

Technical documentation

Support & training

DLP300S ZHCSOH3B – JULY 2021 – REVISED MAY 2022

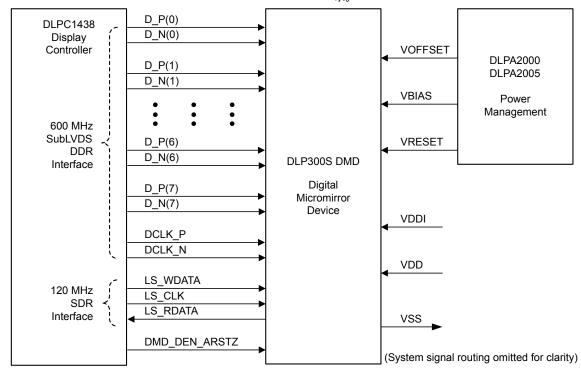
DLP300S 适用于低成本 TI DLP® 3D 打印机的 0.3 英寸 360 万像素 DMD

1 特性

- 0.3 英寸 (7.93mm) 对角线微镜阵列
 - 1280 × 720 铝制微米级微镜阵列,采用正交布
 局
 - 360 万像素,树脂上 2560 x 1440 像素
 - 5.4 微米微镜间距
 - ±17°微镜倾斜度(相对于平坦表面)
 - 采用侧面照明,实现最优的效率和光学引擎尺寸— 偏振无关型铝微镜表面
- 8 位 SubLVDS 输入数据总线
- 专用 DLPC1438 3D 打印控制器和 DLPA200x PMIC/LED 驱动器,确保可靠运行

2 应用

- TI DLP® 3D 打印机
 - 增材制造
 - 光聚合
 - 掩模立体光刻(mSLA 3D 打印机)
- 曝光:可编程空间和时间曝光


3 说明

DLP300S 数字微镜器件 (DMD) 是一款数控微光机电 系统 (MOEMS) 空间照明调制器 (SLM)。当与适当的光 学系统成对使用时,DMD 可显示非常清晰的高质量图 像。该 DMD 是由 DLP300S DMD、DLPC1438 3D 打 印控制器和 DLPA200x PMIC/LED 驱动器所组成的芯 片组的一部分。DLP300S DMD 外形小巧,与控制器 和 PMIC/LED 驱动器共同组成完整的系统解决方案, 从而实现快速、高分辨率的可靠 DLP 3D 打印机。

TI DLP® 光控制技术入门页,了解如何开始使用 DLP300S。

ti.com 上的 DLP 先进光控制资源可加快上市速度,这 些资源包括参考设计、光学模块制造商和 DLP 设计网 络合作伙伴。

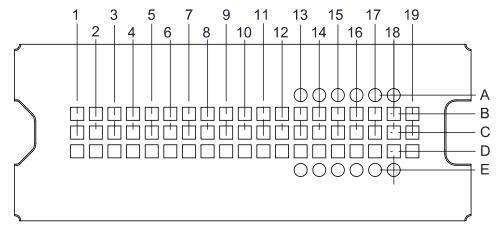
器件信息 ⁽¹⁾					
器件型号	封装	封装尺寸(标称值)			
DLP300S	FQK (57)	18.20mm × 7.00mm			
(1) 如需了解所有 录。	可用封装,请	参阅数据表末尾的可订购产品附			
	r				

简化版应用

Table of Contents

1	特性1
2	应用1
-	说明 1
	Revision History2
	Pin Configuration and Functions3
6	Specifications6
	6.1 Absolute Maximum Ratings6
	6.2 Storage Conditions7
	6.3 ESD Ratings7
	6.4 Recommended Operating Conditions7
	6.5 Thermal Information9
	6.6 Electrical Characteristics9
	6.7 Timing Requirements10
	6.8 Switching Characteristics
	6.9 System Mounting Interface Loads 15
	6.10 Micromirror Array Physical Characteristics
	6.11 Micromirror Array Optical Characteristics 17
	6.12 Window Characteristics
	6.13 Chipset Component Usage Specification
_	6.14 Software Requirements
7	Detailed Description
	7.1 Overview
	7.2 Functional Block Diagram
	7.3 Feature Description
	7.4 Device Functional Modes22

7.5 Optical Interface and System Image Quality	
Considerations	22
7.6 Micromirror Array Temperature Calculation	23
7.7 Micromirror Landed-On/Landed-Off Duty Cycle	
8 Application and Implementation	
8.1 Application Information	
8.2 Typical Application	
9 Power Supply Recommendations	30
9.1 DMD Power Supply Power-Up Procedure	
9.2 DMD Power Supply Power-Down Procedure	
9.3 Power Supply Sequencing Requirements	31
10 Layout	33
10.1 Layout Guidelines	33
10.2 Layout Example	33
11 Device and Documentation Support	34
11.1 Device Support	34
11.2 接收文档更新通知	34
11.3 Related Links	34
11.4 支持资源	35
11.5 Trademarks	35
11.6 Electrostatic Discharge Caution	
11.7 术语表	35
12 Mechanical, Packaging, and Orderable	
Information	35


4 Revision History 注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision A (August 2021) to Revision B (May 2022)	Page
•	Updated Absolute Maximum Ratings disclosure to the latest TI standard	6
•	Updated Micromirror Array Optical Characteristics	
	Added Third-Party Products Disclaimer	
	· · · · · · · · · · · · · · · · · · ·	

Cł	nanges from Revision (July 2021) to Revision A (August 2021)	Page
•	将器件状态从 <i>预告信息</i> 更改为 <i>量产数据</i>	1
•	Updated Functional Block Diagram to show all high-speed data pairs	21

