

2.5-V TO 3.3-V HIGH-PERFORMANCE CLOCK BUFFER

FEATURES

- High-Performance 1:10 Clock Driver
- Pin-to-Pin Skew < 100 ps at V_{DD} 3.3 V
- V_{DD} Range = 2.3 V to 3.6 V
- Input Clock Up To 200 MHz (See Figure 7)
- Operating Temperature Range -40°C to 85°C
- Output Enable Glitch Suppression
- Distributes One Clock Input to Two Banks of Five Outputs
- Packaged in 24-Pin TSSOP
- Pin-to-Pin Compatible to the CDCVF2310, Except the R = 22-Ω Series Damping Resistors at Yn

PW PACKAGE (TOP VIEW) GND □□ ☐ CLK 23 \square V_{DD} V_{DD} □ ⊤ V_{DD} 22 1Y0 🗆 21 1Y1 🞞 1Y2 🞞 20 □ 2Y1 ☐ GND GND □ 19 GND □ 18 ☐ GND 1Y3 🗆 17 □ 2Y2 1Y4 🗆 9 16 V_{DD} □ 10 15 \square \vee_{DD} \square V_{DD} 1G □□ 14 2Y4 🖂 12 13 **□** 2G

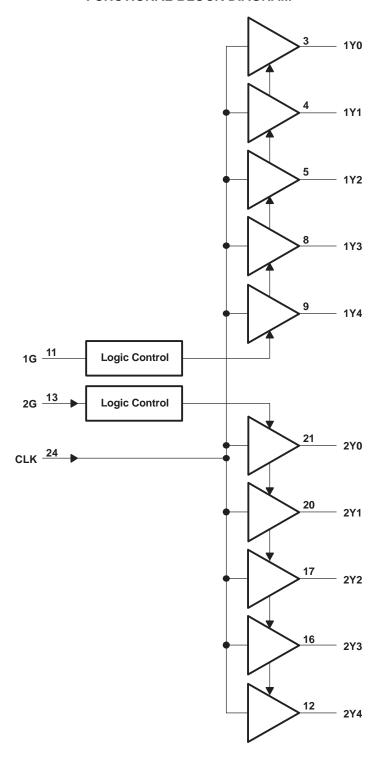
APPLICATIONS

• General-Purpose Applications

DESCRIPTION

The CDCVF310 is a high-performance, low-skew clock buffer that operates up to 200 MHz. Two banks of five outputs each provide low-skew copies of CLK. After power up, the default state of the outputs is low regardless of the state of the control pins. For normal operation, the outputs of bank 1Y[0:4] or 2Y[0:4] can be placed in a low state when the control pins (1G or 2G, respectively) are held low and a negative clock edge is detected on the CLK input. The outputs of bank 1Y[0:4] or 2Y[0:4] can be switched into the buffer mode when the control pins (1G and 2G) are held high and a negative clock edge is detected on the CLK input. The device operates in a 2.5-V and 3.3-V environment. The built-in output enable glitch suppression ensures a synchronized output enable sequence to distribute full period clock signals.

The CDCVF310 is characterized for operation from -40C to 85C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL BLOCK DIAGRAM

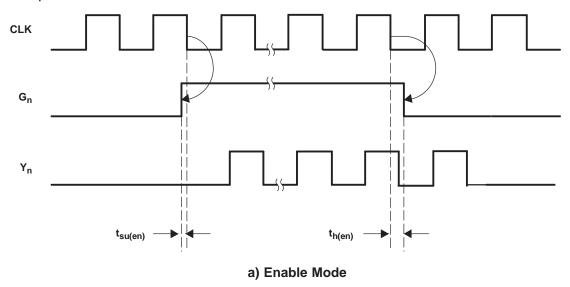
FUNCTION TABLE

INPUT			OUTPUT		
1G	1G 2G		1Y[0:4]	2Y[0:4]	
L	L	↓	L	L	
Н	L	↓	CLK ⁽¹⁾	L	
L	Н	↓	L	CLK ⁽¹⁾	
Н	Н	↓	CLK ⁽¹⁾	CLK ⁽¹⁾	

(1) After detecting one negative edge on the CLK input, the output follows the input CLK if the control pin is held high.

