 21. Power Dissipation versus Output Current](image21)

![Diagram 22. Voltage Ripple versus Output Current](image22)

![Diagram 23. Safe Operating Area](image23)

![Diagram 24. Safe Operating Area](image24)
7 Detailed Description

7.1 Overview
The TPSM53604 is a full-featured, 36-V input, 4-A, synchronous step-down converter with PWM, MOSFETs, shielded inductor, and control circuitry integrated into a low-profile, over-molded package. The device integration enables small designs while providing the ability to adjust key parameters to meet specific design requirements. The TPSM53604 provides an output voltage range of 1 V to 7 V. An external resistor divider is used to adjust the output voltage to the desired value. The device provides accurate voltage regulation over a wide load range by using a precision internal voltage reference. Input undervoltage lockout is internally set at 3.55 V (typical), but can be adjusted upward using a resistor divider on the EN pin of the device. The EN pin can also be pulled low to put the device into standby mode to reduce input current draw. A power-good signal is provided to indicate when the output is within its nominal voltage range. Thermal shutdown and current limit features protect the device during an overload condition. A 15-pin, QFN package that includes exposed bottom pads provides a thermally enhanced solution for space-constrained applications.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Adjusting the Output Voltage

A resistor divider connected to the FB pin (pin 9) sets the output voltage of the TPSM53604. The output voltage adjustment range is from 1 V to 7 V. 图 25 shows the feedback resistor connections for setting the output voltage. The recommended value of R_{FBT} is 10 kΩ. Use 公式 1 to calculate the value for R_{FBB}. 表 1 lists the standard resistor values for several output voltages. The minimum required output capacitance for each output voltage is also included in 表 1. The capacitance values listed represent the effective capacitance, taking into account the effects of DC bias and temperature variation.

\[
R_{FBB} = \frac{10}{(V_{OUT} - 1)} \text{ (kΩ)}
\]

(1)

![图 25. Setting the Output Voltage]

表 1. Setting the Output Voltage

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R_{FBB} (kΩ)(1)</th>
<th>C_{OUT(MIN)} (µF) (EFFECTIVE)</th>
<th>V_{OUT} (V)</th>
<th>R_{FBB} (kΩ)(1)</th>
<th>C_{OUT(MIN)} (µF) (EFFECTIVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>open</td>
<td>150</td>
<td>3.0</td>
<td>4.99</td>
<td>57</td>
</tr>
<tr>
<td>1.1</td>
<td>100</td>
<td>143</td>
<td>3.3</td>
<td>4.32</td>
<td>52</td>
</tr>
<tr>
<td>1.2</td>
<td>49.9</td>
<td>132</td>
<td>4.0</td>
<td>3.32</td>
<td>43</td>
</tr>
<tr>
<td>1.3</td>
<td>33.2</td>
<td>123</td>
<td>4.5</td>
<td>2.87</td>
<td>39</td>
</tr>
<tr>
<td>1.4</td>
<td>24.9</td>
<td>115</td>
<td>5.0</td>
<td>2.49</td>
<td>35</td>
</tr>
<tr>
<td>1.5</td>
<td>20.0</td>
<td>107</td>
<td>5.5</td>
<td>2.21</td>
<td>32</td>
</tr>
<tr>
<td>1.8</td>
<td>12.4</td>
<td>91</td>
<td>6.0</td>
<td>2.00</td>
<td>30</td>
</tr>
<tr>
<td>2.0</td>
<td>10.0</td>
<td>82</td>
<td>6.5</td>
<td>1.82</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>6.65</td>
<td>67</td>
<td>7.0</td>
<td>1.65</td>
<td>26</td>
</tr>
</tbody>
</table>

(1) R_{FBT} = 10.0 kΩ

7.3.2 Switching Frequency

The switching frequency of the TPSM53604 is set to 1.4 MHz, internal to the device. The switching frequency cannot be adjusted. When the load current is high enough and the device is operating in PWM mode, the device operates at a fixed frequency. As the load current drops and the device switches to PFM mode, the switching frequency is reduced, resulting in reduced power dissipation. See the Auto Mode section for typical information on when the device switches from PWM mode to PFM mode.
7.3.3 Input Capacitors
The TPSM53604 requires a minimum input capacitance of 20 μF (2 × 10 μF) of ceramic type. High-quality, ceramic-type X5R or X7R capacitors with sufficient voltage rating are recommended. TI recommends an additional 47 μF of non-ceramic capacitance for applications with transient load requirements. The voltage rating of input capacitors must be greater than the maximum input voltage.

