

DAC5662 双路 12 位 275MSPS 数模转换器

1 特性

- 12 位双路发送 DAC
- 275MSPS 更新速率
- 单电源：3V 至 3.6V
- 高 SFDR：5MHz 时为 85dBc
- 高 IMD3：15.1MHz 和 16.1MHz 时为 78dBc
- WCDMA ACLR：30.72MHz 时为 70dB
- 独立或单一电阻器增益控制
- 双路或交错式数据
- 1.2V 片上基准电压
- 低功耗：330mW
- 断电模式：15mW
- 封装：48 引脚 TQFP

2 应用

- 蜂窝基站收发信台发射通道
 - CDMA：W-CDMA、CDMA2000、IS-95
 - TDMA：GSM、IS-136、EDGE/UWC-136
- 医疗、测试仪表
- 任意波形发生器 (AWG)
- 直接数字合成 (DDS)
- 线缆调制解调器终端系统 (CMTS)

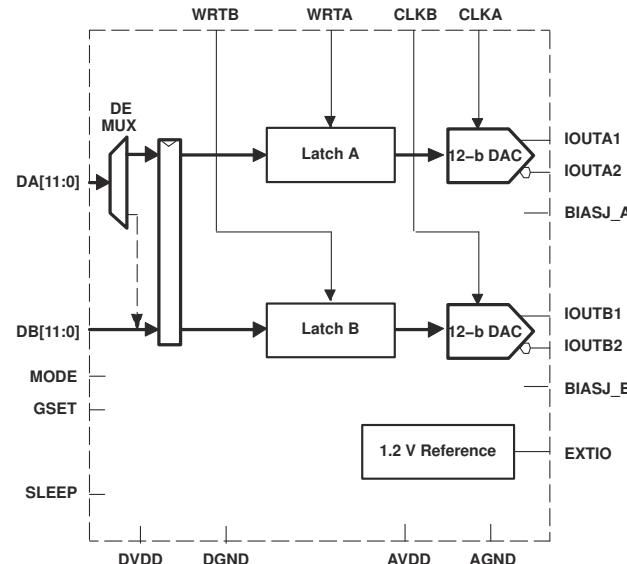
3 描述

DAC5662 器件是一款具有片上电压基准的单片双通道 12 位高速数模转换器 (DAC)。

DAC5662 可在高达 275MSPS 的更新速率下运行，具有卓越的动态性能、严格增益和失调电压匹配特性，因此非常适用于 I/Q 基带或直接 IF 通信应用。

每个 DAC 都具有高阻抗差动电流输出，适用于单端或差动模拟输出配置。外部电阻器允许对每个 DAC 的满量程输出电流进行单独或整体调节，通常使其介于 2mA 至 20mA 之间。精确的片上电压基准具有温度补偿特性，并可提供稳定的 1.2V 基准电压。也可选择使用外部基准。

DAC5662 具有两个 12 位并行输入端口，这两个端口具有单独的时钟和数据锁存器。在灵活性方面，当在交错模式下运行时，DAC5662 还可通过一个端口传输两个 DAC 的多路复用数据。


DAC5662 经过特别设计，可在 50Ω 双端接负载情况下提供差动变压器耦合输出。对于 20mA 满量程输出电流，支持 4:1 阻抗比 (产生 4dBm 输出功率) 和 1:1 阻抗比变压器 (-2dBm 输出功率)。

DAC5662 采用 48 引脚薄型四方扁平封装 (TQFP)。系列器件间引脚兼容，可提供 12 位 (DAC5662) 和 14 位 (DAC5672) 分辨率。此外，DAC5662 还与 DAC2902 和 AD9765 双路 DAC 之间具有引脚兼容性。该器件可在 -40°C 至 85°C 的工业温度范围内运行。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 (标称值)
DAC5662	TQFP	7.00mm x 7.00mm

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

功能方框图

本文档旨在为方便起见，提供有关 TI 产品中文版本的信息，以确认产品的概要。有关适用的官方英文版本的最新信息，请访问 www.ti.com，其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前，请务必参考最新版本的英文版本。

English Data Sheet: [SLAS425](#)

Table of Contents

1 特性	1	8.1 Overview.....	17
2 应用	1	8.2 Functional Block Diagram.....	17
3 描述	1	8.3 Feature Description.....	18
4 Revision History	3	8.4 Device Functional Modes.....	22
5 Pin Configurations and Functions	4	9 Application and Implementation	23
6 Specifications	5	9.1 Application Informmation.....	23
6.1 Absolute Maximum Ratings.....	5	9.2 Typical Application.....	23
6.2 ESD Ratings.....	5	10 Power Supply Recommendations	25
6.3 Recommended Operating Conditions.....	5	11 Layout	26
6.4 Thermal Resistance Characteristics.....	6	11.1 Layout Guidelines.....	26
6.5 Electrical Characteristics.....	7	11.2 Layout Example.....	26
6.6 Electrical Characteristics.....	8	12 Device and Documentation Support	30
6.7 Electrical Characteristics, AC.....	9	12.1 Documentation Support.....	30
6.8 Electrical Characteristics, DC.....	10	12.2 接收文档更新通知.....	30
6.9 Switching Characteristics.....	10	12.3 支持资源.....	30
6.10 Typical Characteristics.....	11	12.4 Trademarks.....	30
7 Parameter Measurement Information	14	12.5 静电放电警告.....	30
7.1 Digital Inputs and Timing.....	14	12.6 术语表.....	30
8 Detailed Description	17		

4 Revision History

注：以前版本的页码可能与当前版本的页码不同

Changes from Revision C (October 2020) to Revision D (October 2021)	Page
--	-------------

• 将器件型号从 DAC566452 更改为：器件信息表中的 DAC5662.....	1
---	---

Changes from Revision B (July 2004) to Revision C (October 2020)	Page
---	-------------

• 添加了“器件信息”表、“ESD 等级”表、“热阻特性”表、“特性说明”部分、“器件功能模式”、“应用和实施”部分、“电源相关建议”部分、“布局”部分、“器件和文档支持”部分以及“机械、封装和可订购信息”部分.....	1
--	---

5 Pin Configurations and Functions

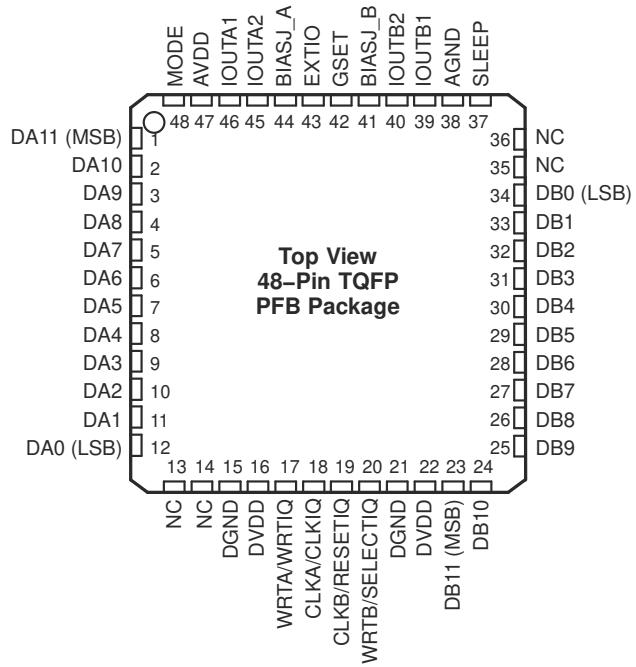


表 5-1. Pin Functions

PIN	I/O	DESCRIPTION
NAME	NO.	
AGND	38	I Analog ground
AVDD	47	I Analog supply voltage
BIASJ_A	44	O Full-scale output current bias for DACA
BIASJ_B	41	O Full-scale output current bias for DACB
CLKA/CLKIQ	18	I Clock input for DACA, CLKIQ in interleaved mode.
CLKB/RESETIQ	19	I Clock input for DACB, RESETIQ in interleaved mode.
DA[11:0]	1-12	I Data port A. DA11 is MSB and DA0 is LSB. Internal pulldown.
DB[11:0]	23-34	I Data port B. DB11 is MSB and DB0 is LSB. Internal pulldown.
DGND	15, 21	I Digital ground
DVDD	16, 22	I Digital supply voltage
EXTIO	43	I/O Internal reference output (bypass with 0.1 μ F to AGND) or external reference input.
GSET	42	I Gain-setting mode: H - 1 resistor, L - 2 resistors. Internal pullup.
IOUTA1	46	O DACA current output. Full-scale with all bits of DA high.
IOUTA2	45	O DACA complementary current output. Full-scale with all bits of DA low.
IOUTB1	39	O DACB current output. Full-scale with all bits of DB high.
IOUTB2	40	O DACB complementary current output. Full-scale with all bits of DB low.
MODE	48	I Mode Select: H - Dual Bus, L - Interleaved. Internal pullup.
NC	13, 14, 35, 36	- No connection
SLEEP	37	I Sleep function control input: H - DAC in power-down mode, L - DAC in operating mode. Internal pulldown.
WRTA/WRTIQ	17	I Input write signal for PORT A (WRTIQ in interleaving mode).
WRTB/SELECTIQ	20	I Input write signal for PORT B (SELECTIQ in interleaving mode).

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		Min	Max	UNIT
Supply voltage range	AVDD ⁽²⁾	-0.5	4	V
	DVDD ⁽³⁾	-0.5	4	V
Voltage between AGND and DGND		-0.5	0.5	V
Voltage between AVDD and DVDD		-0.5	0.5	V
Supply voltage range	DA[11:0] and DB[11:0] ⁽³⁾	-0.5	DVDD + 0.5	V
	MODE, SLEEP, CLKA, CLKB, WRTA, WRTB ⁽³⁾	-0.5	DVDD + 0.5	V
	IOUTA1, IOUTA2, IOUTB1, IOUTB2 ⁽²⁾	-1	AVDD + 0.5	V
	EXTIO, BIASJ_A, BIASJ_B, GSET ⁽²⁾	-0.5	AVDD + 0.5	V
Peak input current (any input)			+20	mA
Peak total input current (all inputs)			-30	mA
Operating free-air temperature range		-40	85	°C
Storage temperature range		-65	150	°C

(1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If briefly operating outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Measured with respect to AGND.

(3) Measured with respect to DGND.

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000
		Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

over operating free-air temperature range (unless otherwise noted)

6.3 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Supplies				
AVDD	3	3.3	3.6	V
DVDD	3	3.3	3.6	V
I _(AVDD) Analog supply current		75	90	mA
I _(DVDD) Digital supply current		25	38	mA
Analog Output				
I _{O(FS)} Full-Scale output current	2		20	mA
Output voltage compliance range		-1	1.25	V
Clock Interface (CLK, CLKC)				
CLKINPUT Frequency			275	MHz

6.4 Thermal Resistance Characteristics

THERMAL METRIC ⁽¹⁾		DAC5652	UNIT
		TQFP (PFB)	
		48-Pins	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	65.3	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	16.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	28.6	°C/W
ψ_{JT}	Junction-to-top characterization parameter	0.4	°C/W
ψ_{JB}	Junction-to-board characterization parameter	28.4	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC package thermal metrics](#) application report.

6.5 Electrical Characteristics

over operating free-air temperature range, AVDD = DVDD = 3.3 V, IOUTFS = 20 mA, independent gain set mode (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Specifications					
Resolution		12			Bits
DC Accuracy⁽¹⁾					
INL	Integral nonlinearity	-2	± 0.3	2	LSB
DNL	Differential nonlinearity	-2	± 0.2	2	LSB
Analog Output					
Offset error		0.03			%FSR
Gain error	With external reference	± 0.25			%FSR
	With internal reference	± 0.5			%FSR
Minimum full-scale output current ⁽²⁾		2			mA
Maximum full-scale output current ⁽²⁾		20			mA
Gain mismatch	With internal reference	-2	0.07	+2	%FSR
Output voltage compliance range ⁽³⁾		-1	1.25		V
R_O	Output resistance	300			k Ω
C_O	Output capacitance	5			pF
Reference Output					
Reference voltage		1.14	1.2	1.26	V
Reference output current ⁽⁴⁾		100			nA
Reference Input					
V_{EXTIO}	Input voltage	0.1	1.25		V
R_I	Input resistance	1			M Ω
Small signal bandwidth		300			kHz
C_I	Input capacitance	100			pF
Temperature Coefficients					
Offset drift		0			ppm of FSR/°C
Gain drift	With external reference	± 50			ppm of FSR/°C
	With internal reference	± 50			ppm of FSR/°C
Reference voltage drift		± 20			ppm/°C

- (1) Measured differentially through 50 Ω to AGND.
- (2) Nominal full-scale current, IOUTFS, equals 32x the IBIAS current.
- (3) The lower limit of the output compliance is determined by the CMOS process. Exceeding this limit may result in transistor breakdown, resulting in reduced reliability of the DAC5662 device. The upper limit of the output compliance is determined by the load resistors and full-scale output current. Exceeding the upper limit adversely affects distortion performance and integral nonlinearity.
- (4) Use an external buffer amplifier with high impedance input to drive any external load.