5 Pin Configuration and Functions

图 5-1.	FQK Packag	e 57-Pin LGA	(Bottom	View)
	i witi uonug	CONTINEOR		•••••

PIN		TVDE	0,0,1,1	DATA DATE	DECODITION	PACKAGE NET
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION	LENGTH ⁽²⁾ (mm)
DATA INPUTS						
D_N(0)	C9	I	SubLVDS	Double	Data, Negative	10.54
D_P(0)	B9	I	SubLVDS	Double	Data, Positive	10.54
D_N(1)	D10	I	SubLVDS	Double	Data, Negative	13.14
D_P(1)	D11	I	SubLVDS	Double	Data, Positive	13.14
D_N(2)	C11	I	SubLVDS	Double	Data, Negative	14.24
D_P(2)	B11	I	SubLVDS	Double	Data, Positive	14.24
D_N(3)	D12	I	SubLVDS	Double	Data, Negative	14.35
D_P(3)	D13	I	SubLVDS	Double	Data, Positive	14.35
D_N(4)	D4	I	SubLVDS	Double	Data, Negative	5.89
D_P(4)	D5	I	SubLVDS	Double	Data, Positive	5.89
D_N(5)	C5	I	SubLVDS	Double	Data, Negative	5.45
D_P(5)	B5	I	SubLVDS	Double	Data, Positive	5.45
D_N(6)	D6	I	SubLVDS	Double	Data, Negative	8.59
D_P(6)	D7	I	SubLVDS	Double	Data, Positive	8.59
D_N(7)	C7	I	SubLVDS	Double	Data, Negative	7.69
D_P(7)	B7	I	SubLVDS	Double	Data, Positive	7.69
DCLK_N	D8	I	SubLVDS	Double	Clock, Negative	8.10
DCLK_P	D9	I	SubLVDS	Double	Clock, Positive	8.10
CONTROL INPUTS					· · · · ·	
LS_WDATA	C12	I	LPSDR ⁽¹⁾	Single	Write data for low speed interface.	7.16
LS_CLK	C13	I	LPSDR	Single	Clock for low-speed interface	7.89
DMD_DEN_ARSTZ	C14	I	LPSDR		Asynchronous reset DMD signal. A low signal places the DMD in reset. A high signal releases the DMD from reset and places it in active mode.	
LS_RDATA	C15	0	LPSDR	Single	Read data for low-speed interface	
POWER ⁽³⁾			1			
VBIAS	C1	Power			Supply voltage for positive bias level at	
VBIAS	C18	Power			micromirrors	

表 5-1. Pin Functions – Connector Pins⁽¹⁾

表 5-1. Pin Functions – Connector Pins⁽¹⁾ (continued)

PIN		_				PACKAGE NET
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION	LENGTH ⁽²⁾ (mm)
VOFFSET	D1	Power			Supply voltage for HVCMOS core	
VOFFSET	D17	Power			logic. Supply voltage for stepped high level at micromirror address electrodes. Supply voltage for offset level at micromirrors.	
VRESET	B1	Power			Supply voltage for negative reset level	
VRESET	B18	Power			at micromirrors.	
VDD	B6	Power				
VDD	B10	Power				
VDD	B19	Power				
VDD	C6	Power			Supply voltage for LVCMOS core logic.	
VDD	C10	Power			Supply voltage for LPSDR inputs.	
VDD	C19	Power			Supply voltage for normal high level at	
VDD	D2	Power			micromirror address electrodes.	
VDD	D18	Power			-	
VDD	D19	Power			-	
VDDI	B2	Power				
VDDI	C2	Power				
VDDI	C3	Power			Supply voltage for SubLVDS receivers.	
VDDI	D3	Power			-	
VSS	B3	Ground				
VSS	B4	Ground			-	
VSS	B8	Ground			-	
VSS	B12	Ground			-	
VSS	B13	Ground			1 1	
VSS	B14	Ground			Common return.	
VSS	B15	Ground			Ground for all power.	
VSS	B16	Ground			1 1	
VSS	B17	Ground			1	
VSS	C4	Ground			1	
VSS	C8	Ground			1	
VSS	C16	Ground			1	
VSS	C17	Ground			1	
VSS	D14	Ground			1	
VSS	D15	Ground			1	
VSS	D16	Ground			4 -	

(1) Low speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, *Low Power Double Data Rate (LPDDR)* JESD209B.

 Net trace lengths inside the package: Relative dielectric constant for the FQK ceramic package is 9.8. Propagation speed = 11.8 / sqrt (9.8) = 3.769 inches/ns. Propagation delay = 0.265 ns/inch = 265 ps/inch = 10.43 ps/mm.

(3) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.

表 5-2. Pin Functions – Test Pads

NUMBER	SYSTEM BOARD
A13	Do not connect
A14	Do not connect
A15	Do not connect
A16	Do not connect
A17	Do not connect
A18	Do not connect
E13	Do not connect
E14	Do not connect
E15	Do not connect
E16	Do not connect
E17	Do not connect
E18	Do not connect

6 Specifications

6.1 Absolute Maximum Ratings

See (1)