Table 2. Recommended Input Capacitors

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>SERIES</th>
<th>SIZE</th>
<th>PART NUMBER</th>
<th>CAPACITOR CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOLTAGE RATING (V)</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>1206</td>
<td>GRT31CR61H106ME01L</td>
<td>50</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>1206</td>
<td>CGASL3X5R1H106M160AB</td>
<td>50</td>
</tr>
<tr>
<td>TDK</td>
<td>X7R</td>
<td>1206</td>
<td>CGASL1X7R1H106K160AC</td>
<td>50</td>
</tr>
<tr>
<td>Murata</td>
<td>X7R</td>
<td>1210</td>
<td>GRM32ERT1H108KA12L</td>
<td>50</td>
</tr>
<tr>
<td>TDK</td>
<td>X7R</td>
<td>1210</td>
<td>C3225X7R1H106M250AC</td>
<td>50</td>
</tr>
</tbody>
</table>

(1) Capacitor Supplier Verification, RoHS, Lead-free, and Material Details
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.

(2) Standard capacitance values.

7.3.4 Output Capacitors
表 1 lists the TPSM53604 minimum output capacitance. The effects of DC bias and temperature variation must be considered when using ceramic capacitance. For ceramic capacitors, the package size, voltage rating, and dielectric material contributes to differences between the standard rated value and the actual effective value of the capacitance.

When adding additional capacitance above $C_{OUT(min)}$, the capacitance can be ceramic type, low-ESR polymer type, or a combination of the two. See 表 3 for a preferred list of output capacitors by vendor.

Table 3. Recommended Output Capacitors

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>SERIES</th>
<th>PART NUMBER</th>
<th>CAPACITOR CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>VOLTAGE RATING (V)</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>C3225X5R0J476K</td>
<td>6.3</td>
</tr>
<tr>
<td>Murata</td>
<td>X7R</td>
<td>GCM32ER70U476KE19L</td>
<td>6.3</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM21BR61A476ME15L</td>
<td>10</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>C3216X5R1A476M160AB</td>
<td>10</td>
</tr>
<tr>
<td>Murata</td>
<td>X7R</td>
<td>GRM32ERT1A476KE15L</td>
<td>10</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM32ERT1A476KE15L</td>
<td>16</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>C3225X5R0J107M</td>
<td>6.3</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM32ERT60U107M</td>
<td>6.3</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM32ERT60U107M</td>
<td>10</td>
</tr>
<tr>
<td>Kemet</td>
<td>X5R</td>
<td>C1210C107M4PAC7800</td>
<td>16</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPE100MI</td>
<td>6.3</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>10TPF150ML</td>
<td>10</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPF220M9L</td>
<td>6.3</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPF330M9L</td>
<td>6.3</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPE470MAZU</td>
<td>6.3</td>
</tr>
</tbody>
</table>

(1) Capacitor Supplier Verification, RoHS, Lead-free, and Material Details
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.

(2) Standard capacitance values.

(3) Maximum ESR at 100 kHz, 25°C.
7.3.5 Output On/Off Enable (EN)

The voltage on the EN pin provides electrical ON/OFF control of the device. This input features precision thresholds, allowing the use of an external voltage divider to provide a programmable UVLO (see the Programmable Undervoltage Lockout (UVLO) section). Applying a voltage of $V_{EN} \geq V_{EN-LDO-H}$ causes the device to enter standby mode, powering the internal LDO, but not producing an output voltage. Increasing the EN voltage to V_{EN-H} fully enables the device, allowing it to enter start-up mode and starting the soft-start period. When the EN input is brought below V_{EN-H} by V_{EN-HYS}, the regulator stops running and enters standby mode. Further decrease in the EN voltage to below $V_{EN-LDO-L}$ completely shuts down the device. 图26 shows this behavior. The values for the various EN thresholds can be found in the Electrical Characteristics table.