6.6 Electrical Characteristics

over operating free-air temperature range, AVDD = DVDD = 3.3 V, IOUTFS = 20 mA, f_{DATA} = 200 MSPS, f_{OUT} = 1 MHz, independent gain set mode (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Power Supply							
AVDD	Analog supply voltage		3	3.3	3.6	V	
DVDD	Digital supply voltage		3	3.3	3.6	V	
I _{AVDD}	Supply current, analog	Including output current through load resistor		75	90	mA	
		Sleep mode with clock		2.5	6	mA	
		Sleep mode without clock		2.5		mA	
I _{DVDD}	Supply current, digital		25	38		mA	
		Sleep mode with clock	12.5	18		mA	
		Sleep mode without clock	<10			µA	
Power dissipation			330	390		mW	
		Sleep mode without clock		15			
		f _{DATA} = 275 MSPS, f _{OUT} = 20 MHz		350			
APSRR	Power supply rejection ratio		-0.2	0.2		%FSR/V	
DPSRR			-0.2	0.2			
T _A	Operating free-air temperature		-40	85		°C	

6.7 Electrical Characteristics, AC

AC specifications over operating free-air temperature range, AVDD = DVDD = 3.3 V, IOUTFS = 20 mA, independent gain set mode, differential 1:1 impedance ratio transformer coupled output, 50- Ω doubly terminated load (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog Output						
f_{clk}	Maximum output update rate ⁽¹⁾		275			MSPS
t_s	Output settling time to 0.1% (DAC)	Mid-scale transition		20		ns
t_r	Output rise time 10% to 90% (OUT)			1.4		ns
t_f	Output fall time 90% to 10% (OUT)			1.5		ns
Output noise		IOUT _{FS} = 20 mA		55		pA/ \sqrt{Hz}
		IOUT _{FS} = 2 mA		30		pA/ \sqrt{Hz}
AC Linearity						
SFDR	Spurious free dynamic range	1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 50$ MSPS, $f_{OUT} = 1$ MHz, IOUTFS = 0 dB	81			dBc
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 50$ MSPS, $f_{OUT} = 1$ MHz, IOUTFS = -6 dB	83			
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 50$ MSPS, $f_{OUT} = 1$ MHz, IOUTFS = -12 dB	81			
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 100$ MSPS, $f_{OUT} = 5$ MHz	85			
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 100$ MSPS, $f_{OUT} = 20$ MHz	78			
		1st Nyquist zone, T_{MIN} to T_{MAX} , $f_{DATA} = 200$ MSPS, $f_{OUT} = 20$ MHz	66	71		
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 200$ MSPS, $f_{OUT} = 41$ MHz		68		
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 275$ MSPS, $f_{OUT} = 20$ MHz		72		
SNR	Signal-to-noise ratio	1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 100$ MSPS, $f_{OUT} = 5$ MHz	73			dB
		1st Nyquist zone, $T_A = 25^\circ C$, $f_{DATA} = 200$ MSPS, $f_{OUT} = 20$ MHz	67			
ACLR	Adjacent channel leakage ratio	W-CDMA signal with 3.84-MHz Bandwidth, $f_{DATA} = 61.44$ MSPS, IF = 15.360 MHz	70			dB
		W-CDMA signal with 3.84-MHz Bandwidth, $f_{DATA} = 122.88$ MSPS, IF = 30.72 MHz	70			
IMD3	Third-order two-tone intermodulation	Each tone at -6 dBFS, $T_A = 25^\circ C$, $f_{DATA} = 200$ MSPS, $f_{OUT} = 45.4$ and 46.4 MHz	62			dBc
		Each tone at -6 dBFS, $T_A = 25^\circ C$, $f_{DATA} = 100$ MSPS, $f_{OUT} = 15.1$ and 16.1 MHz	78			
IMD	Four-tone intermodulation	Each tone at -12 dBFS, $T_A = 25^\circ C$, $f_{DATA} = 100$ MSPS, $f_{OUT} = 15.6, 15.8, 16.2$, and 16.4 MHz	77			dBc
		Each tone at -12 dBFS, $T_A = 25^\circ C$, $f_{DATA} = 165$ MSPS, $f_{OUT} = 68.8, 69.6, 71.2$, and 72.0 MHz	56			
		Each tone at -12 dBFS, $T_A = 25^\circ C$, $f_{DATA} = 165$ MSPS, $f_{OUT} = 19.0, 19.1, 19.3$, and 19.4 MHz	74			
Channel isolation		$T_A = 25^\circ C$, $f_{DATA} = 165$ MSPS, $f_{OUT} (CH1) = 20$ MHz, $f_{OUT} (CH2) = 21$ MHz	97			dBc

(1) Specified by design and bench characterization. Not production tested.

6.8 Electrical Characteristics, DC

Digital specifications over operating free-air temperature range, AVDD = DVDD = 3.3 V, IOUTFS = 20 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Input					
V_{IH}	High-level input voltage		2	3.3	V
V_{IL}	Low-level input voltage		0	0.8	V
I_{IH}	High-level input current			± 50	μA
I_{IL}	Low-level input current			± 10	μA
$I_{IH(GSET)}$	High-level input current, GSET pin			7	μA
$I_{IL(GSET)}$	Low-level input current, GSET pin			-30	μA
$I_{IH(MODE)}$	High-level input current, MODE pin			-30	μA
$I_{IL(MODE)}$	Low-level input current, MODE pin			-80	μA
C_I	Input capacitance			5	pF

6.9 Switching Characteristics

Digital specifications over operating free-air temperature range, AVDD = DVDD = 3.3 V, IOUTFS = 20 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Timing - Dual Bus Mode					
t_{SU}	Input setup time		1		ns
t_h	Input hold time		1		ns
t_{LPH}	Input clock pulse high time			2	ns
t_{LAT}	Clock latency (WRTA/B to outputs)		4	4	clk
t_{PD}	Propagation delay time			1.5	ns
Timing - Single Bus Interleaved Mode					
t_{SU}	Input setup time		0.5		ns
t_h	Input hold time		0.5		ns
t_{LAT}	Clock latency (WRTA/B to outputs)		4	4	clk
t_{PD}	Propagation delay time			1.5	ns

6.10 Typical Characteristics

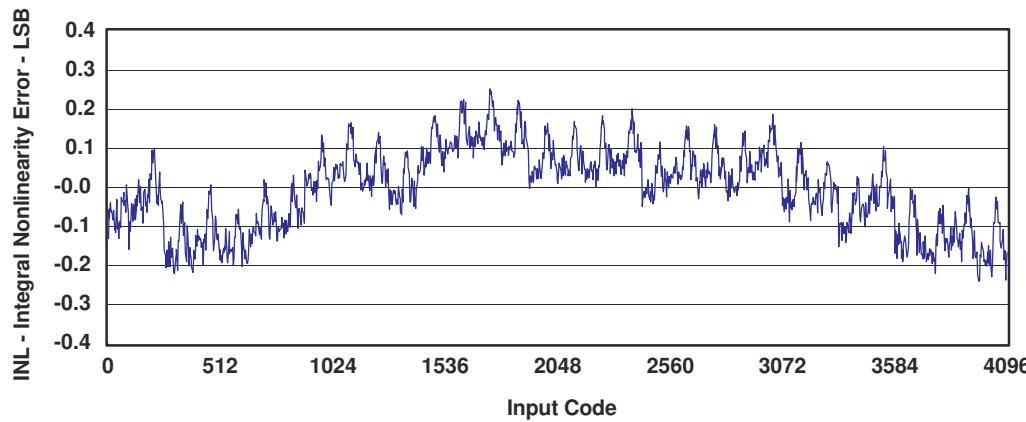


图 6-1. Integral Nonlinearity vs Input Code

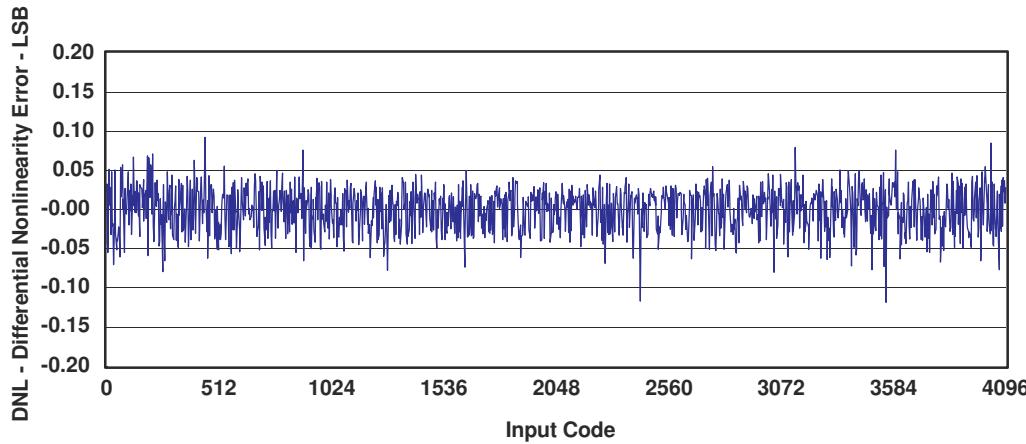


图 6-2. Differential Nonlinearity vs Input Code

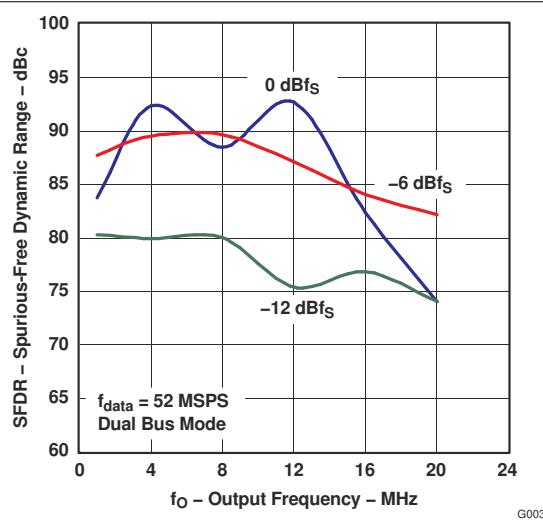


图 6-3. Spurious-Free Dynamic Range vs Output Frequency

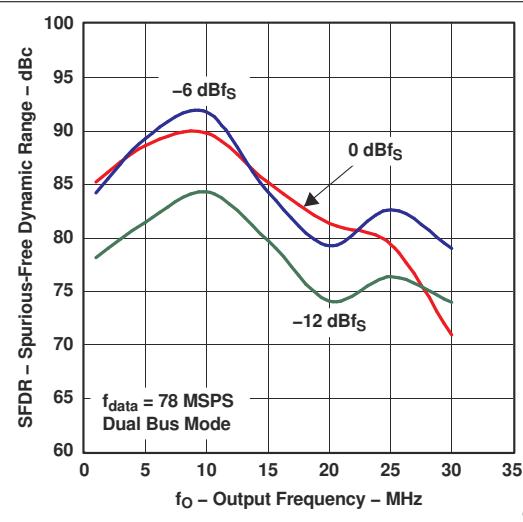
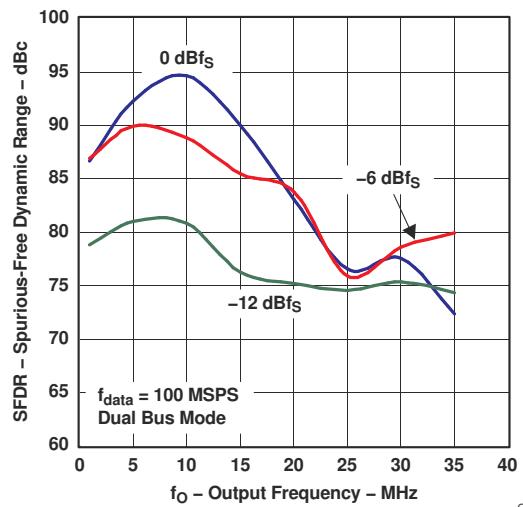
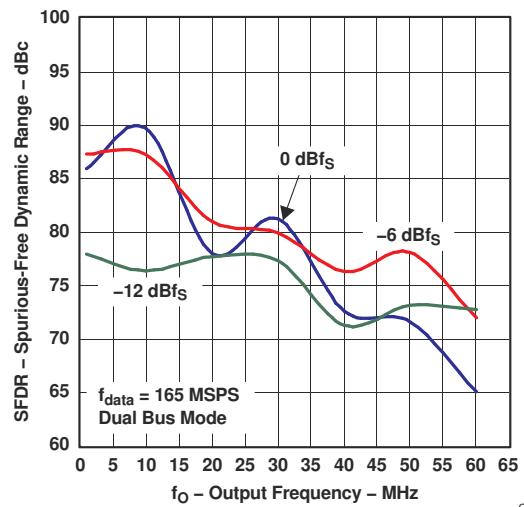