Terminal Functions

	TERMINAL NAME NO.		DECORPORION
NAME			DESCRIPTION
1G	11	I	Output enable control for 1Y[0:4] outputs. This output enable is active-high, meaning the 1Y[0:4] clock outputs follow the input clock (CLK) if this pin is logic high.
2G	13	I	Output enable control for 2Y[0:4] outputs. This output enable is active-high, meaning the 2Y[0:4] clock outputs follow the input clock (CLK) if this pin is logic high.
1Y[0:4]	3, 4, 5, 8, 9	0	Buffered output clocks
2Y[0:4]	21, 20, 17, 16, 12	0	Buffered output clocks
CLK	24	ı	Input reference frequency
GND	1, 6, 7, 18, 19		Ground
V_{DD}	2, 10, 14, 15, 22, 23		DC power supply, 2.3 V – 3.6 V



DETAILED DESCRIPTION

Output Enable Glitch Suppression Circuit

The purpose of the glitch suppression circuitry is to ensure the output enable sequence is synchronized with the clock input such that the output buffer is enabled or disabled on the next full period of the input clock (negative edge triggered by the input clock) (see Figure 1).

The G input must fulfill the timing requirements (t_{su}, t_h) according to the Switching Characteristics table for predictable operation.

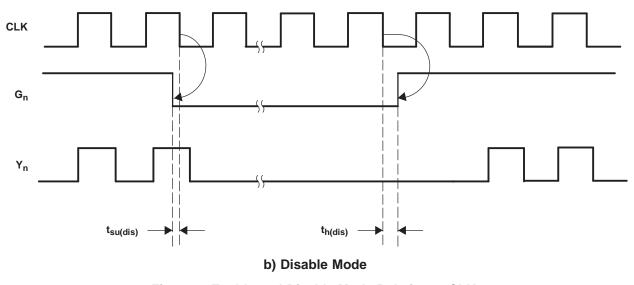


Figure 1. Enable and Disable Mode Relative to CLK

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

Supply voltage range, V _{DD}	-0.5 V to 4.6 V				
Input voltage range, V _I ⁽²⁾⁽³⁾	–0.5 V to V _{DD} + 0.5 V				
Output voltage range, V _O ⁽²⁾⁽³⁾	-0.5 V to V _{DD} + 0.5 V				
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{DD})	±50 mA				
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD})	±50 mA				
Continuous total output current, I _O (V _O = 0 to V _{DD})	±50 mA				
Package thermal impedance, $\theta_{\text{JA}}^{(4)}$: PW package	88°C/W, high K				
Раскаде шеппаг шречансе, одд · /. РVV раскаде	120°C/W, low K				
Storage temperature range T _{stg}	−65°C to 150°C				

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (1)

		MIN	NOM	MAX	UNIT	
Cupply voltage V		2.3	2.5		V	
Supply voltage, V _{DD}			3.3	3.6	V	
Low lovel input voltage V	V _{DD} = 3 V to 3.6 V			0.8	V	
Low-level input voltage, V _{IL}	V _{DD} = 2.3 V to 2.7 V			0.7	V	
High level input voltage V	V _{DD} = 3 V to 3.6 V	2			V	
High-level input voltage, V _{IH}	V _{DD} = 2.3 V to 2.7 V	1.7			V	
Input voltage, V _I		0		V_{DD}	V	
High lavel cutaut current I	V _{DD} = 3 V to 3.6 V			-12	1	
High-level output current, I _{OH}	V _{DD} = 2.3 V to 2.7 V				mA	
Low lovel output ourrent I	V _{DD} = 3 V to 3.6 V			12	A	
Low-level output current, I _{OL}	V _{DD} = 2.3 V to 2.7 V			6	mA	
Operating free-air temperature, T	A	-40		85	°C	

⁽¹⁾ Unused inputs must be held high or low to prevent them from floating.