![Precision Enable Behavior](image)

图26. Precision Enable Behavior

The EN pin cannot be open circuit or floating. The simplest way to enable the operation of the TPSM53604 is to connect the EN pin to VIN directly as shown in 图27. This allows self-start-up of the TPSM53604 when VIN is within the operation range.

If an application requires controlling the EN pin, an external logic signal can be used to drive EN pin as shown in 图28. Applications using an open drain/collector device to interface with this pin require a pullup resistor to a voltage above the enable threshold.

![Enabling the Device](image)

图27. Enabling the Device

![Typical Enable Control](image)

图28. Typical Enable Control

7.3.6 Programmable Undervoltage Lockout (UVLO)

The TPSM53604 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 3.55 V (typical) with a typical hysteresis of 500 mV.
If an application requires a higher UVLO threshold, a resistor divider can be placed between VIN, the EN pin, and AGND as shown in 图 29. The enable rising threshold \(V_{\text{EN-H}} \) is 1.23 V (typ) with 100 mV (typ) hysteresis. 表 4 lists recommended resistor values for \(R_{\text{ENT}} \) and \(R_{\text{ENB}} \) to adjust the ULVO voltage.

To ensure proper start-up and reduce input current surges, TI recommends setting the UVLO threshold to approximately 80% to 85% of the minimum expected input voltage.

![图 29. Adjustable UVLO](image)

<table>
<thead>
<tr>
<th>VIN UVLO (V)</th>
<th>6.5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{ENT}}) (kΩ)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(R_{\text{ENB}}) (kΩ)</td>
<td>23.7</td>
<td>14.3</td>
<td>9.09</td>
<td>6.65</td>
<td>5.23</td>
<td>4.32</td>
</tr>
</tbody>
</table>

7.3.7 Power Good (PGOOD)

The TPSM53604 has a built-in power-good signal (PGOOD) which indicates whether the output voltage is within its regulation range. The PGOOD pin is an open-drain output that requires a pullup resistor to a nominal voltage source of 18 V or less. The internal 5-V LDO output (V5V pin), can be used as the pullup voltage source. A typical pull-up resistor value is between 10 kΩ and 100 kΩ. The maximum recommended PGOOD sink current is 3 mA.

Once the output voltage rises above 94% of the set voltage, the PGOOD pin rises to the pullup voltage level. The PGOOD pin is pulled low when the output voltage drops lower than 92% or rises higher than 107% of the nominal set voltage. See 图 30 for typical power-good thresholds.

![图 30. Power-good Flag](image)
7.3.8 Light Load Operation

In light load conditions, the device turns on the high-side MOSFET until the inductor current reaches a controlled minimum value of approximately 1 A. As the input voltage decreases, reducing the voltage headroom between \(V_{\text{IN}} \) and \(V_{\text{OUT}} \), the amount of time required to reach this minimum current increases. During this time, additional energy flows from \(V_{\text{IN}} \) to \(V_{\text{OUT}} \), resulting in increased output voltage ripple. To eliminate this behavior, the EN UVLO function must be used to maintain at least 1 V of headroom above \(V_{\text{OUT}} \). Alternatively, additional output capacitance can be added to reduce the output voltage ripple in applications that operate at light loads with very low \(V_{\text{IN}} \) to \(V_{\text{OUT}} \) headroom.

7.3.9 Voltage Dropout

Voltage dropout is the difference between the input voltage and output voltage that is required to maintain output voltage regulation while providing the rated output current.

To ensure the TPSM53604 maintains output voltage regulation over the operating temperature range, the minimum \(V_{\text{IN}} \) is \(3.8 \, \text{V} \) or \((V_{\text{OUT}} + 1 \, \text{V}) \), whichever is greater.

The TPSM53604 operates in a frequency foldback mode when the dropout voltage is less than the recommendation above. Frequency foldback reduces the switching frequency to allow the output voltage to maintain regulation as input voltage decreases. At light load, the TPSM53604 operates in PFM mode which is a reduced frequency operation, see the Auto Mode section for more information on PFM mode. 图 31 through 图 36 show typical dropout voltage and frequency foldback curves for 3.3 V, 5 V, and 7 V outputs at \(T_A = 25^\circ \text{C} \).