图 6-4. Spurious-Free Dynamic Range vs Output Frequency

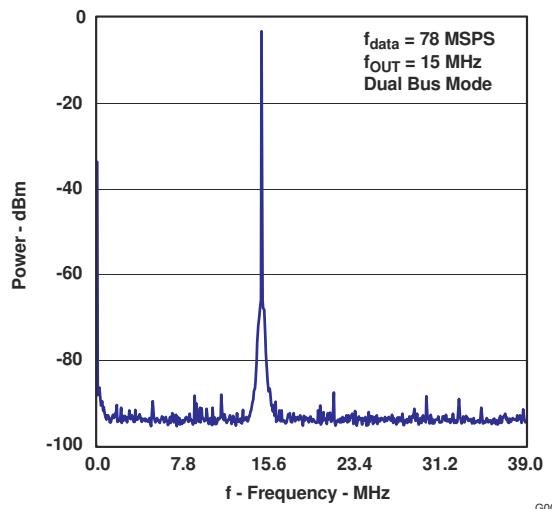

G005

图 6-5. Spurious-Free Dynamic Range vs Output Frequency

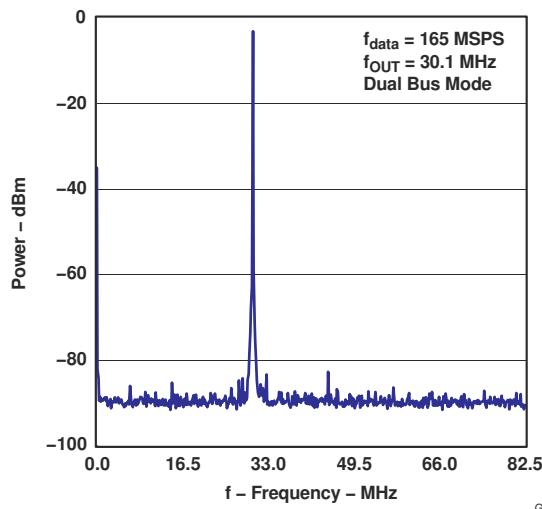

G006

图 6-6. Spurious-Free Dynamic Range vs Output Frequency


G007

图 6-7. Single-Tone Spectrum

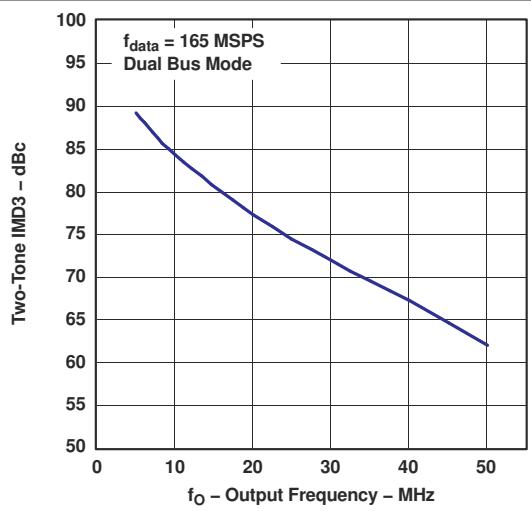

G008

图 6-8. Single-Tone Spectrum

G009

图 6-9. Two-Tone IMD3 vs Output Frequency

G010

图 6-10. Two-Tone IMD3 vs Output Frequency

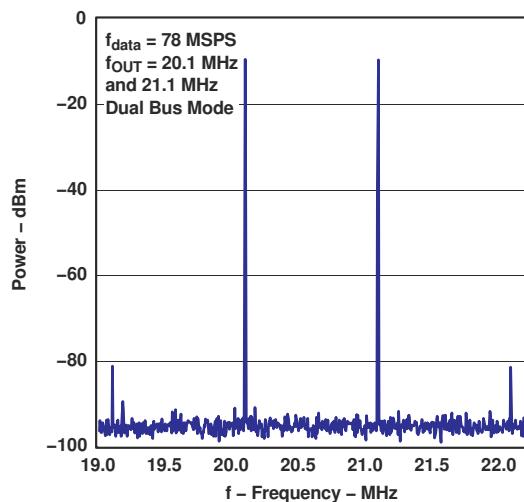


图 6-11. Two-Tone Spectrum

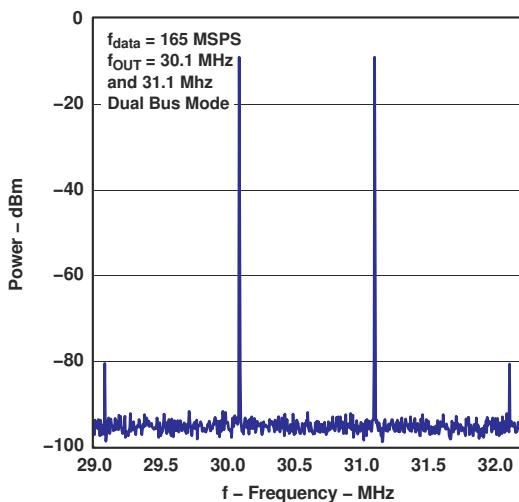


图 6-12. Two-Tone Spectrum

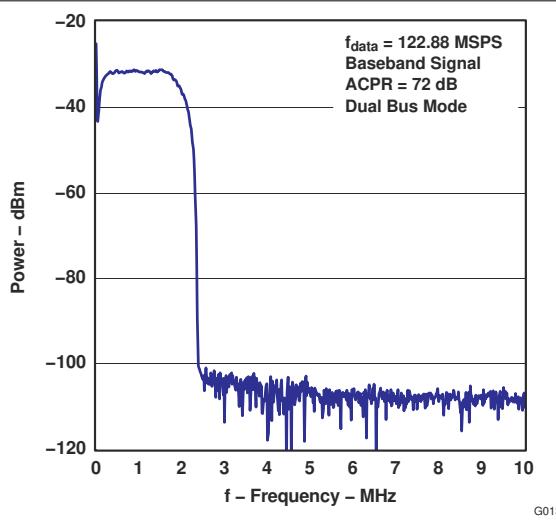


图 6-13. Power vs Frequency

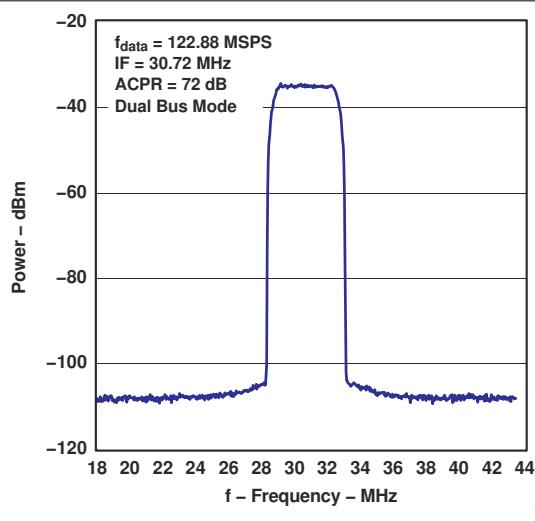


图 6-14. Power vs Frequency

7 Parameter Measurement Information

7.1 Digital Inputs and Timing

7.1.1 Digital Inputs

The data input ports of the DAC5662 accept a standard positive coding with data bit D11 being the most significant bit (MSB). The converter outputs support a clock rate of up to 275 MSPS. The best performance will typically be achieved with a symmetric duty cycle for write and clock; however, the duty cycle may vary as long as the timing specifications are met. Similarly, the setup and hold times may be chosen within their specified limits.

All digital inputs of the DAC5662 are CMOS compatible. [图 7-1](#) and [图 7-2](#) show schematics of the equivalent CMOS digital inputs of the DAC5662. The pullup and pulldown circuitry is approximately equivalent to $100\text{k}\Omega$. The 12-bit digital data input follows the offset positive binary coding scheme. The DAC5662 is designed to operate with a digital supply (DVDD) of 3 V to 3.6 V.

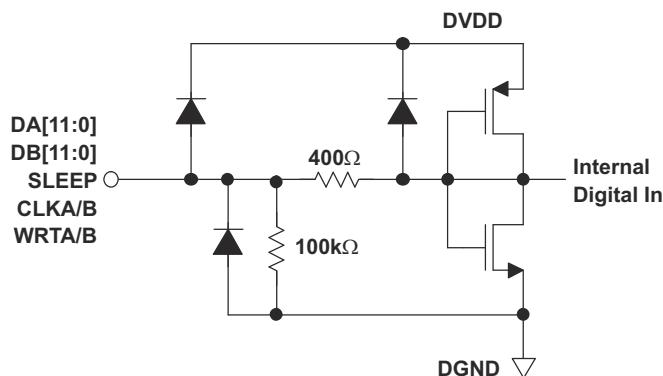


图 7-1. CMOS/TTL Digital Equivalent Input With Internal Pulldown Resistor

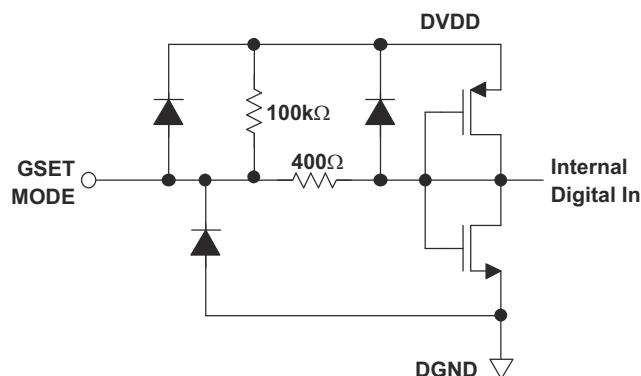
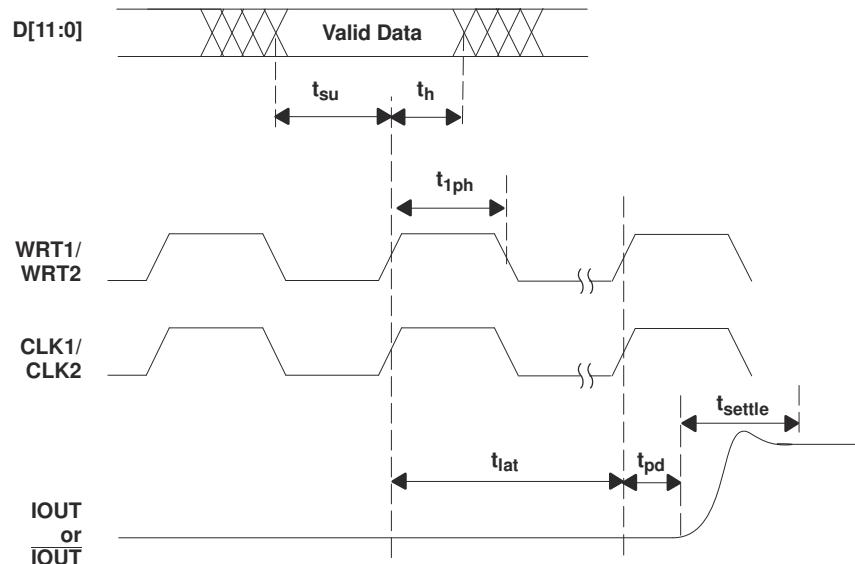


图 7-2. CMOS/TTL Digital Equivalent Input With Internal Pullup Resistor

7.1.2 Input Interfaces

The DAC5662 features two operating modes selected by the MODE pin, as shown in [表 7-1](#).