		MIN	MAX	UNIT
VDD	Supply voltage for LVCMOS core logic ⁽²⁾ Supply voltage for LPSDR low speed interface	-0.5	2.3	V
VDDI	Supply voltage for SubLVDS receivers ⁽²⁾	-0.5	2.3	V
VOFFSET	Supply voltage for HVCMOS and micromirror electrode ^{(2) (3)}	-0.5	11	V
VBIAS	Supply voltage for micromirror electrode ⁽²⁾	-0.5	19	V
VRESET	Supply voltage for micromirror electrode ⁽²⁾	-15	0.5	V
VDDI–VDD	Supply voltage delta (absolute value) ⁽⁴⁾		0.3	V
VBIAS-VOFFSET	Supply voltage delta (absolute value) ⁽⁵⁾		11	V
VBIAS-VRESET	Supply voltage delta (absolute value) ⁽⁶⁾		34	V
Input voltage for other inputs LPSDR ⁽²⁾			VDD + 0.5	V
Input voltage for other inp	buts SubLVDS ^{(2) (7)}	-0.5	VDDI + 0.5	V
VID	SubLVDS input differential voltage (absolute value) ⁽⁷⁾		810	mV
IID	SubLVDS input differential current		10	mA
f _{clock}	Clock frequency for low speed interface LS_CLK		130	MHz
f _{clock}	Clock frequency for high speed interface DCLK		560	MHz
T and T	Temperature – operational ⁽⁸⁾	-20	90	°C
	Temperature – non-operational ⁽⁸⁾	-40	90	°C
T _{DP}	Dew Point Temperature - operating and non-operating (non-condensing)		81	°C
T _{delta}	Absolute Temperature delta between any point on the window edge and the ceramic test point TP1 ⁽⁹⁾		30	°C
	VDDI VOFFSET VBIAS VRESET VDDI–VDD VBIAS–VOFFSET VBIAS–VRESET Input voltage for other inp Input voltage for other inp VID IID f_clock f_clock T_ARRAY and T_WINDOW T_DP	VDDSupply voltage for LPSDR low speed interfaceVDDISupply voltage for SubLVDS receivers(2)VOFFSETSupply voltage for HVCMOS and micromirror electrode(2) (3)VBIASSupply voltage for micromirror electrode(2)VRESETSupply voltage for micromirror electrode(2)VNDDI-VDD Supply voltage delta (absolute value)(4) VDIAS-VOFFSET Supply voltage delta (absolute value)(5) VBIAS-VOFFSET Supply voltage delta (absolute value)(6) NBIAS-VRESET Supply voltage delta (absolute value)(6) Nput voltage for other inputs LPSDR(2)Input voltage for other inputs SubLVDS(2) (7) VID SubLVDS input differential voltage (absolute value)(7)IIDSubLVDS input differential currentfclockClock frequency for low speed interface LS_CLKf_clockClock frequency for high speed interface DCLKT_ARRAY and T_WINDOWTemperature - operational (8)T_DPDew Point Temperature - operating and non-operating (non-condensing)ITananalAbsolute Temperature delta between any point on the	VDDSupply voltage for LVCMOS core logic ⁽²⁾ Supply voltage for LPSDR low speed interface-0.5VDD1Supply voltage for SubLVDS receivers ⁽²⁾ -0.5VOFFSETSupply voltage for HVCMOS and micromirror electrode ⁽²⁾ (3)-0.5VBIASSupply voltage for micromirror electrode ⁽²⁾ -0.5VRESETSupply voltage for micromirror electrode ⁽²⁾ -0.5VDI-VDD Supply voltage for micromirror electrode ⁽²⁾ -15IVDI-VDD Supply voltage delta (absolute value) ⁽⁴⁾ -0.5IVBIAS-VOFFSET Supply voltage delta (absolute value) ⁽⁶⁾ -0.5Input voltage for other inputs LPSDR ⁽²⁾ -0.5Input voltage for other inputs SubLVDS ⁽²⁾ (7)-0.5IVID SubLVDS input differential voltage (absolute value) ⁽⁷⁾ IIDSubLVDS input differential currentfclockClock frequency for low speed interface LS_CLKf_clockClock frequency for high speed interface DCLKT_ARRAY and T _{WINDOW} Temperature – operational ⁽⁸⁾ T_DPDew Point Temperature - operating and non-operating (non-condensing)IT_DAbsolute Temperature delta between any point on the	VDDSupply voltage for LVCMOS core logic ⁽²⁾ Supply voltage for LPSDR low speed interface-0.52.3VDDISupply voltage for SubLVDS receivers ⁽²⁾ -0.52.3VOFFSETSupply voltage for HVCMOS and micromirror electrode ⁽²⁾ (3)-0.511VBIASSupply voltage for micromirror electrode ⁽²⁾ -0.519VRESETSupply voltage for micromirror electrode ⁽²⁾ -0.519VRESETSupply voltage for micromirror electrode ⁽²⁾ -150.5 VDD -VDD Supply voltage delta (absolute value) ⁽⁴⁾ 0.3 VBIAS-VOFFSET Supply voltage delta (absolute value) ⁽⁵⁾ 11 VBIAS-VOFFSET Supply voltage delta (absolute value) ⁽⁶⁾ 34Input voltage for other inputs LPSDR ⁽²⁾ -0.5VDD + 0.5 VID SubLVDS ⁽²⁾ (7)-0.5VDD + 0.5 VID SubLVDS input differential voltage (absolute value) ⁽⁷⁾ 810IDSubLVDS input differential current10f_clockClock frequency for high speed interface LS_CLK130f_clockClock frequency for high speed interface DCLK560T_ARRAY and T _{WINDOW} Temperature - operational ⁽⁸⁾ -2090T_DPDew Point Temperature - operating and non-operating81IT_modelAbsolute Temperature delta between any point on the30

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, and VRESET.

(3) VOFFSET supply transients must fall within specified voltages.

(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.

(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw.

(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.

(7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.

(8) The highest temperature of the active array (as calculated in 节7.6) or of any point along the Window Edge as defined in 图 7-1. The locations of thermal test points TP2 and TP3 in 图 7-1 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that point should be used.

6.2 Storage Conditions

Applicable for the DMD as a component or non-operational in a system

		r	MIN	MAX	UNIT
T _{DMD}	DMD storage temperature	-	-40	85	°C
T _{DP-AVG}	Average dew point temperature, (non-condensing) ⁽¹⁾			24	°C
T _{DP-ELR}	Elevated dew point temperature range, (non-condensing) ⁽²⁾		28	36	°C
CT _{ELR}	Cumulative time in elevated dew point temperature range			6	Months

The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.
 Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}.