TIMING REQUIREMENTS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{clk}	Clock frequency	V _{DD} = 2.3 V to 3.6 V, See Figure 7	0		200	MHz

Copyright © 2004–2008, Texas Instruments Incorporated

Submit Documentation Feedback

⁽²⁾ The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
V_{IK}	Input voltage	$V_{DD} = 3 V$,	$I_I = -18 \text{ mA}$			-1.2	V
I	Input current	V _I = 0 V or V _{DD}				±5	μΑ
I _{DD} ⁽²⁾	Static device current	$CLK = 0 V \text{ or } V_{DD} = 3.6 V,$	$I_O = 0 \text{ mA}$			80	μΑ
C _I	Input capacitance	$V_{DD} = 2.3 \text{ V to } 3.6 \text{ V},$	$V_I = 0 \text{ V or } V_{DD}$		2.5		pF
Co	Output capacitance	$V_{DD} = 2.3 \text{ V to } 3.6 \text{ V},$	$V_I = 0 V \text{ or } V_{DD}$		2.6		pF
C_{PD}	Power dissipation (3)	$V_{DD} = 2.3 \text{ V to } 3.6 \text{ V},$	$V_I = 0 V \text{ or } V_{DD}$			32	pF

- (1) All typical values are with respect to nominal V_{DD} .
- (2) For dynamic I_{DD} over Frequency see Figure 6.
- (3) This is the formula for the power dissipation calculation.

$$\begin{split} \text{P_tot} &= \text{P_stat} + \text{P_Dyn} + \text{P_Load[W]} \\ \text{P_stat} &= \text{V}_{\text{DD}} \times \text{I}_{\text{DD}} [\text{W}] \\ \text{P_Dyn} &= \text{C_PD} \times \text{V}_{\text{DD}} \times \text{V}_{\text{DD}} \times f [\text{W}] \\ \text{P_Load} &= \text{C_Load} \times \text{V}_{\text{DD}} \times \text{V}_{\text{DD}} \times f \times n [\text{W}] \\ \text{n} &= \text{Number of switching output pins} \end{split}$$

$V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$

PARAMETER		TEST	TEST CONDITIONS			UNIT
		V_{DD} = min to max,	$I_{OH} = -100 \mu A$	V _{DD} - 0.2		
V_{OH}	High-level output voltage	V - 2 V	I _{OH} = -12 mA	2.1		V
		$V_{DD} = 3 V$	$I_{OH} = -6 \text{ mA}$	2.4		
	V _{OL} Low-level output voltage	V_{DD} = min to max,	I _{OL} = 100 μA		0.2	
V_{OL}		V 2.V	I _{OL} = 12 mA		0.4	V
		$V_{DD} = 3 V$	$I_{OL} = 6 \text{ mA}$		0.3	
		$V_{DD} = 3 V$,	V _O = 1 V	-37		
I _{OH}	High-level output current	$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		– 57	mA
		$V_{DD} = 3.6 V,$	$V_0 = 3.135 \text{ V}$		-38	
		$V_{DD} = 3 V$,	V _O = 1.95 V	37		
I _{OL}	Low-level output current	$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		57	mA
		$V_{DD} = 3.6 \text{ V},$	V _O = 0.4 V		38	

⁽¹⁾ All typical values are with respect to nominal V_{DD} .

$V_{DD} = 2.5 \text{ V} \pm 0.2 \text{ V}$

	PARAMETER	TEST	TEST CONDITIONS			MAX	UNIT
V	High lovel output voltage	V _{DD} = min to max,	$I_{OH} = -100 \text{ A}$	V _{DD} - 0.2			V
V _{OH}	OH High-level output voltage	$V_{DD} = 2.3 \text{ V}$	$I_{OH} = -6 \text{ mA}$	1.8			V
V	V _{OL} Low-level output voltage	V _{DD} = min to max,	I _{OL} = 100 A			0.2	V
VOL		$V_{DD} = 2.3 \text{ V}$	$I_{OL} = 6 \text{ mA}$			0.4	V
		$V_{DD} = 2.3 V$,	V _O = 1 V	-20			
I _{OH}	High-level output current	$V_{DD} = 2.5 V,$	$V_0 = 1.25 \text{ V}$		-36		mA
		$V_{DD} = 2.7 V,$	$V_0 = 2.375 \text{ V}$			-25	
		$V_{DD} = 2.3 V,$	V _O = 1.2 V	20			
I_{OL}	OL Low-level output current	$V_{DD} = 2.5 V,$	$V_0 = 1.25 \text{ V}$		36		mA
		$V_{DD} = 2.7 V,$	$V_0 = 0.3 \ V$			25	

(1) All typical values are with respect to nominal V_{DD} .