- For dual-bus input mode, the device essentially consists of two separate DACs. Each DAC has its own separate data input bus, clock input, and data write signal (data latch-in).
- In single-bus interleaved mode, the data should be presented interleaved at the I-channel input bus. The Q-channel input bus is not used in this mode. The clock and write input are now shared by both DACs.


表 7-1. Operating Modes

MODE PIN	Mode pin connected to DGND	Mode pin connected to DVDD
Bus input	Single-bus interleaved mode, clock and write input equal for both DACs	Dual-bus mode, DACs operate independently

7.1.3 Dual-Bus Data Interface and Timing

In dual-bus mode, the MODE pin is connected to DVDD. The two converter channels within the DAC5662 consist of two independent, 12-bit, parallel data ports. Each DAC channel is controlled by its own set of write (WRTA, WRTB) and clock (CLKA, CLKB) lines. The WRT lines control the channel input latches and the CLK lines control the DAC latches. The data is first loaded into the input latch by a rising edge of the WRT line

The internal data transfer requires a correct sequence of write and clock inputs, since essentially two clock domains having equal periods (but possibly different phases) are input to the DAC5662. This is defined by a minimum requirement of the time between the rising edge of the clock and the rising edge of the write inputs. This essentially implies that the rising edge of CLK must occur at the same time or before the rising edge of the WRT signal. A minimum delay of 2 ns should be maintained if the rising edge of the clock occurs after the rising edge of the write. Note that these conditions are satisfied when the clock and write inputs are connected externally. Note that all specifications were measured with the WRT and CLK lines connected together.

图 7-3. Dual Bus Mode Operation

7.1.4 Single-Bus Interleaved Data Interface and Timing

In single-bus interleaved mode, the MODE pin is connected to DGND. [图 7-4](#) shows the timing diagram. In interleaved mode, the I- and Q-channels share the write input (WRTIQ) and update clock (CLKIQ and internal CLKDACIQ). Multiplexing logic directs the input word at the I-channel input bus to either the I-channel input latch (SELECTIQ is high) or to the Q-channel input latch (SELECTIQ is low). When SELECTIQ is high, the data value in the Q-channel latch is retained by presenting the latch output data to its input again. When SELECTIQ is low, the data value in the I-channel latch is retained by presenting the latch output data to its input.

In interleaved mode, the I-channel input data rate is twice the update rate of the DAC core. As in dual-bus mode, it is important to maintain a correct sequence of write and clock inputs. The edge-triggered flip-flops latch the I- and Q-channel input words on the rising edge of the write input (WRTIQ). This data is presented to the I- and Q-DAC latches on the following falling edge of the write inputs. The DAC5662 clock input is divided by a factor of two before it is presented to the DAC latches.

Correct pairing of the I- and Q-channel data is done by RESETIQ. In interleaved mode, the clock input CLKIQ is divided by two, which would translate to a non-deterministic relation between the rising edges of the CLKIQ and CLKDACIQ. RESETIQ ensures, however, that the correct position of the rising edge of CLKDACIQ with respect to the data at the input of the DAC latch is determined. CLKDACIQ is disabled (low) when RESETIQ is high.

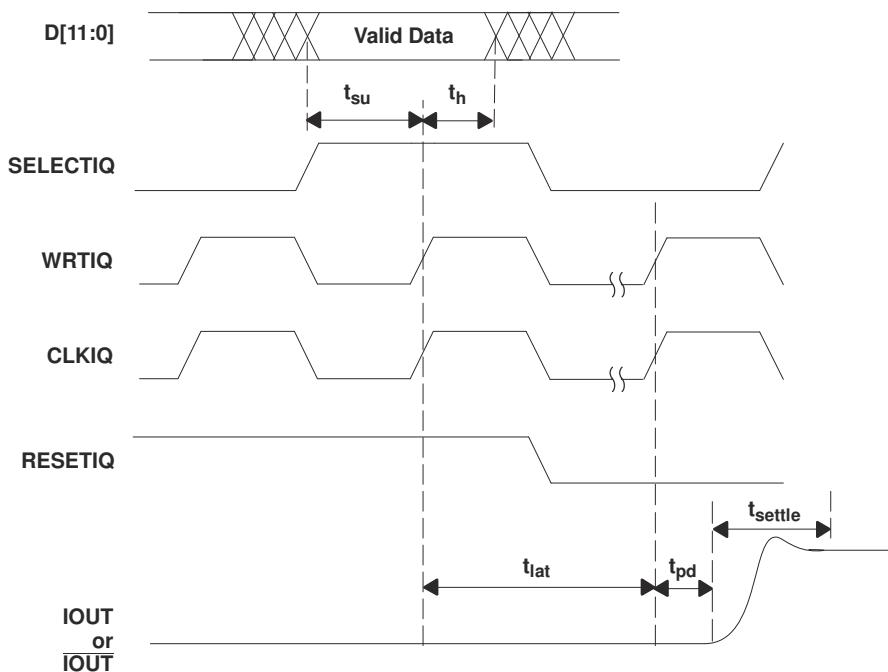
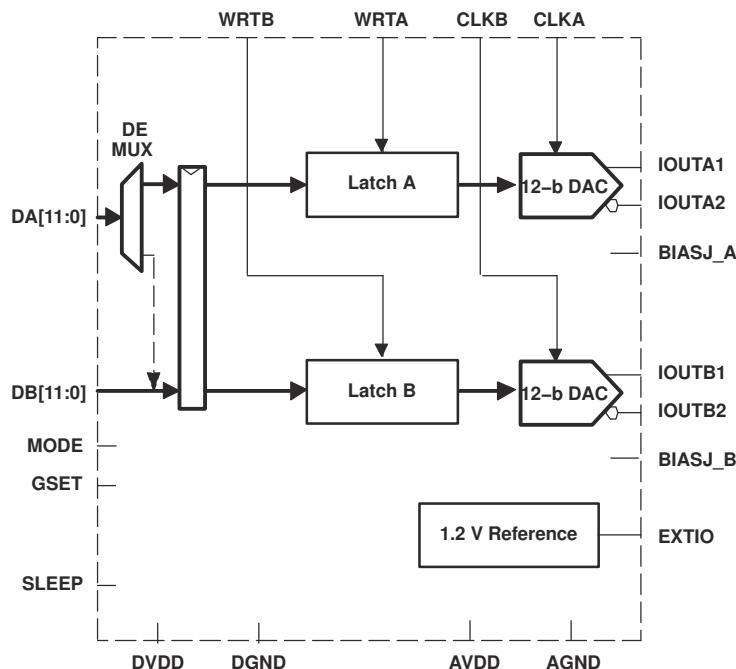


图 7-4. Single-Bus Interleaved Mode Operation

8 Detailed Description

8.1 Overview


The architecture of the DAC5662 uses a current steering technique to enable fast switching and high update rate. The core element within the monolithic DAC is an array of segmented current sources that are designed to deliver a full-scale output current of up to 20 mA. An internal decoder addresses the differential current switches each time the DAC is updated and a corresponding output current is formed by steering all currents to either output summing node, IOUT1 and IOUT2. The complementary outputs deliver a differential output signal, which improves the dynamic performance through reduction of even-order harmonics, common-mode signals (noise), and double the peak-to-peak output signal swing by a factor of two, compared to single-ended operation.

The segmented architecture results in a significant reduction of the glitch energy, improves the dynamic performance (SFDR), and DNL. The current outputs maintain a high output impedance of greater than 300 kΩ.

When GSET is high (one resistor mode), the full-scale output current for both DACs is determined by the ratio of the internal reference voltage (1.2 V) and an external resistor RSET connected to BIASJ_A. When GSET is low (two resistor mode), the full-scale output current for each DACs is determined by the ratio of the internal reference voltage (1.2 V) and separate external resistors RSET connected to BIASJ_A and BIASJ_B. The resulting IREF is internally multiplied by a factor of 32 to produce an effective DAC output current that can range from 2 mA to 20 mA, depending on the value of RSET.

The DAC5662 is split into a digital and an analog portion, each of which is powered through its own supply pin. The digital section includes edge-triggered input latches and the decoder logic, while the analog section comprises the current source array with its associated switches, and the reference circuitry.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 DAC Transfer Function

Each of the DACs in the DAC5662 has a set of complementary current outputs, I_{OUT1} and I_{OUT2} . The full-scale output current, I_{OUTFS} , is the summation of the two complementary output currents:

$$I_{OUTFS} = I_{OUT1} + I_{OUT2} \quad (1)$$

The individual output currents depend on the DAC code and can be expressed as:

$$I_{OUT1} = I_{OUTFS} \times \left(\frac{\text{Code}}{4096} \right) \quad (2)$$

$$I_{OUT2} = I_{OUTFS} \times \left(\frac{4095 - \text{Code}}{4096} \right) \quad (3)$$

where Code is the decimal representation of the DAC data input word. Additionally, I_{OUTFS} is a function of the reference current I_{REF} , which is determined by the reference voltage and the external setting resistor (R_{SET}).

$$I_{OUTFS} = 32 \times I_{REF} = 32 \times \frac{V_{REF}}{R_{SET}} \quad (4)$$

In most cases, the complementary outputs drive resistive loads or a terminated transformer. A signal voltage develops at each output according to:

$$V_{OUT1} = I_{OUT1} \times R_{LOAD} \quad (5)$$

$$V_{OUT2} = I_{OUT2} \times R_{LOAD} \quad (6)$$

The value of the load resistance is limited by the output compliance specification of the DAC5662. To maintain specified linearity performance, the voltage for I_{OUT1} and I_{OUT2} should not exceed the maximum allowable compliance range.

The total differential output voltage is:

$$V_{OUTDIFF} = V_{OUT1} - V_{OUT2} \quad (7)$$

$$V_{OUTDIFF} = \frac{(2 \times \text{Code} - 4095)}{4096} \times I_{OUTFS} \times R_{LOAD} \quad (8)$$

8.3.1.1 Analog Outputs

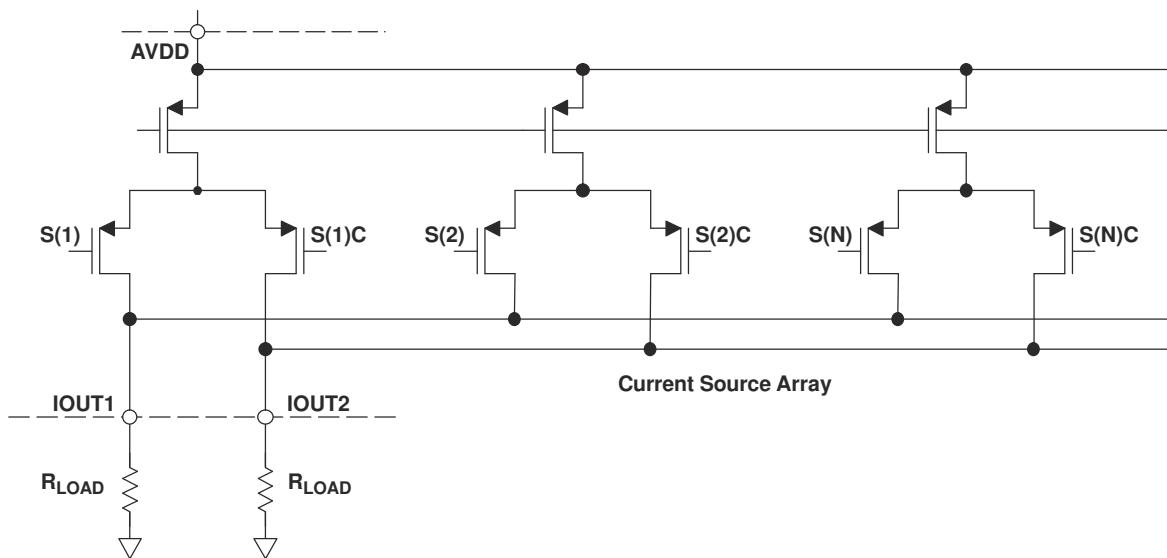


图 8-1. Analog Outputs

The DAC5662 provides two complementary current outputs, I_{OUT1} and I_{OUT2} . The simplified circuit of the analog output stage representing the differential topology is shown in [图 8-1](#). The output impedance of I_{OUT1} and I_{OUT2} results from the parallel combination of the differential switches, along with the current sources and associated parasitic capacitances.