6.3 ESD Ratings

		VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

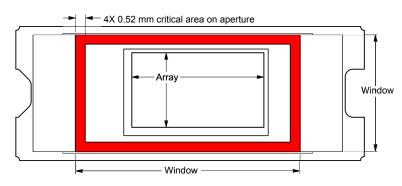
6.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

		MIN	NOM	MAX	UNIT
SUPPLY VOLTAGE	RANGE ⁽³⁾				
VDD	Supply voltage for LVCMOS core logic Supply voltage for LPSDR low-speed interface	1.65	1.8	1.95	V
VDDI	Supply voltage for SubLVDS receivers	1.65	1.8	1.95	V
VOFFSET	Supply voltage for HVCMOS and micromirror electrode ⁽⁴⁾	9.5	10	10.5	V
VBIAS	Supply voltage for mirror electrode	17.5	18	18.5	V
VRESET	Supply voltage for micromirror electrode	-14.5	-14	-13.5	V
VDDI–VDD	Supply voltage delta (absolute value) ⁽⁵⁾			0.3	V
VBIAS-VOFFSET	Supply voltage delta (absolute value) ⁽⁶⁾			10.5	V
VBIAS-VRESET	Supply voltage delta (absolute value) ⁽⁷⁾			33	V
CLOCK FREQUENC	Y			1	
f _{clock}	Clock frequency for low speed interface LS_CLK ⁽⁸⁾	108		120	MHz
f _{clock}	Clock frequency for high speed interface DCLK ⁽⁹⁾	300		540	MHz
	Duty cycle distortion DCLK	44%		56%	
SUBLVDS INTERFA	CE ⁽⁹⁾			I	
V _{ID}	SubLVDS input differential voltage (absolute value) 图 6-9, 图 6-10	150	250	350	mV
V _{CM}	Common mode voltage 图 6-9, 图 6-10	700	900	1100	mV
V _{SUBLVDS}	SubLVDS voltage 图 6-9, 图 6-10	575		1225	mV
Z _{LINE}	Line differential impedance (PWB/trace)	90	100	110	Ω
Z _{IN}	Internal differential termination resistance 6-11	80	100	120	Ω
	100-Ω differential PCB trace	6.35		152.4	mm

6.4 Recommended Operating Conditions (continued)

Over operating free-air temperature range (unless otherwise noted)^{(1) (2)}


		MIN	NOM	MAX	UNIT
ENVIRONMENT	AL				
	Array Temperature – long-term operational ⁽¹⁰⁾ (11) (12)	0		40	
T _{ARRAY}	Array Temperature - short-term operational, 25 hr max ⁽¹¹⁾ (13)	-20		-10	°C
	Array Temperature - short-term operational, 500 hr max ⁽¹¹⁾ (13)	-10		0	
T _{delta}	Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁴⁾			15	°C
T _{WINDOW}	Window temperature – operational ⁽¹⁵⁾			85	°C
T _{DP-AVG}	Average dew point temperature (non-condensing) ⁽¹⁶⁾			24	°C
T _{DP-ELR}	Elevated dew point temperature range (non-condensing) ⁽¹⁷⁾	28		36	°C
CT _{ELR}	Cumulative time in elevated dew point temperature range			6	Months
Q _{AP-ILL}	Illumination overfill in critical areal ⁽¹⁹⁾ (20)			0	W/cm ²
ILL _{UV}	Illumination wavelengths < 380 nm ⁽¹⁰⁾			2	mW/cm ²
ILL _{380 - 390 nm}	Illumination wavelengths between 380 nm and 390 nm			55	mW/cm ²
ILL _{390 - 400 nm}	Illumination wavelengths between 390 nm and 400 nm			450	mW/cm ²
ILL _{400 - 550 nm}	Illumination wavelengths between 400 nm and 550 nm			3	W/cm ²
ILL _{> 550 nm}	Illumination wavelengths > 550 nm			10	mW/cm ²
ILL _θ	Illumination marginal ray angle ⁽¹⁸⁾			55	deg

(1) $\frac{1}{7}$ 6.4 is applicable after the DMD is installed in the final product.

(2) The functional performance of the device specified in this datasheet is achieved when operating the device within the limits defined by $\frac{\# 6.4}{1000}$ limits.

- (3) All voltage values are with respect to the ground pins (VSS).
- (4) VOFFSET supply transients must fall within specified maximum voltages.
- (5) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit.
- (6) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit.
- (7) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit.
- (8) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands.
- (9) Refer to the SubLVDS timing requirements in # 6.7.
- (10) Simultaneous exposure of the DMD to the maximum limits in $\frac{\# 6.4}{10}$ for temperature and UV illumination will reduce device lifetime.
- (11) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1 (TP1) shown in 🛚 7-1 and the Package Thermal Resistance using *#* 7.6.
- (12) Long-term is defined as the usable life of the device.
- (13) Short-term is the total cumulative time over the useful life of the device.
- (14) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge shown in 7-1. The window test points TP2 and TP3 shown in 7-1 are intended to result in the worst case delta temperature. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used.
- (15) Window temperature is the highest temperature on the window edge shown in 🕅 7-1. The locations of thermal test points TP2 and TP3 in 🕅 7-1 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to result in a higher temperature, that point should be used.
- (16) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.
- (17) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}.
- (18) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors (POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) will contribute to thermal limitations described in this document, and may negatively affect lifetime.
- (19) The active area of the device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view. The window aperture is sized to anticipate several optical operating conditions. Overfill light directly illuminating the window aperture can create adverse imaging effects, and additional device heating leading to reduced device lifetime. Direct incident illumination should be prevented from striking the DMD window aperture.
- (20) Applies to the region in red in 🗄 6-1, at the inside plane of the glass window where the physical aperture is located.