注

As ambient temperature increases, dropout voltage and frequency foldback occur at higher input voltage.

![Voltage Dropout](图31)

![Frequency Foldback](图32)
7.3.10 Overcurrent Protection (OCP)

The TPSM53604 is protected from overcurrent conditions. Cycle-by-cycle current limit is used for overloads while hiccup mode is used for short circuits. Hiccup mode is activated if a fault condition persists on the output. Hiccup mode reduces power dissipation under severe overcurrent conditions and prevents overheating and potential damage to the device. In hiccup mode, the regulator is shut down and kept off for 94 ms typical before the TPSM53604 tries to start again. If overcurrent or short-circuit fault condition still exist, hiccup repeats until the fault condition is removed. Once the fault is removed, the module automatically recovers with a normal soft-start power up.

The typical current limit threshold for the TPSM53604 varies slightly as a function of input voltage and output voltage. 图37 shows the typical current limit threshold for several output voltages over the input voltage range.
7.3.11 Thermal Shutdown

The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds 165°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 148°C typically.
7.4 Device Functional Modes

7.4.1 Active Mode

The TPSM53604 is in active mode when VIN is above the turn-on threshold and the EN pin voltage is above the EN high threshold. The most direct way to enable the TPSM53604 is to connect the EN pin to VIN. This allows self start-up of the TPSM53604 when the input voltage is in the operation range of 3.8 V to 36 V. Connecting a resistor divider between VIN, EN, and AGND adjusts the UVLO to delay the turn on until \(V_{IN} \) is closer to its regulated voltage.

7.4.2 Auto Mode

In auto mode, the device moves between Pulse-Width Modulation (PWM) and Pulse-Frequency Modulation (PFM) as the load changes. At light loads, the regulator operates in PFM mode. At higher loads, the mode changes to PWM mode. The typical load current for which the device moves from PFM to PWM can be found in 图38 and 图39. The output current at which the device changes modes depends on the input voltage and the output voltage. For output currents above the curve, the device is in PWM mode. If the curve is a solid line, the PWM switching frequency is 1.4 MHz nominal. If the curve is a dashed line, the PWM switching frequency is reduced due to the minimum on-time of the internal controller to maintain output voltage regulation. For currents below the curves, the device is in PFM mode. For applications where the switching frequency must be known for a given condition, the above mentioned effects must be carefully tested before the design is finalized.

In PWM mode, the regulator operates at a constant frequency using PWM to regulate the output voltage. While operating in this mode, the output voltage is regulated by switching at a constant frequency and modulating the duty cycle to control the power to the load. This provides excellent line and load regulation and low output voltage ripple.

In PFM mode, the high-side MOSFET is turned on in a burst of one or more pulses to provide energy to the load. The duration of the burst and the actual switching frequency depends on the input voltage, output voltage, and load current. The frequency of these bursts is adjusted to regulate the output while diode emulation is used to maximize efficiency. This mode provides high light-load efficiency by reducing the amount of input supply current required to regulate the output voltage at small loads. However, in this mode, expect larger output voltage ripple and variable switching frequency.

7.4.3 Shutdown Mode

The EN pin provides electrical ON and OFF control for the TPSM53604. When the EN pin voltage is below the EN low threshold, the device is in shutdown mode. In shutdown mode, the standby current is 5 \(\mu A \) typical.
8 Application and Implementation

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPSM53604 is a synchronous, step-down, DC/DC power module. It is used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 4 A. The TPSM53604 can be configured in a negative output voltage, inverting buck-boost (IBB) topology. For more details, see the Negative Output Voltage using the TPSM53602/3/4 application note. The following design procedure can be used to select components for the TPSM53604. Alternately, the WEBENCH® software can be used to generate complete designs. When generating a design, the WEBENCH® software uses an iterative design procedure and accesses comprehensive databases of components. See www.ti.com for more details.

8.2 Typical Application

The TPSM53604 only requires a few external components to convert from a wide input voltage supply range to a wide range of output voltages. 图 40 shows a basic TPSM53604 schematic for a typical design.