The signal voltage swing that may develop at the two outputs, I_{OUT1} and I_{OUT2} , is limited by a negative and positive compliance. The negative limit of -1 V is given by the breakdown voltage of the CMOS process and exceeding it compromises the reliability of the DAC5662 or even causes permanent damage. With the full-scale output set to 20 mA, the positive compliance equals 1.2 V. Note that the compliance range decreases to about 1 V for a selected output current of $I_{OUTFS} = 2$ mA. Care should be taken that the configuration of DAC5662 does not exceed the compliance range to avoid degradation of the distortion performance and integral linearity.

Best distortion performance is typically achieved with the maximum full-scale output signal limited to approximately 0.5 Vpp. This is the case for a $50\text{-}\Omega$ doubly terminated load and a 20 -mA full-scale output current. A variety of loads can be adapted to the output of the DAC5662 by selecting a suitable transformer while maintaining optimum voltage levels at I_{OUT1} and I_{OUT2} . Furthermore, using the differential output configuration in combination with a transformer will be instrumental for achieving excellent distortion performance. Common-mode errors, such as even-order harmonics or noise, can be substantially reduced. This is particularly the case with high output frequencies.

For those applications requiring the optimum distortion and noise performance, it is recommended to select a full-scale output of 20 mA. A lower full-scale range of 2 mA may be considered for applications that require low power consumption, but can tolerate a slight reduction in performance level.

8.3.2 Output Configurations

The current outputs of the DAC5662 allow for a variety of configurations. As mentioned previously, utilizing the converter's differential outputs yield the best dynamic performance. Such a differential output circuit may consist of an RF transformer or a differential amplifier configuration. The transformer configuration is ideal for most applications with ac coupling, while op amps will be suitable for a dc-coupled configuration.

The single-ended configuration may be considered for applications requiring a unipolar output voltage. Connecting a resistor from either one of the outputs to ground converts the output current into a ground-referenced voltage signal. To improve on the dc linearity by maintaining a virtual ground, an I-to-V or op-amp configuration may be considered.

8.3.3 Differential With Transformer

Using an RF transformer provides a convenient way of converting the differential output signal into a single-ended signal while achieving excellent dynamic performance. The appropriate transformer should be carefully selected based on the output frequency spectrum and impedance requirements.

The differential transformer configuration has the benefit of significantly reducing common-mode signals, thus improving the dynamic performance over a wide range of frequencies. Furthermore, by selecting a suitable impedance ratio (winding ratio) the transformer can be used to provide optimum impedance matching while controlling the compliance voltage for the converter outputs.

图 8-2 和 图 8-3 show 50- Ω doubly terminated transformer configurations with 1:1 and 4:1 impedance ratios, respectively. Note that the center tap of the primary input of the transformer has to be grounded to enable a dc-current flow. Applying a 20-mA full-scale output current would lead to a 0.5-V_{PP} output for a 1:1 transformer and a 1-V_{PP} output for a 4:1 transformer. In general, the 1:1 transformer configuration will have slightly better output distortion, but the 4:1 transformer will have 6 dB higher output power.

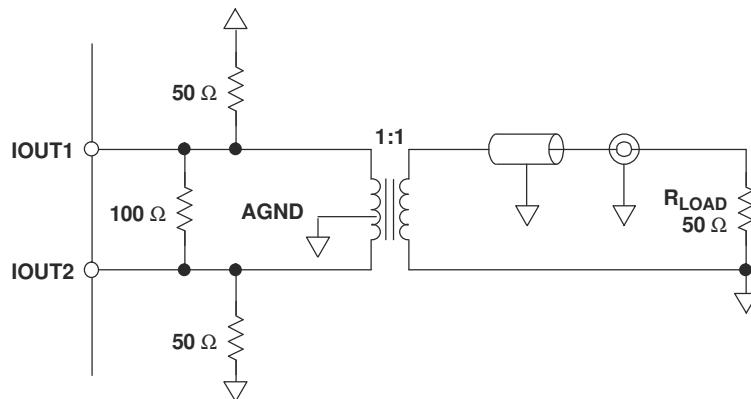


图 8-2. Driving a Doubly Terminated 50- Ω Cable Using a 1:1 Impedance Ratio Transformer

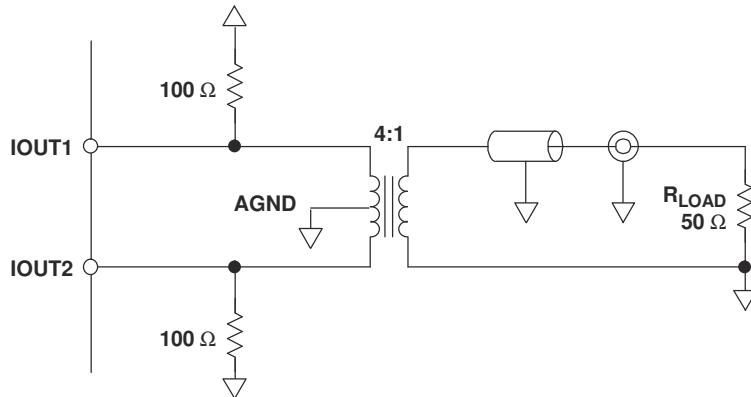


图 8-3. Driving a Doubly Terminated 50- Ω Cable Using a 4:1 Impedance Ratio Transformer

8.3.4 Single-Ended Configuration

图 8-4 shows the single-ended output configuration, where the output current I_{OUT1} flows into an equivalent load resistance of 25 Ω . Node IOUT2 should be connected to AGND or terminated with a resistor of 25 Ω to AGND. The nominal resistor load of 25 Ω gives a differential output swing of 1 V_{PP} when applying a 20-mA full-scale output current.

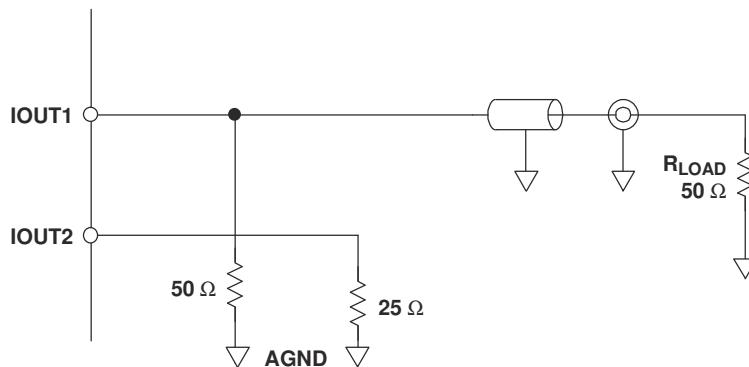


图 8-4. Driving a Doubly Terminated 50-Ω Cable Using a Single-Ended Output

8.3.5 Reference Operation

8.3.5.1 Internal Reference

The DAC5662 has an on-chip reference circuit which comprises a 1.2-V bandgap reference and two control amplifiers, one for each DAC. The full-scale output current, I_{OUTFS} , of the DAC5662 is determined by the reference voltage, V_{REF} , and the value of resistor R_{SET} . I_{OUTFS} can be calculated by:

$$I_{OUTFS} = 32 \times I_{REF} = 32 \times \frac{V_{REF}}{R_{SET}} \quad (9)$$

The reference control amplifier operates as a V-to-I converter producing a reference current, I_{REF} , which is determined by the ratio of V_{REF} and R_{SET} (see [方程式 9](#)). The full-scale output current, I_{OUTFS} , results from multiplying I_{REF} by a fixed factor of 32.

Using the internal reference, a 2-kΩ resistor value results in a full-scale output of approximately 20 mA. Resistors with a tolerance of 1% or better should be considered. Selecting higher values, the output current can be adjusted from 20 mA down to 2 mA. Operating the DAC5662 at lower than 20-mA output currents may be desirable for reasons of reducing the total power consumption, improving the distortion performance, or observing the output compliance voltage limitations for a given load condition.

It is recommended to bypass the EXTIO pin with a ceramic chip capacitor of 0.1 μ F or more. The control amplifier is internally compensated and its small signal bandwidth is approximately 300 kHz.

8.3.5.2 External Reference

The internal reference can be disabled by simply applying an external reference voltage into the EXTIO pin, which in this case functions as an input. The use of an external reference may be considered for applications that require higher accuracy and drift performance or to add the ability of dynamic gain control.

While a 0.1- μ F capacitor is recommended to be used with the internal reference, it is optional for the external reference operation. The reference input, EXTIO, has a high input impedance (1 MΩ) and can easily be driven by various sources. Note that the voltage range of the external reference should stay within the compliance range of the reference input.

8.3.6 Gain Setting Option

The full-scale output current on the DAC5662 can be set two ways: either for each of the two DAC channels independently or for both channels simultaneously. For the independent gain set mode, the GSET pin (pin 42) must be low (i.e. connected to AGND). In this mode, two external resistors are required — one RSET connected to the BIASJ_A pin (pin 44) and the other to the BIASJ_B pin (pin 41). In this configuration, the user has the flexibility to set and adjust the full-scale output current for each DAC independently, allowing for the compensation of possible gain mismatches elsewhere within the transmit signal path.

Alternatively, bringing the GSET pin high (i.e. connected to AVDD), the DAC5662 switches into the simultaneous gain set mode. Now the full-scale output current of both DAC channels is determined by only one external RSET resistor connected to the BIASJ_A pin. The resistor at the BIASJ_B pin may be removed, however this is not required since this pin is not functional in this mode and the resistor has no effect on the gain equation.

8.4 Device Functional Modes

8.4.1 Sleep Mode

The DAC5662 features a power-down function which can be used to reduce the total supply current to less than 3.5 mA over the specified supply range if no clock is present. Applying a logic high to the SLEEP pin initiates the power-down mode, while a logic low enables normal operation. When left unconnected, an internal active pulldown circuit enables the normal operation of the converter.

9 Application and Implementation

Note

以下应用部分的信息不属于 TI 组件规范，TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适用于其应用。客户应验证并测试其设计，以确保系统功能。

9.1 Application Information

9.2 Typical Application

A typical application for the DAC5662 is as dual or single carrier transmitter. The DAC is provided with some input digital baseband signal and it outputs an analog carrier. A typical configuration is described below.

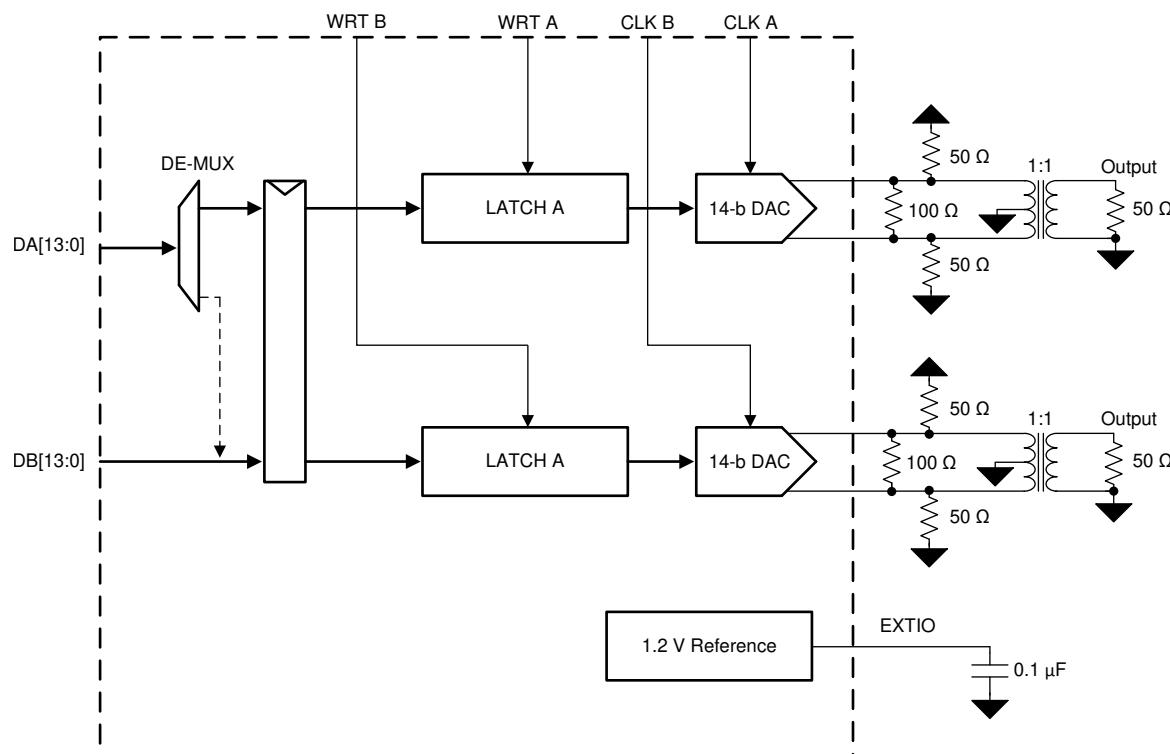


图 9-1. Typical Application Schematic

- Clock rate = 122.88 MHz
- Input data = WCDMA with IF frequency at 30.72 MHz
- AVDD = DVDD = 3.3 V

9.2.1 Design Requirements

The requirements for this design were to generate a single WCDMA signal at an intermediate frequency of 30.72 MHz. The ACLR needs to be better than 72 dBc.