图 6-1. Illumination Overfill Diagram - Critical Area

6.5 Thermal Information

		DLP300S	
	THERMAL METRIC ⁽¹⁾	FQK (LGA)	UNIT
		57 PINS	
Thermal resistance	Active area to test point 1 (TP1) ⁽¹⁾	5.4	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the # 6.4. The total heat load on the DMD is largely driven by the incident light absorbed by the active area although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

6.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)⁽¹⁰⁾

PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP	MAX	UNIT
		1		1	
C_{1}	VDD = 1.95 V			60.5	···· A
Supply current: VDD(4)(6)	VDD = 1.8 V		54		mA
	VDDI = 1.95 V			16.5	···· A
Supply current: VDDI(0)(0)	VDD = 1.8 V		11.3		mA
	VOFFSET = 10.5 V			2.2	
Supply current: VOFFSET(4)(0)	VOFFSET = 10 V		1.5		mA
C_{1}	VBIAS = 18.5 V			0.6	···· A
Supply current: VBIAS(4) (0)	VBIAS = 18 V		0.3		mA
	VRESET = -14.5 V			2.4	
Supply current: VRESET(0)	VRESET = -14 V		1.7		mA
	1	1		1	
	VDD = 1.95 V			118	
Supply power dissipation: VDD(0)(0)	VDD = 1.8 V		95		mW
	VDDI = 1.95 V			32	
Supply power dissipation: VDDI(0)(0)	VDD = 1.8 V		20		mW
Supply power dissipation:	VOFFSET = 10.5 V			23	
VOFFSET ⁽⁴⁾ ⁽⁶⁾	VOFFSET = 10 V		15		mW
	VBIAS = 18.5 V			11	
Supply power dissipation: VBIAS(4) (0)	VBIAS = 18 V		6		mW
	VRESET = -14.5 V			35	
Supply power dissipation: VRESET ⁽⁶⁾	VRESET = -14 V		24		mW
Supply power dissipation: Total			160	219	mW
	Supply current: VDD ⁽³⁾ (5) Supply current: VDDI ⁽³⁾ (5) Supply current: VOFFSET ⁽⁴⁾ (6) Supply current: VBIAS ⁽⁴⁾ (6) Supply current: VRESET ⁽⁶⁾ Supply power dissipation: VDD ⁽³⁾ (5) Supply power dissipation: VDDI ⁽³⁾ (5) Supply power dissipation: VDDI ⁽³⁾ (5) Supply power dissipation: VBIAS ⁽⁴⁾ (6) Supply power dissipation: VBIAS ⁽⁴⁾ (6)	$\frac{VDD = 1.95 V}{VDD = 1.8 V}$ $\frac{VDD = 1.8 V}{VDFFSET = 10.5 V}$ $\frac{VOFFSET = 10.5 V}{VOFFSET = 10 V}$ $\frac{VBIAS = 18.5 V}{VBIAS = 18.5 V}$ $\frac{VBIAS = 18 V}{VBIAS = 18 V}$ $\frac{VBIAS = 18 V}{VRESET = -14.5 V}$ $\frac{VDD = 1.95 V}{VDD = 1.8 V}$ $\frac{VDD = 1.95 V}{VDD = 1.8 V}$ $\frac{VDD = 1.95 V}{VDD = 1.8 V}$ $\frac{VDD = 1.8 V}{VDD = 1.8 V}$ $\frac{VDD = 1.8 V}{VDD = 1.8 V}$ $\frac{VDD = 1.8 V}{VDD = 1.8 V}$ $\frac{VOFFSET = 10.5 V}{VDB = 1.8 V}$ $\frac{VOFFSET = 10.5 V}{VDB = 1.8 V}$ $\frac{VOFFSET = 10 V}{VDB = 1.8 V}$ $\frac{VOFFSET = 10 V}{VBIAS = 18 V}$ $\frac{VBIAS = 18 V}{VBIAS = 14 V}$ $\frac{VBIAS = 14 V}{VBIAS = 14 V}$ $\frac{VBIAS = 14 V}{VBIAS = 14 V}$ $\frac{VBIAS = 14 V}{VBIAS = 14 V}$	$\begin{tabular}{ c c c c } \hline & VDD = 1.95 V & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c } \hline & VDD = 1.95 \ V & VDD = 1.8 \ V & VDFFSET = 10.5 \ V & VOFFSET = 10.5 \ V & VDE = 1.8 \ V & 0.3 \ VRESET = -14.5 \ V & VDD = 1.8 $	Supply current: VDD ⁽³⁾ (5) VDD = 1.95 V VDD = 1.8 V 60.5 Supply current: VDDI ⁽³⁾ (5) VDD = 1.95 V VDD = 1.8 V 11.3 Supply current: VOFFSET ⁽⁴⁾ (6) VOFFSET = 10.5 V 2.2 VOFFSET = 10.5 V 2.2 VOFFSET = 10 V 1.5 Supply current: VBIAS ⁽⁴⁾ (6) VBIAS = 18.5 V 0.6 Supply current: VRESET ⁽⁶⁾ VRESET = -14.5 V 2.4 VRESET = -14.5 V 2.4 VRESET = -14.5 V 2.4 VDD = 1.8 V 95 Supply power dissipation: VDDI ⁽³⁾ (5) VDD = 1.95 V 118 VDD = 1.8 V 95 32 Supply power dissipation: VDDI ⁽³⁾ (5) VDD = 1.8 V 20 Supply power dissipation: VDDI ⁽³⁾ (5) VOFFSET = 10.5 V 23 Supply power dissipation: VBIAS ⁽⁴⁾ (6) VBIAS = 18.5 V 11 Supply power dissipation: VBIAS ⁽⁴⁾ (6) VBIAS = 18.5 V 11 Supply power dissipation: VBIAS ⁽⁴⁾ (6) VBIAS = 18.5 V 11 Supply power dissipation: VBIAS ⁽⁴⁾ (6) VBIAS = 18.5 V 11 VBIAS = 18 V 6 VRE