Submit Documentation Feedback

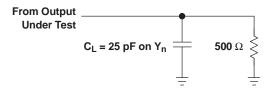
JITTER CHARACTERISTICS

Characterized using CDCVF310 Performance EVM when V_{DD} =3.3 V. Outputs not under test are terminated to 50 Ω .

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	TINU
	Additional and "Was force force to account AVO	12 kHz to 5 MHz, f _{out} = 30.72 MHz		47		fo rmo
Tjitter	Additive phase jitter from input to output 1Y0	12 kHz to 20 MHz, f _{out} = 125 MHz		40		fs rms

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{DD} = 3	3.3 V ±0.3 V (see Figure 2)		•			
t _{PLH}	CLK to Yn	f 0 MHz to 200 MHz	1		2.8	
t _{PHL}	CLK to Yn	f = 0 MHz to 200 MHz	1		2.8	ns
t _{sk(o)}	Output skew (Ym to Yn) (2) (see Figure 4)			100	150	ps
t _{sk(p)}	Pulse skew (see Figure 5)				250	ps
t _{sk(pp)}	Part-to-part skew				350	ps
t _r	Rise time	$V_0 = 0.4 \text{ V to 2 V}$	1.3		2.7	V/ns
t _f	Fall time	$V_0 = 2 \text{ V to } 0.4 \text{ V}$	1.3		2.7	V/ns
t _{su(en)}	Enable setup time, G_high before CLK \downarrow		0.1			ns
t _{su(dis)}	Disable setup time, G_low before CLK \downarrow		0.1			ns
t _{h(en)}	Enable hold time, G_high after CLK \downarrow		0.4			ns
t _{h(dis)}	Disable hold time, G_low after CLK \downarrow		0.4			ns
$V_{DD} = 2$	2.5 V ±0.2 V (see Figure 2)					
t _{PLH}	CLK to Yn	f = 0 MHz to 200 MHz	1.3		4	ns
t _{PHL}	CER to TII	1 - 0 1011 12 10 200 1011 12	1.3		4	113
t _{sk(o)}	Output skew (Ym to Yn) (2) (see Figure 4)			150	230	ps
t _{sk(p)}	Pulse skew (see Figure 5)				280	ps
t _{sk(pp)}	Part-to-part skew				400	ps
t _r	Rise time	$V_0 = 0.4 \text{ V to } 1.7 \text{ V}$	0.5		1.6	V/ns
t _f	Fall time	$V_0 = 1.7 \text{ V to } 0.4 \text{ V}$	0.5		1.6	V/ns
t _{su(en)}	Enable setup time, G_high before CLK \downarrow		0.1			ns
t _{su(dis)}	Disable setup time, G_low before CLK \downarrow		0.1			ns
t _{h(en)}	Enable hold time, G_high after CLK ↓		0.4			ns
t _{h(dis)}	Disable hold time, G_low after CLK ↓		0.4			ns

Submit Documentation Feedback

 $[\]begin{array}{ll} \text{(1)} & \text{All typical values are with respect to nominal V_{DD}.} \\ \text{(2)} & \text{The $t_{sk(o)}$ specification is only valid for equal loading of all outputs.} \end{array}$

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: Clock Frequency \leq 200 MHz, $Z_O = 50$ Ω , $t_r < 1.2$ ns, $t_f < 1.2$ ns.