9.2.2 Detailed Design Procedure

The single carrier signal with an intermediate frequency of 30.72 MHz must be created in the digital processor at a sample rate of 122.88 Msps for DAC. These 12 bit samples are placed on the 12b CMOS input port of the DAC.

A CMOS DAC clock must be generated from a clock source at 122.88 MHz. This must be provided to the CLK pin of the DAC. The IOUTA and IOUTB differential connections must be connected to a transformer to provide a

single ended output. A typical 1:1 impedance transformer is used on the device EVM. The DAC5662 EVM provides a good reference for this design example.

9.2.3 Application Curves

This spectrum analyzer plot shows the ACLR for the transformer output single carrier signal with intermediate frequency of 30.72 MHz. The results meet the system requirements for a minimum of 72 dBc ACLR.

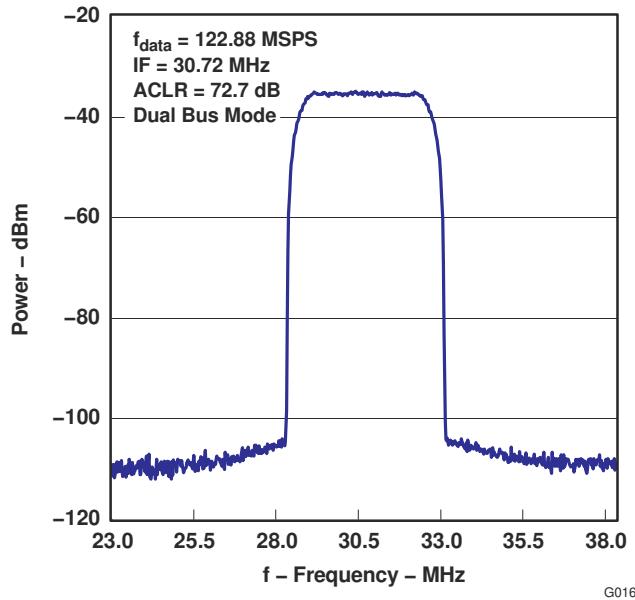


图 9-2. Power vs Frequency

10 Power Supply Recommendations

It is recommended that the device be powered with the nominal supply voltage as indicated in the [Recommended Operating Conditions](#).

In most instances, the best performance is achieved with LDO supplies. However, the supplies may be driven with direct outputs from a DC-DC switcher as long as the noise performance of the switcher is acceptable

11 Layout

11.1 Layout Guidelines

The DAC5662 EVM layout should be used as a reference for the layout to obtain the best performance. A sample layout is shown in Figure 11-1 through Figure 11-4. Some important layout recommendations are:

1. Use a single ground plane. Keep the digital and analog signals on distinct separate sections of the board. This may be virtually divided down the middle of the device package when doing placement and layout.
2. Keep the analog outputs as far away from the switching clocks and digital signals as possible. This will keep coupling from the digital circuits to the analog outputs to a minimum.
3. Decoupling caps should be kept close to the power pins of the device.

11.2 Layout Example

The EVM is constructed on a 4-layer, 5.1-inch x 4.8-inch, 0.062-inch thick PCB using FR-4 material. [图 11-1](#) through [图 11-4](#) show the PCB layout for the EVM.