8.2.1 Design Requirements

For this design example, use the parameters listed in 表 5 as the input parameters and follow the design procedures in the Detailed Design Procedure section.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage V_{IN}</td>
<td>24 V typical</td>
</tr>
<tr>
<td>Output voltage V_{OUT}</td>
<td>5 V</td>
</tr>
<tr>
<td>Output current rating</td>
<td>4 A</td>
</tr>
</tbody>
</table>
8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPSM53604 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage \(V_{\text{IN}}\), output voltage \(V_{\text{OUT}}\), and output current \(I_{\text{OUT}}\) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 Output Voltage Setpoint

The output voltage of the TPSM53604 device is externally adjustable using a resistor divider. The recommended value of \(R_{\text{FBT}}\) is 10 kΩ. The value for \(R_{\text{FBB}}\) can be selected from 表 1 or calculated using 公式 2:

\[
R_{\text{FBB}} = \frac{10}{(V_{\text{OUT}} - 1)} \text{ (kΩ)}
\]

(2)

For the desired output voltage of 5 V, the formula yields a value of 2.5 kΩ. Choose the closest available value of 2.49 kΩ for \(R_{\text{FBB}}\).

8.2.2.3 Input Capacitors

The TPSM53604 requires a minimum input capacitance of 20 µF (or 2 × 10 µF) ceramic type. High-quality ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 47 µF of non-ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of the input capacitors must be greater than the maximum input voltage.

For this design example, two 10-µF, 50-V, ceramic capacitors are used.

8.2.2.4 Output Capacitor Selection

The TPSM53604 requires a minimum amount of output capacitance for proper operation. The minimum amount of required output varies depending on the output voltage. See 表 1 for the required output capacitance.

For this design example, two 47-µF, 10-V, ceramic capacitors are used.
8.2.3 Application Curves

图 41. Enable Turn-ON

图 42. Enable Turn-OFF

图 43. Transient Response

9 Power Supply Recommendations

The TPSM53604 is designed to operate from an input voltage supply range between 3.8 V and 36 V. This input supply must be well-regulated and able to withstand maximum input current and maintain a stable voltage. The resistance of the input supply rail must be low enough that an input current transient does not cause a high enough drop at the TPSM53604 supply voltage that can cause a false UVLO fault triggering and system reset.

If the input supply is located more than a few centimeters from the TPSM53604, additional bulk capacitance can be required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 47-µF electrolytic capacitor.
10 Layout

The performance of any switching power supply depends as much upon the layout of the PCB as the component selection. The following guidelines help users design a PCB with the best power conversion performance, optimal thermal performance, and minimized generation of unwanted EMI.

10.1 Layout Guidelines

To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 图 44 through 图 46 show a typical PCB layout. The following are some considerations for an optimized layout.

- Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal stress.
- Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.
- Locate additional output capacitors between the ceramic capacitor and the load.
- Connect AGND to PGND at a single point.
- Place R_{FBT} and R_{FBB} as close as possible to the FB pin.
- Use multiple vias to connect the power planes to internal layers.

10.2 Layout Examples

图 44. Typical Top-Layer Layout

图 45. Typical Layer-2 Layout
10.3 Theta JA versus PCB Area

The amount of PCB copper affects the thermal performance of the device. 图 47 shows the effects of copper area on the junction-to-ambient thermal resistance (R_{thJA}) of the TPSM53604. The junction-to-ambient thermal resistance is plotted for a 4-layer PCB with PCB area from 30 cm2 to 80 cm2.

To determine the required copper area for an application:

1. Determine the maximum power dissipation of the device in the application by referencing the power dissipation graphs in sections Typical Characteristics ($V_{\text{IN}} = 5$ V) through Typical Characteristics ($V_{\text{IN}} = 36$ V).