Figure 2. Test Load Circuit

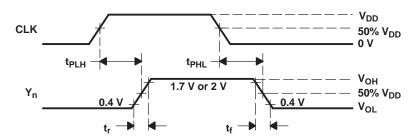


Figure 3. Voltage Waveforms Propagation Delay Times

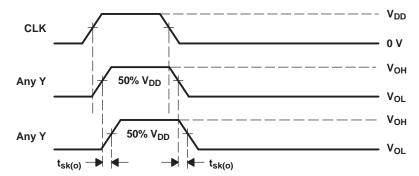
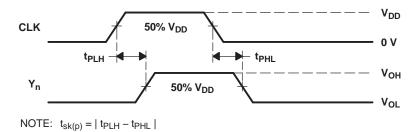
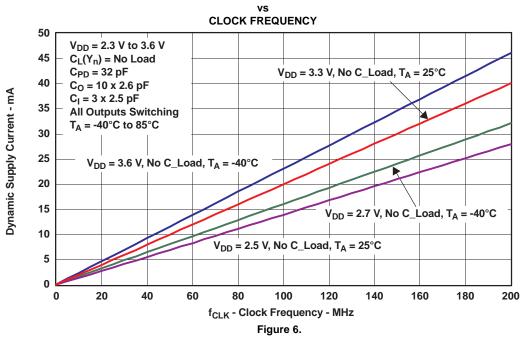
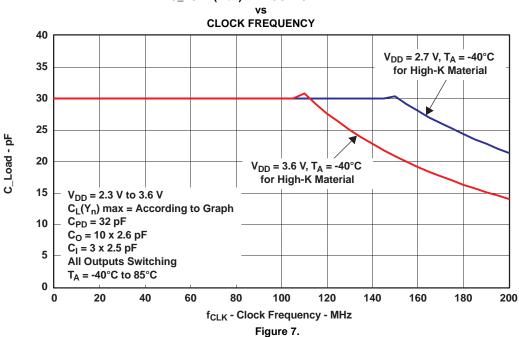


Figure 4. Output Skew


Figure 5. Pulse Skew

DYNAMIC SUPPLY CURRENT

C_LOAD(max) PER OUTPUT PIN Yn

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
CDCVF310PW	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKV310
CDCVF310PWR	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKV310
CDCVF310PWR1G4	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKV310

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

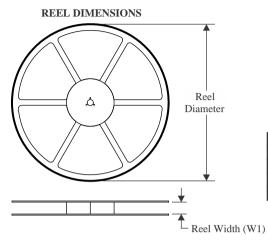
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

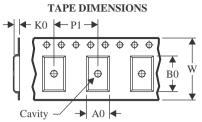
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

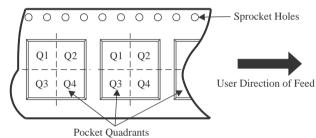
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

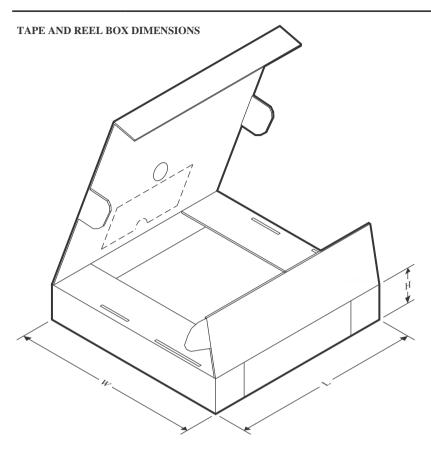
PACKAGE MATERIALS INFORMATION

www.ti.com 9-Oct-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

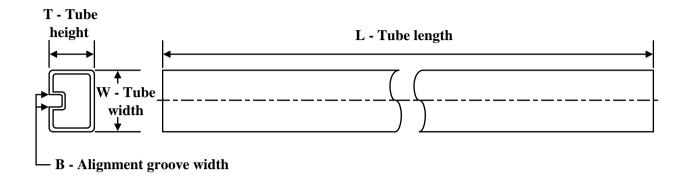


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCVF310PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
CDCVF310PWR1G4	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Oct-2025