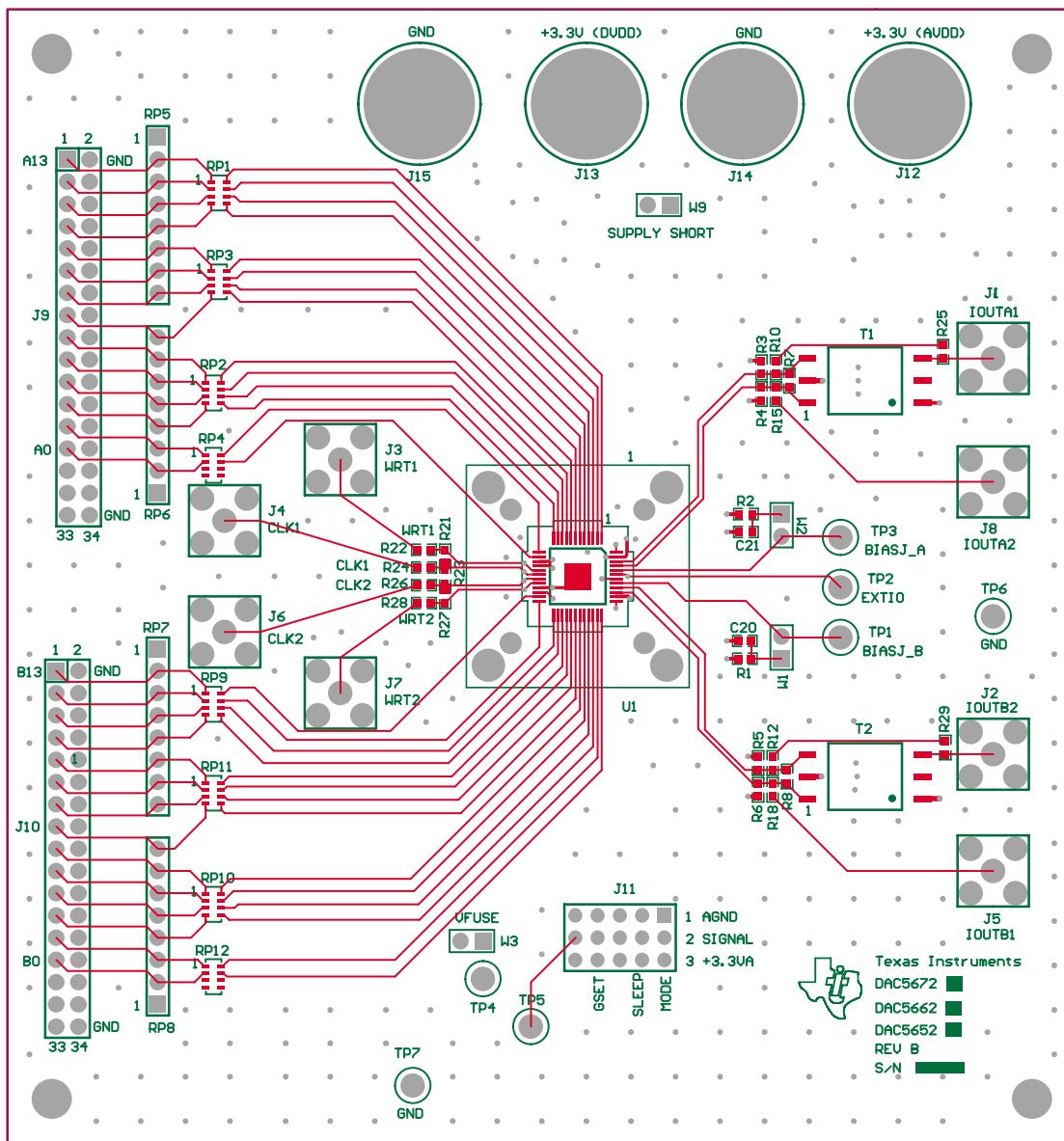


图 11-1. Top Layer 1

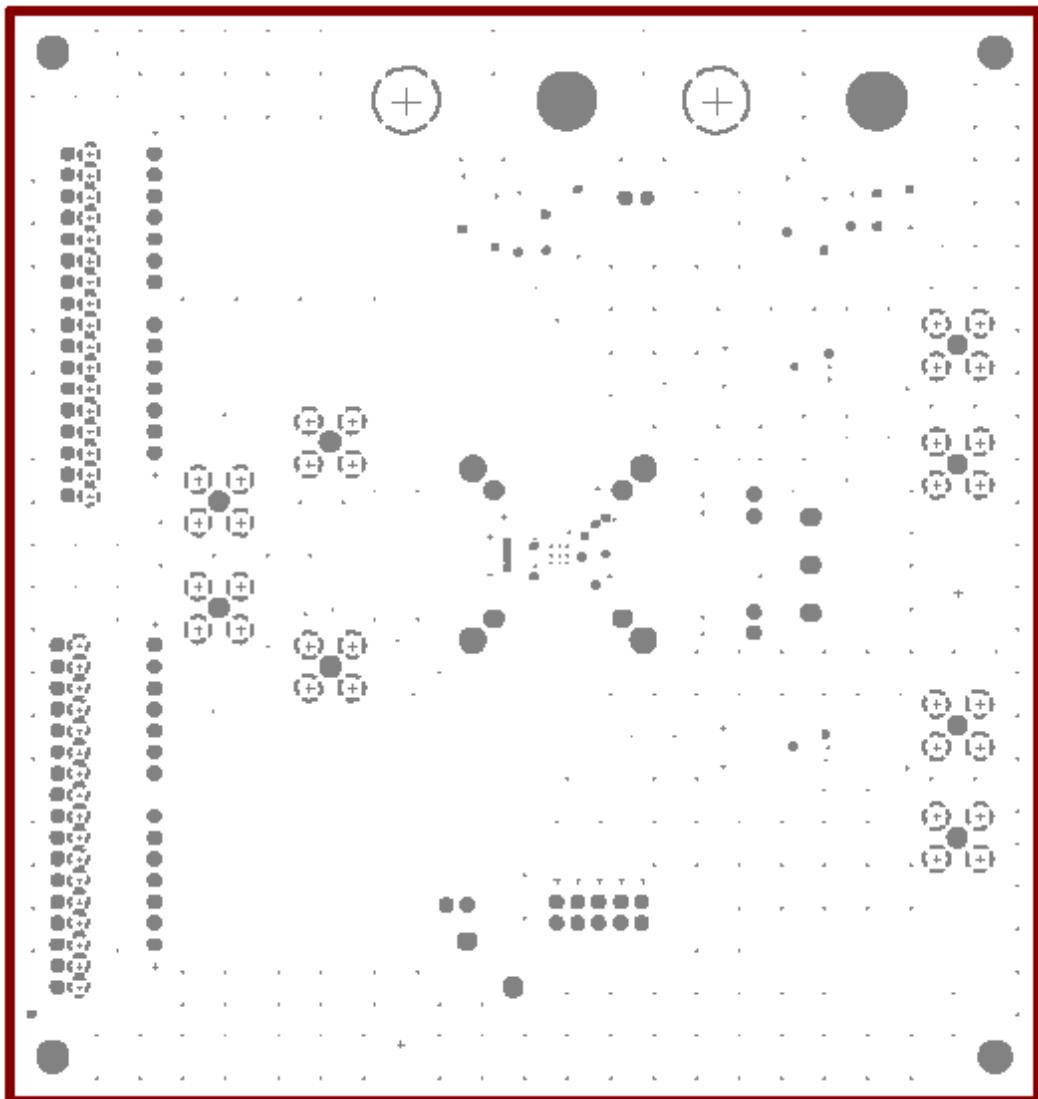


图 11-2. Ground Plane Layer 2

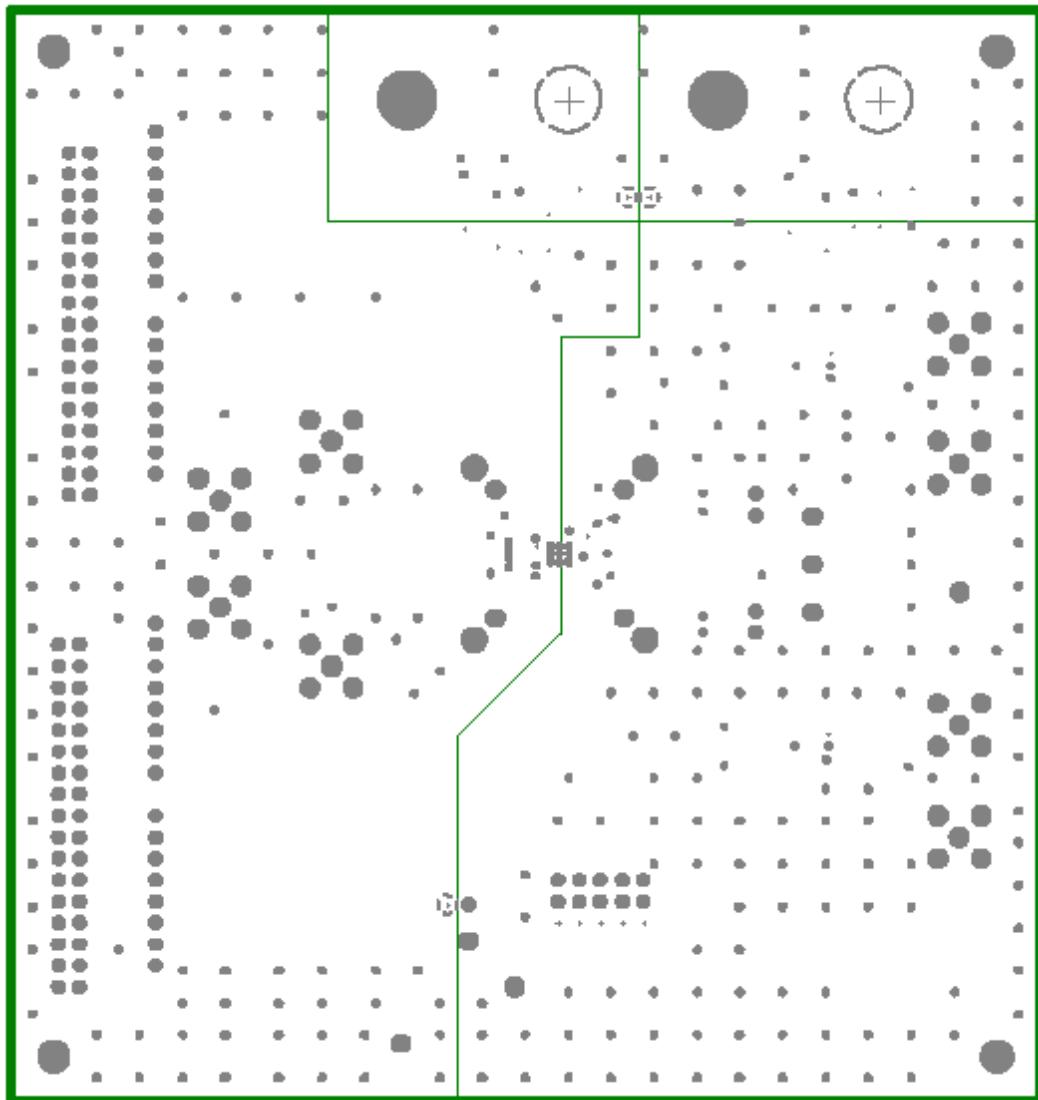


图 11-3. Power Plane Layer 3

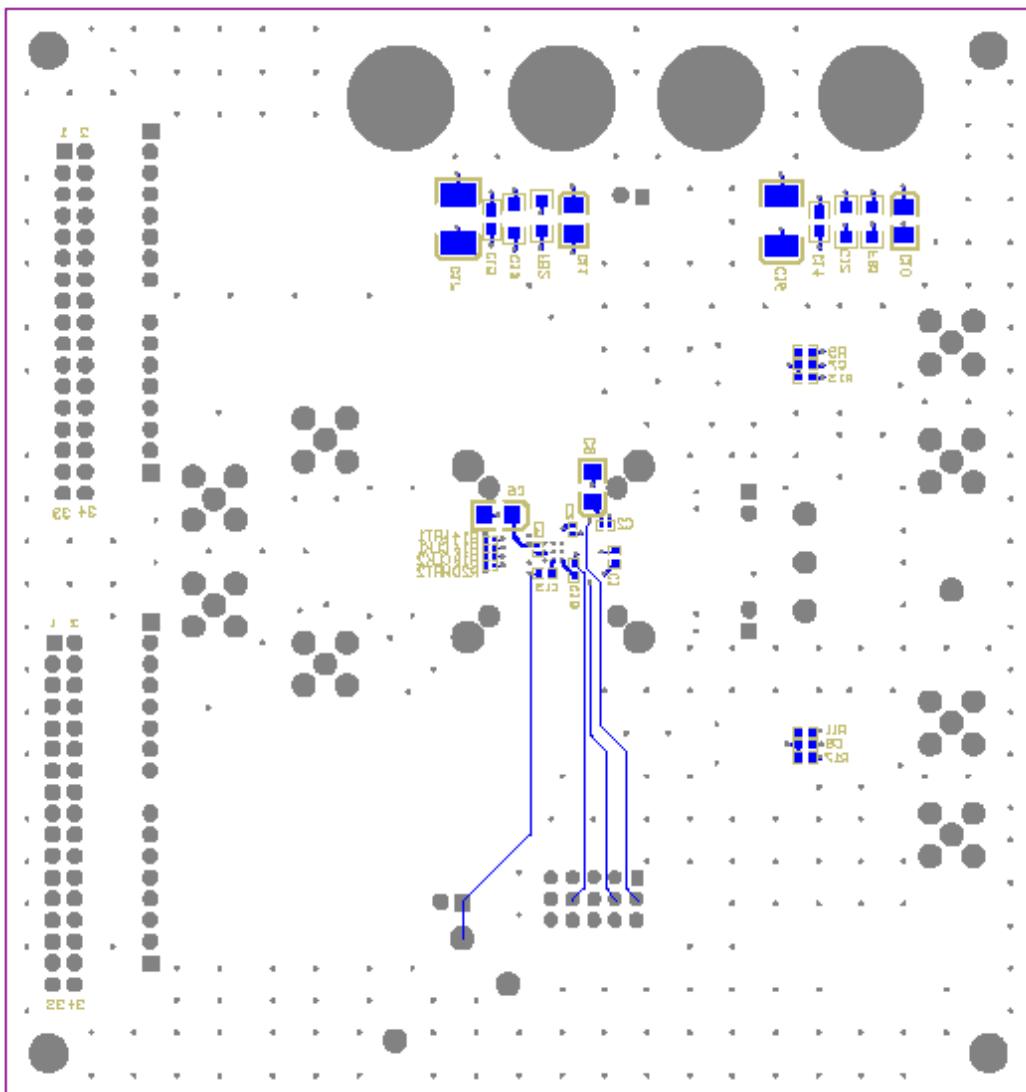


图 11-4. Bottom Layer 4

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Documentation Support

12.1.1 Related Documentation

12.2 接收文档更新通知

要接收文档更新通知，请导航至 ti.com 上的器件产品文件夹。点击 [订阅更新](#) 进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

12.3 支持资源

[TI E2E™ 支持论坛](#) 是工程师的重要参考资料，可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能导致器件与其发布的规格不相符。

12.6 术语表

TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
DAC5662IPFB	Active	Production	TQFP (PFB) 48	250 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	DAC5662I
DAC5662IPFB.A	Active	Production	TQFP (PFB) 48	250 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	DAC5662I
DAC5662IPFBG4	Active	Production	TQFP (PFB) 48	250 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	DAC5662I
DAC5662IPFBG4.A	Active	Production	TQFP (PFB) 48	250 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	DAC5662I
DAC5662IPFBR	Active	Production	TQFP (PFB) 48	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	DAC5662I
DAC5662IPFBR.A	Active	Production	TQFP (PFB) 48	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	DAC5662I

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

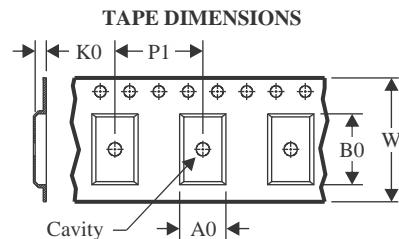
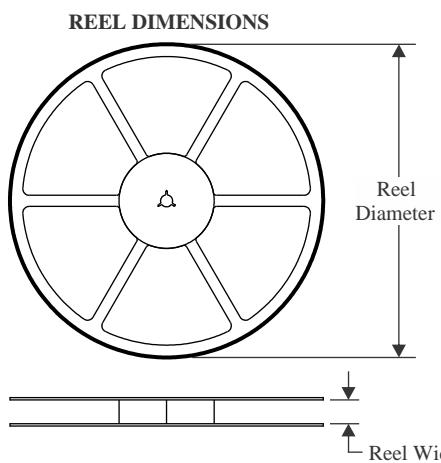
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

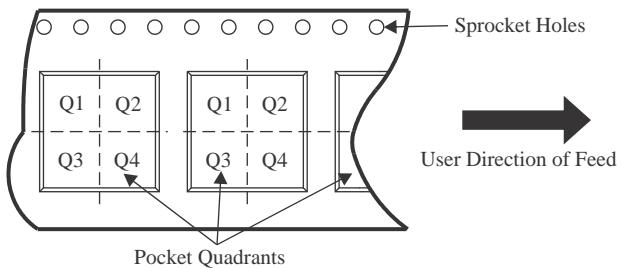
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

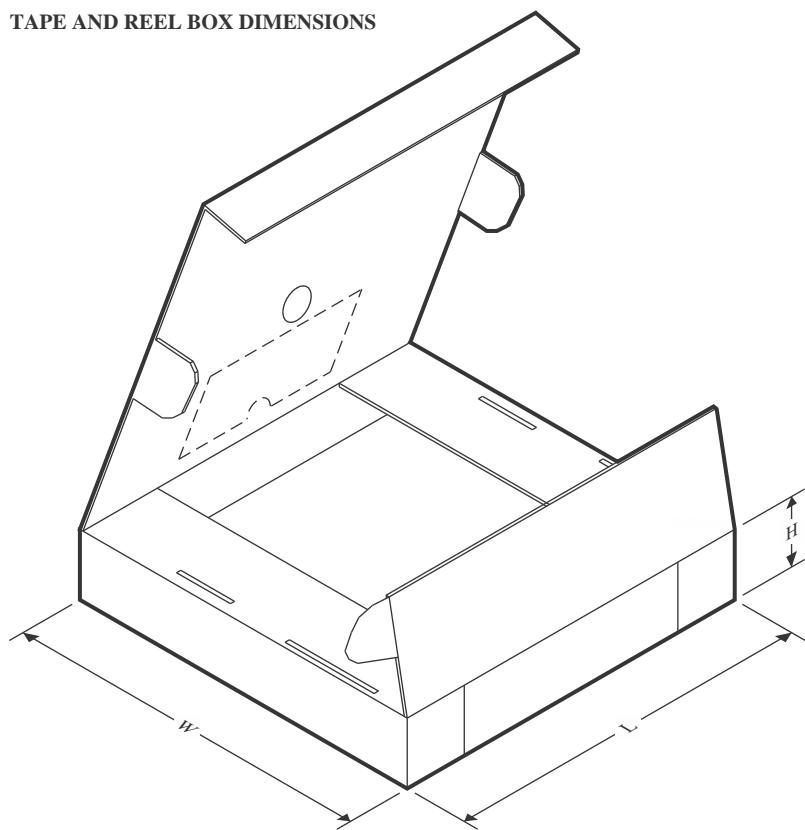


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF DAC5662 :


- Enhanced Product : [DACP5662-EP](#)