2. Calculate the maximum R_{thJA} using 公式 3 and the maximum ambient temperature of the application.

$$R_{\text{thJA}} = \frac{(125^\circ C - T_{A(\text{max})})}{P_{\text{D(max)}}} \text{ (°C / W)}$$

3. Reference 图 47 to determine the minimum required PCB area for the application conditions.
10.4 Package Specifications

<table>
<thead>
<tr>
<th></th>
<th>TPSM53604</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td>429</td>
<td>mg</td>
</tr>
<tr>
<td>Flammability</td>
<td>Meets UL 94 V-O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBF Calculated Reliability</td>
<td>Per Bellcore TR-332, 50% stress, $T_A = 40^\circ$C, ground benign</td>
<td>89.3</td>
<td>Mhrs</td>
</tr>
</tbody>
</table>

10.5 EMI

The TPSM53604 is compliant with EN55011 Class-B radiated emissions. 图48 and 图49 show typical examples of radiated emissions plots for the TPSM53604. The graphs include the plots of the antenna in the horizontal and vertical positions.

EMI plots were measured using the standard TPSM53604EVM with no input filter.

![Radiated Emissions](image)

图48. Radiated Emissions 24-V Input, 5-V Output, 4-A Load
图 49. Radiated Emissions 12-V Input, 5-V Output, 4-A Load
11 器件和文档支持

11.1 器件支持

11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息，不能构成与此类产品或服务或保修的适用性有关的认可，不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.1.2 使用 WEBENCH® 工具创建定制设计方案

请单击此处，借助 WEBENCH® Power Designer 并使用 TPSM53604 器件创建定制设计方案。

1. 首先输入输入电压 \(V_{IN} \)、输出电压 \(V_{OUT} \) 和输出电流 \(I_{OUT} \) 要求。

2. 使用优化器拨盘优化该设计的关键参数，如效率、尺寸和成本。

3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。

WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。

在多数情况下，可执行以下操作：

• 运行电气仿真，观察重要波形以及电路性能

• 运行热性能仿真，了解电路板热性能

• 将定制原理图和布局方案以常用 CAD 格式导出

• 打印设计方案的 PDF 报告并与同事共享

有关 WEBENCH 工具的详细信息，请访问 www.ti.com.cn/WEBENCH。

11.2 文档支持

11.2.1 相关文档

请参阅如下相关文档：

德州仪器 (TI)，《采用 TPSM53602/3/4 实现负输出电压》应用报告

11.3 接收文档更新通知

要接收文档更新通知，请导航至 ti.com 上的器件产品文件夹。单击右上角的通知我进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

11.4 支持资源

TI E2E™ support forums 是一个工程师的去向之源，为快速验证的解答和设计帮助 — 直接来自专家。搜索现有解答或提出您的问题以获得快速设计帮助。

Linked content is provided “AS IS” by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI’s views; see TI’s Terms of Use.

11.5 商标

E2E 是 Texas Instruments 的商标。WEBENCH 是 Texas Instruments 的注册商标。所有其他商标是其各自所有者的财产。

11.6 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装运时，应将导线一起短或将装置置于导电泡沫中，以防止 MOS 门极遭受静电损伤。

11.7 Glossary

SLYZ022 — Ti Glossary。

This glossary lists and explains terms, acronyms, and definitions.
12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请查阅左侧的导航栏。
重要声明和免责声明

TI 均以“原样”提供技术性及可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源。不保证其中不含任何瑕疵，且不做任何明示或暗示的担保，包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任：
(1) 针对您的应用选择合适的TI产品；
(2) 设计、验证并测试您的应用；
(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更，恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等，TI对此概不负责，并且您须赔偿由此对TI及其代表造成的损害。

邮寄地址：上海市浦东新区世纪大道1568号中建大厦32楼，邮政编码：200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPSM53604RDAR</td>
<td>ACTIVE</td>
<td>B3QFN</td>
<td>RDA</td>
<td>15</td>
<td>1000</td>
<td>RoHS (In Work) & Green</td>
<td>NIPDAU</td>
<td>Level-3-245C-168 HR</td>
<td>-40 to 125</td>
<td>TPSM53604</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.

- **RoHS Exempt**: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

- **Green**: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
重要声明和免责声明

TI 以“原样”提供技术性及可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证其中不含任何瑕疵，且不做任何明示或暗示的担保，包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任：(1) 针对您的应用选择合适的TI产品；(2) 设计、验证并测试您的应用；(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更，恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等，TI对此概不负责，并且您必须赔偿由此对TI及其代表造成的损害。

TI提供所述资源并不扩展或以其他方式更改TI针对TI产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司