Copyright © 2022 Texas Instruments Incorporated

6.6 Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)⁽¹⁰⁾

PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP MAX	UNIT
IPUT ⁽⁷⁾	I		I	
DC input high voltage ⁽⁹⁾		0.7 × VDD	VDD + 0.3	V
DC input low voltage ⁽⁹⁾		-0.3	0.3 × VDD	V
AC input high voltage ⁽⁹⁾		0.8 × VDD	VDD + 0.3	V
AC input low voltage ⁽⁹⁾		-0.3	0.2 × VDD	V
Hysteresis ($V_{T+} - V_{T-}$)	图 6-12	0.1 × VDD	0.4 × VDD	V
Low-level input current	VDD = 1.95 V; V _I = 0 V	-100		nA
High–level input current	VDD = 1.95 V; V _I = 1.95 V		100	nA
UTPUT ⁽⁸⁾	I			
DC output high voltage	I _{OH} = -2 mA	0.8 × VDD		V
DC output low voltage	I _{OL} = 2 mA		0.2 × VDD	V
ANCE	I		I	
Input capacitance LPSDR	f = 1 MHz		10	pF
Input capacitance SubLVDS	f = 1 MHz		10	pF
Output capacitance	<i>f</i> = 1 MHz		10	pF
	IPUT ⁽⁷⁾ DC input high voltage ⁽⁹⁾ DC input low voltage ⁽⁹⁾ AC input high voltage ⁽⁹⁾ AC input low voltage ⁽⁹⁾ Hysteresis ($V_{T+} - V_{T-}$) Low-level input current High-level input current UTPUT ⁽⁸⁾ DC output high voltage AC output low voltage AC input capacitance LPSDR Input capacitance SubLVDS	IPUT ⁽⁷⁾ DC input high voltage ⁽⁹⁾ DC input low voltage ⁽⁹⁾ DC input high voltage ⁽⁹⁾ AC input low voltage ⁽⁹⁾ AC input low voltage ⁽⁹⁾ Hysteresis ($V_{T+} - V_{T-}$) Image 6-12 Low-level input current VDD = 1.95 V; V ₁ = 0 V High-level input current VDD = 1.95 V; V ₁ = 1.95 V UTPUT ⁽⁸⁾ DC output high voltage DC output low voltage $I_{OL} = 2 \text{ mA}$ ANCE Input capacitance LPSDR $f = 1 \text{ MHz}$ Input capacitance SubLVDS $f = 1 \text{ MHz}$	IPUT(7)0.7 × VDDDC input high voltage(9)0.7 × VDDDC input low voltage(9)-0.3AC input high voltage(9)0.8 × VDDAC input low voltage(9)-0.3Hysteresis ($V_{T+} - V_{T-}$)😰 6-12Low-level input currentVDD = 1.95 V; V ₁ = 0 VHigh-level input currentVDD = 1.95 V; V ₁ = 1.95 VUTPUT(8)UTPUT(8)DC output high voltage $I_{OH} = -2 \text{ mA}$ DC output low voltage $I_{OL} = 2 \text{ mA}$ ANCEInput capacitance LPSDR $f = 1 \text{ MHz}$ Input capacitance SubLVDS $f = 1 \text{ MHz}$	IPUT(7)DC input high voltage(9) $0.7 \times VDD$ $VDD + 0.3$ DC input low voltage(9) -0.3 $0.3 \times VDD$ AC input high voltage(9) $0.8 \times VDD$ $VDD + 0.3$ AC input low voltage(9) $0.8 \times VDD$ $VDD + 0.3$ AC input low voltage(9) -0.3 $0.2 \times VDD$ Hysteresis ($V_{T+} - V_{T-}$) \mathbb{E} 6-12 $0.1 \times VDD$ $0.4 \times VDD$ Low-level input current $VDD = 1.95 V$; $V_1 = 0 V$ -100 $0.4 \times VDD$ Low-level input current $VDD = 1.95 V$; $V_1 = 1.95 V$ 100 UTPUT(8) $0.8 \times VDD$ $0.2 \times VDD$ DC output high voltage $I_{OH} = -2 \text{ mA}$ $0.8 \times VDD$ DC output low voltage $I_{OL} = 2 \text{ mA}$ $0.2 \times VDD$ ANCEInput capacitance LPSDR $f = 1 \text{ MHz}$ 10 Input capacitance SubLVDS $f = 1 \text{ MHz}$ 10

The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET. (1)

(2)

(3)

All voltage values are with respect to the ground pins (VSS). To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than specified limit. To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than specified limit. (4)

Supply power dissipation based on non-compressed commands and data. (5)

(6) Supply power dissipation based on 3 global resets in 200 µs.

LPSDR specifications are for pins LS CLK and LS WDATA. (7)

LPSDR specification is for pin LS_RDATA. (8)

Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC (9) Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.

(10) Device electrical characteristics are over # 6.4 unless otherwise noted.

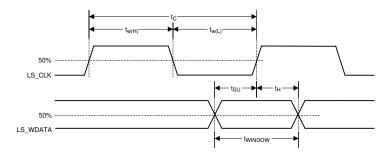
6.7 Timing Requirements

Device electrical characteristics are over # 6.4 unless otherwise noted.

			MIN	NOM	MAX	UNIT
LPSDR					I	
t _r	Rise slew rate ⁽¹⁾	(30% to 80%) × VDD, 图 6-3	1		3	V/ns
t _f	Fall slew rate ⁽¹⁾	(70% to 20%) × VDD, 图 6-3	1		3	V/ns
t _r	Rise slew rate ⁽²⁾	(20% to 80%) × VDD, 图 6-4	0.25			V/ns
t _f	Fall slew rate ⁽²⁾	(80% to 20%) × VDD, 图 6-4	0.25			V/ns
t _c	Cycle time LS_CLK,	图 6-2	7.7	8.3		ns
t _{W(H)}	Pulse duration LS_CLK high	50% to 50% reference points, 图 6-2	3.1			ns
t _{W(L)}	Pulse duration LS_CLK low	50% to 50% reference points, 图 6-2	3.1			ns
t _{su}	Setup time	LS_WDATA valid before LS_CLK ↑, 图 6-2	1.5			ns
t _h	Hold time	LS_WDATA valid after LS_CLK ↑, 图 6-2	1.5			ns
t _{WINDOW}	Window time ^{(1) (4)}	Setup time + Hold time, 图 6-2	3			ns
t _{DERATING}	Window time derating ^{(1) (4)}	For each 0.25 V/ns reduction in slew rate below 1 V/ns, 图 6-6		0.35		ns
SubLVDS		· · · · ·	1		1	
t _r	Rise slew rate	20% to 80% reference points, 图 6-5	0.7	1		V/ns
t _f	Fall slew rate	80% to 20% reference points, 6-5	0.7	1		V/ns

6.7 Timing Requirements (continued)

Device electrical characteristics are over $\frac{7}{6.4}$ unless otherwise noted.