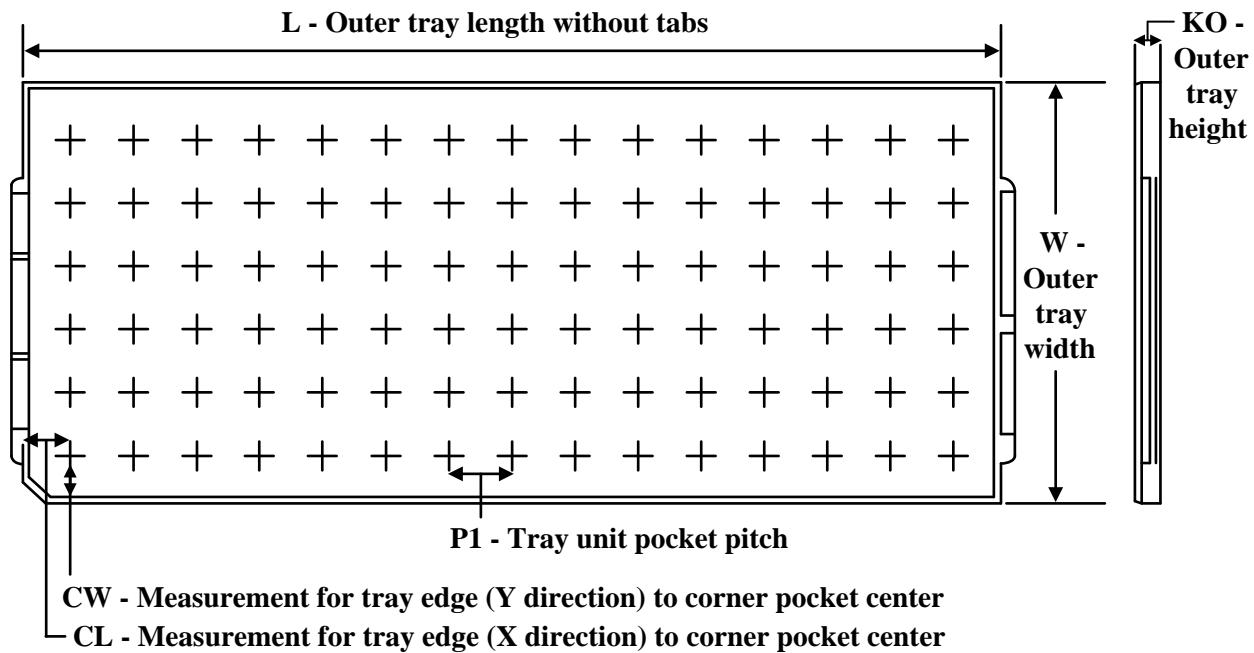
NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC5662IPFBR	TQFP	PFB	48	1000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

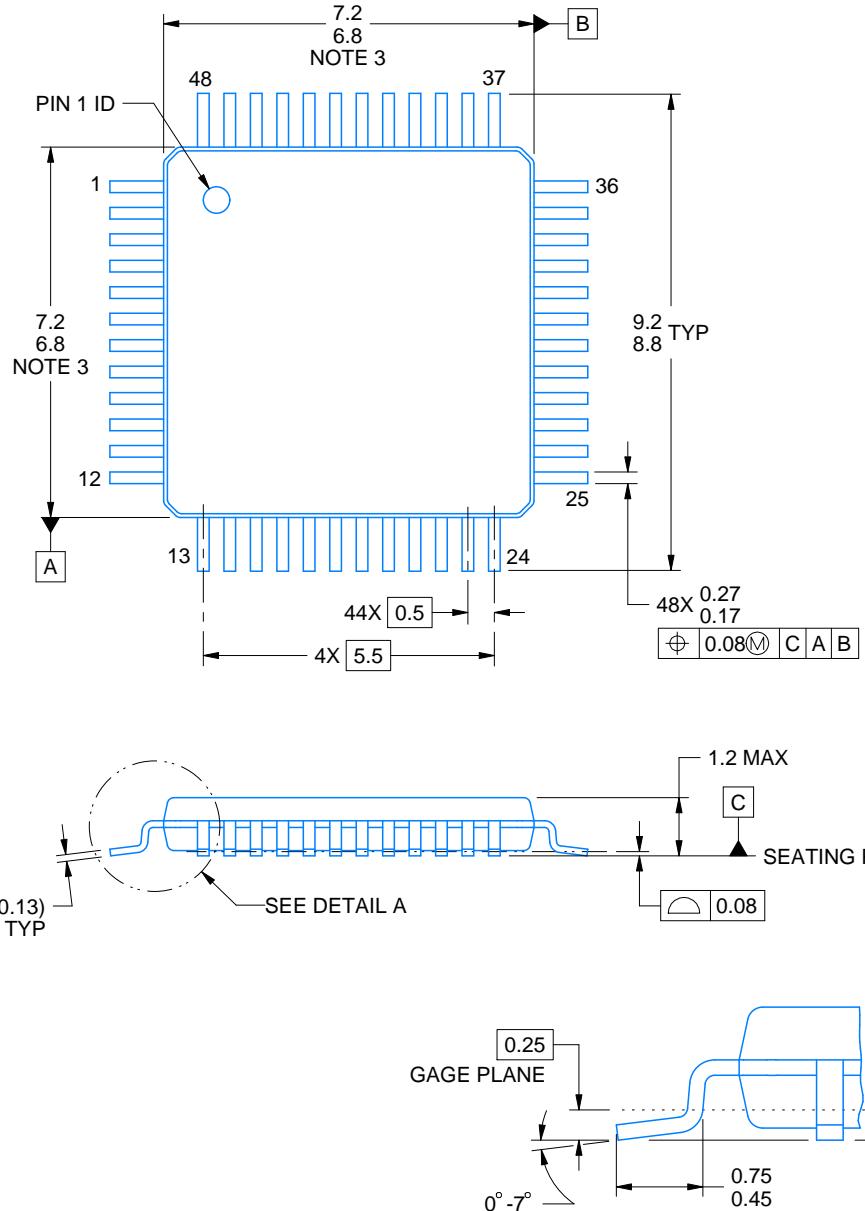
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC5662IPFBR	TQFP	PFB	48	1000	367.0	367.0	38.0

TRAY

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	KO (μm)	P1 (mm)	CL (mm)	CW (mm)
DAC5662IPFB	PFB	TQFP	48	250	10 x 25	150	315	135.9	7620	12.2	11.5	11.25
DAC5662IPFB.A	PFB	TQFP	48	250	10 x 25	150	315	135.9	7620	12.2	11.5	11.25
DAC5662IPFBG4	PFB	TQFP	48	250	10 x 25	150	315	135.9	7620	12.2	11.5	11.25
DAC5662IPFBG4.A	PFB	TQFP	48	250	10 x 25	150	315	135.9	7620	12.2	11.5	11.25



PACKAGE OUTLINE

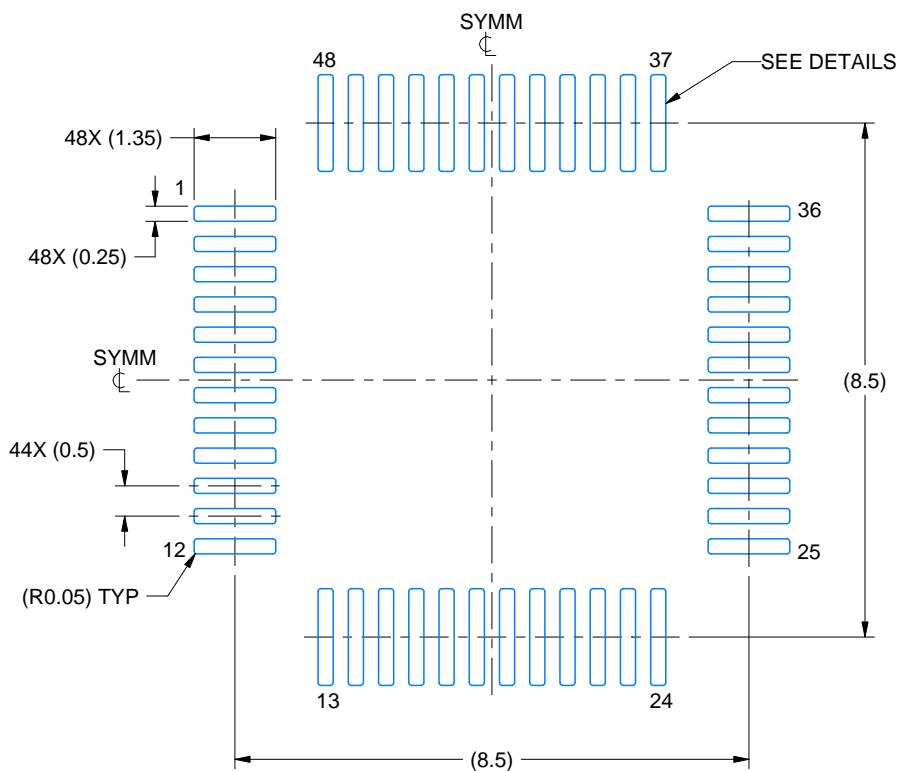
PFB0048A

TQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

4215157/A 03/2024

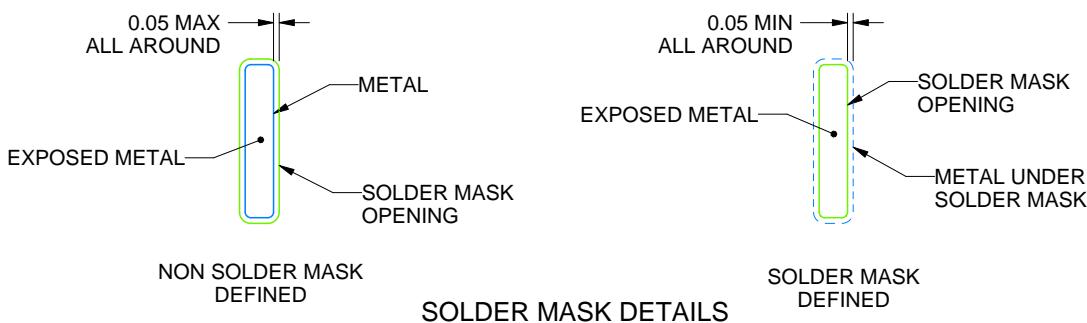
NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration MS-026.

EXAMPLE BOARD LAYOUT

PFB0048A

TQFP - 1.2 mm max height


PLASTIC QUAD FLATPACK

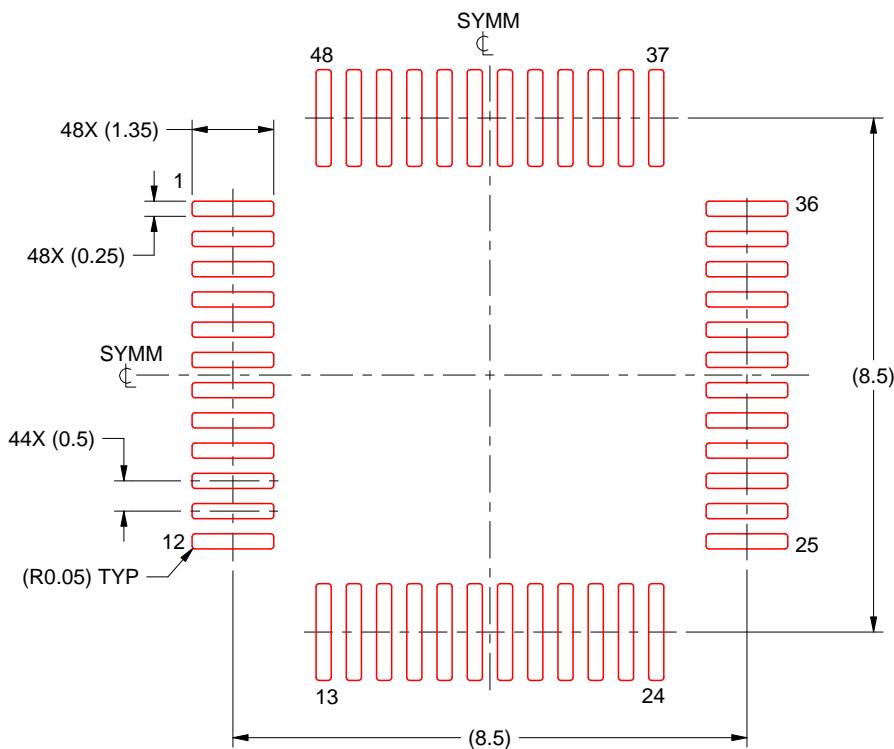
LAND PATTERN EXAMPLE

EXPOSED METAL SHOWN

SCALE:8X

4215157/A 03/2024

NOTES: (continued)


4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

PFB0048A

TQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

SOLDER PASTE EXAMPLE
SCALE:8X

4215157/A 03/2024

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
7. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月