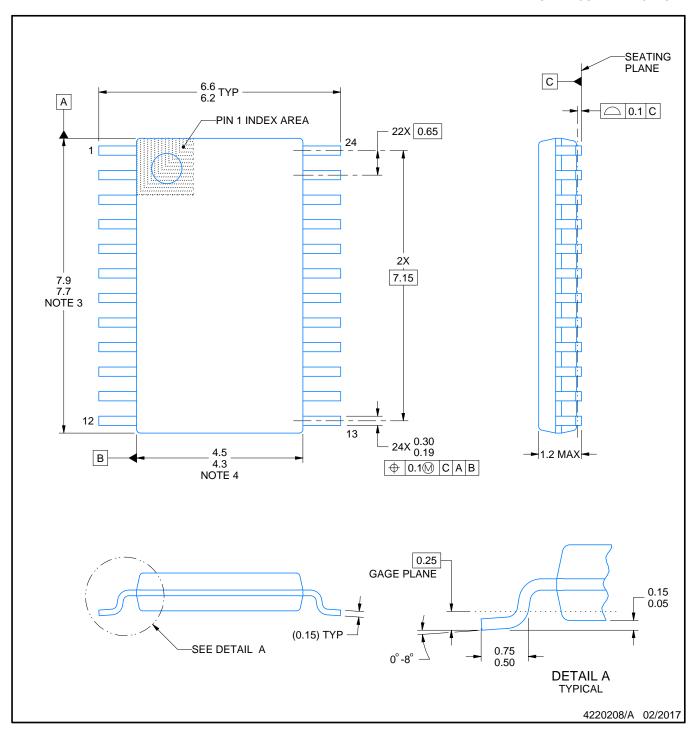

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
CDCVF310PWR	TSSOP	PW	24	2000	353.0	353.0	32.0	
CDCVF310PWR1G4	TSSOP	PW	24	2000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Oct-2025

TUBE

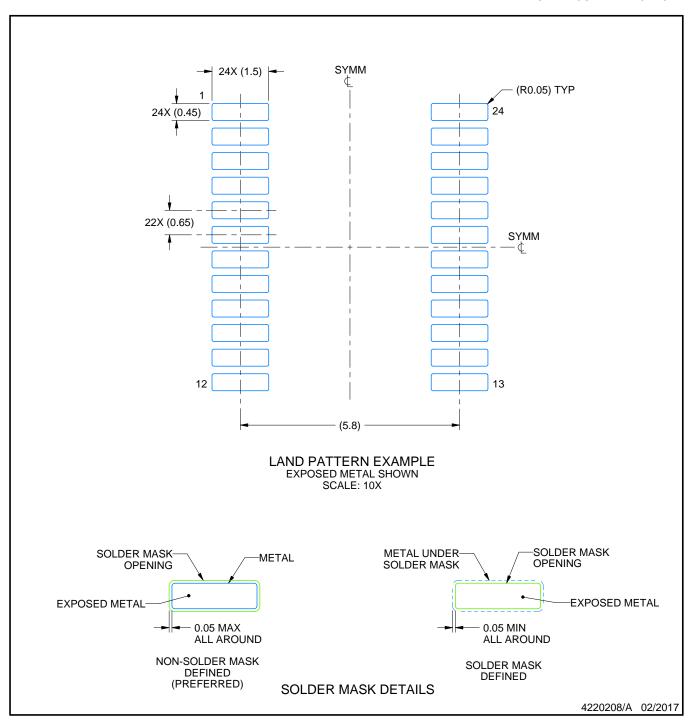


*All dimensions are nominal

Device Package Nam		Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)	
	CDCVF310PW	PW	TSSOP	24	60	530	10.2	3600	3.5	

SMALL OUTLINE PACKAGE

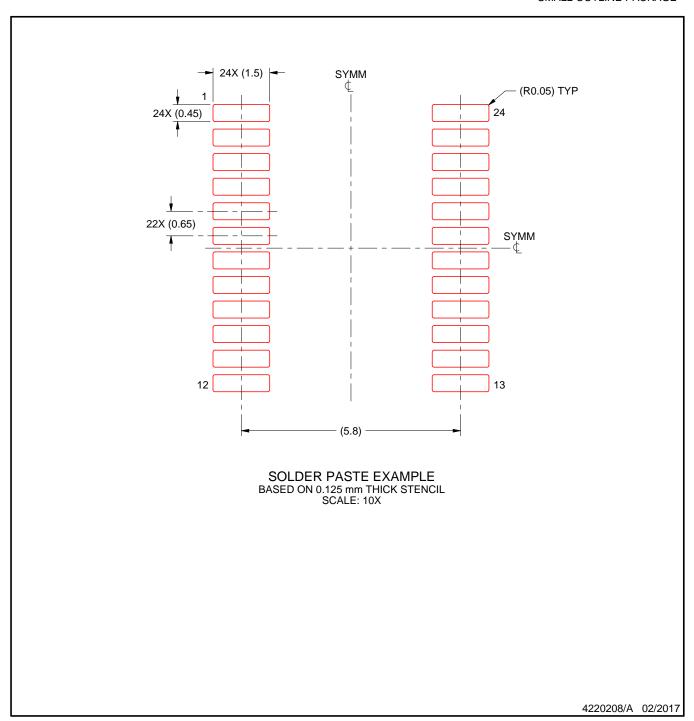
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025