			MIN	NOM	MAX	UNIT
t _c	Cycle time DCLK,	图 6-7	1.79	1.85		ns
t _{W(H)}	Pulse duration DCLK high	50% to 50% reference points, 图 6-7	0.79			ns
t _{W(L)}	Pulse duration DCLK low	50% to 50% reference points, 图 6-7	0.79			ns
t _{su}	Setup time	D(0:3) valid before DCLK ↑ or DCLK ↓, 图 6-7				
t _h	Hold time	D(0:3) valid after DCLK ↑ or DCLK ↓, 图 6-7				
t _{WINDOW}	Window time	Setup time + Hold time, 6-7, 6-8			0.3	ns
t _{LVDS-} ENABLE+REFGEN	Power-up receiver ⁽³⁾				2000	ns

(1) Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in 6-3.

(2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in 6-4.

(3) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.

(4) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.

Low-speed interface is LPSDR and adheres to the #6.6 and AC/DC Operating Conditions table in JEDEC Standard No. 209B, *Low Power Double Data Rate (LPDDR)* JESD209B.

图 6-2. LPSDR Switching Parameters

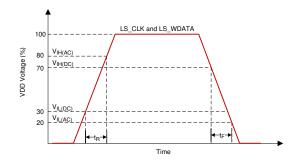


图 6-3. LPSDR Input Slew Rate

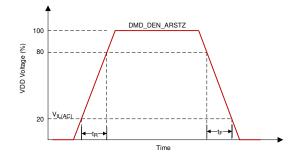
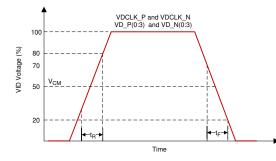
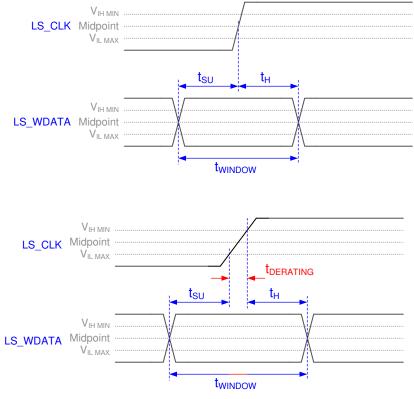
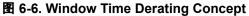
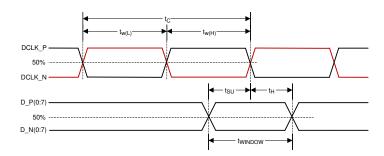
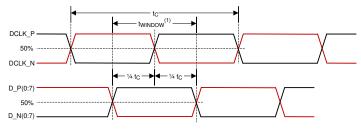
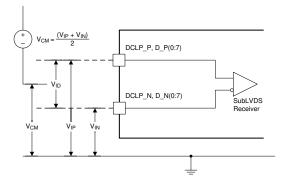
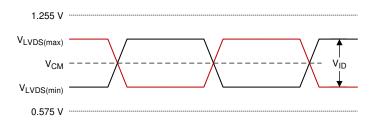





图 6-4. LPSDR Input Slew Rate





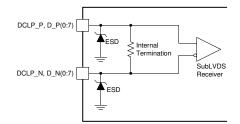

图 6-7. SubLVDS Switching Parameters

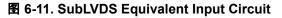

(1) High-speed training scan window

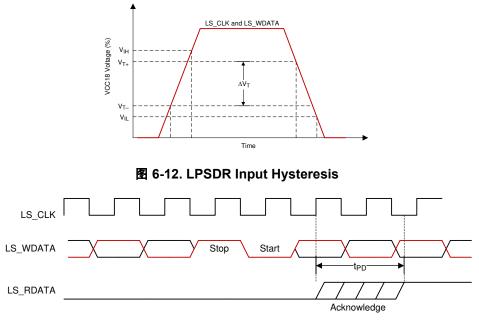
(2) Refer to # 7.3.3 for details

图 6-8. High-Speed Training Scan Window

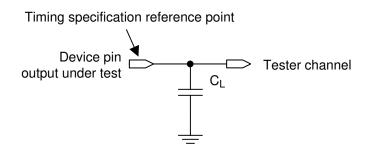
图 6-9. SubLVDS Voltage Parameters




图 6-10. SubLVDS Waveform Parameters


 $V_{SubLVDS(max)} = V_{CM(max)} + \frac{1}{2} \times |V_{ID(max)}|$

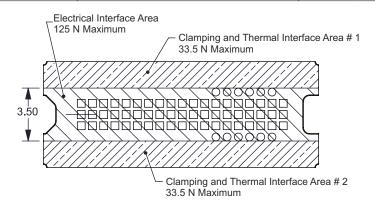
 $V_{SubLVDS(min)} = V_{CM(min)} - \frac{1}{2} \times |V_{ID(max)}|$



See # 7.3.4 for more information.

图 6-14. Test Load Circuit for Output Propagation Measurement

6.8 Switching Characteristics


Over operating free-air temperature range (unless otherwise noted).⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	
Output propagation, Clock to Q, rising t _{PD} edge of LS_CLK input to LS_RDATA	Output propagation, Clock to Q, rising	C _L = 5 pF		11.	l ns
	edge of LS_CLK input to LS_RDATA	C _L = 10 pF		11.3	3 ns
	output. 图 6-13	C _L = 85 pF		1	5 ns
	Slew rate, LS_RDATA		0.5		V/ns
	Output duty cycle distortion, LS_RDATA		40%	60%	b

(1) Device electrical characteristics are over $\frac{\# 6.4}{100}$ unless otherwise noted.

6.9 System Mounting Interface Loads

PARAMETER		MIN	NOM	MAX	UNIT
, ,	Electrical Interface Area (see 图 6-15)			125	Ν
be applied to the:	Clamping and Thermal Interface Area (see 图 6-15)			67	Ν

6.10 Micromirror Array Physical Characteristics

	PARA	AMETER	VALUE	UNIT
	Number of active columns	See 图 6-16	1280	micromirrors
	Number of active rows	See 图 6-16	720	micromirrors
ε	Micromirror (pixel) pitch	See 图 6-17	5.4	μm
	Micromirror active array width	Micromirror pitch × number of active columns; see 图 6-16	6.912	mm
	Micromirror active array height	Micromirror pitch × number of active rows; see 图 6-16	3.888	mm
	Micromirror active border	Pond of micromirror (POM) ⁽¹⁾	20	micromirrors/ side

(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

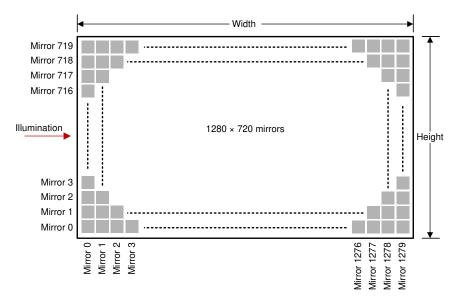
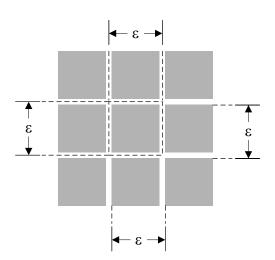
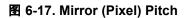




图 6-16. Micromirror Array Physical Characteristics

6.11 Micromirror Array Optical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
Micromirror tilt angle		DMD landed state ⁽¹⁾		17		degree
Micromirror tilt and	gle tolerance ^{(2) (3) (4) (5)}		-1.4		1.4	degree
Micromirror tilt direction ⁽⁶⁾ ⁽⁷⁾		Landed ON state		180		dograa
		Landed OFF state		270		degree
Micromirror crossover time ⁽⁸⁾		Typical performance		1	3	
Micromirror switch	ing time ⁽⁹⁾	Typical performance	10			μs
	Bright pixel(s) in active area	Gray 10 Screen ⁽¹²⁾			0	
	Bright pixel(s) in the POM ⁽¹³⁾	Gray 10 Screen ⁽¹²⁾			1	
Image performance ⁽¹⁰⁾	Dark pixel(s) in the active area ⁽¹⁴⁾	White Screen			4	micromirrors
	Adjacent pixel(s) (15)	Any Screen			0	
	Unstable pixel(s) in active area ⁽¹⁶⁾	Any Screen			0	

(1) Measured relative to the plane formed by the overall micromirror array.

- (2) Additional variation exists between the micromirror array and the package datums.
- (3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.
- (4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
- (5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variations, system optical designs, system efficiency variations, or system contrast variations.
- (6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON state direction. A binary value of 0 results in a micromirror landing in the OFF state direction. See 8 6-18.
- (7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° reference which is aligned with the +X Cartesian axis.
- (8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.
- (9) The minimum time between successive transitions of a micromirror.
- (10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions: Test set degamma shall be linear
 - Test set brightness and contrast shall be set to nominal
 - The diagonal size of the projected image shall be a minimum of 20 inches
 - The projections screen shall be 1X gain
 - The projected image shall be inspected from a 38 inch minimum viewing distance
 - The image shall be in focus during all image quality tests
- (11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels
- (12) Gray 10 screen definition: All areas of the screen are colored with the following settings:
 - Red = 10/255 Green = 10/255
 - Blue = 10/255
- (13) POM definition: Rectangular border of off-state mirrors surrounding the active area
- (14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels
- (15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster
- (16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable pixel appears to be flickering asynchronously with the image

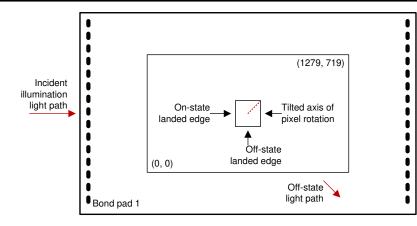


图 6-18. Landed Pixel Orientation and Tilt

6.12 Window Characteristics

PA	RAMETER ⁽³⁾	MIN	ТҮР	MAX	UNIT
Window material			Corning Eagle XG		
Window aperture ⁽¹⁾			See ⁽¹⁾		
Illumination overfill ⁽²⁾	Illumination overfill ⁽²⁾			See ⁽²⁾	
Window transmittance, single-pass through both surfaces and glass ⁽⁴⁾	Minimum within the wavelength range 390 nm to 450 nm, 0-30° AOI.	93%	99%		
	Average within the wavelength range 390 nm to 450 nm, 0-30° AOI.	98%	99%		
	Minimum within the wavelength range 450 nm to 550 nm. 0-30° AOI.	75%	90%		

(1) See the package mechanical characteristics for details regarding the size and location of the window aperture.

(2) The active area of the device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view. The window aperture is sized to anticipate several optical operating conditions. Overfill light directly illuminating the window aperture can create adverse imaging effects, and additional device heating leading to reduced device lifetime. Direct incident illumination should be prevented from striking the DMD window aperture.

(3) See $\frac{17}{7.5}$ for more information.

(4) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP DMD Window.

6.13 Chipset Component Usage Specification

The DLP300S is a component of one or more TI DLP[®] chipsets. Reliable function and operation of the DLP300S requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.

备注

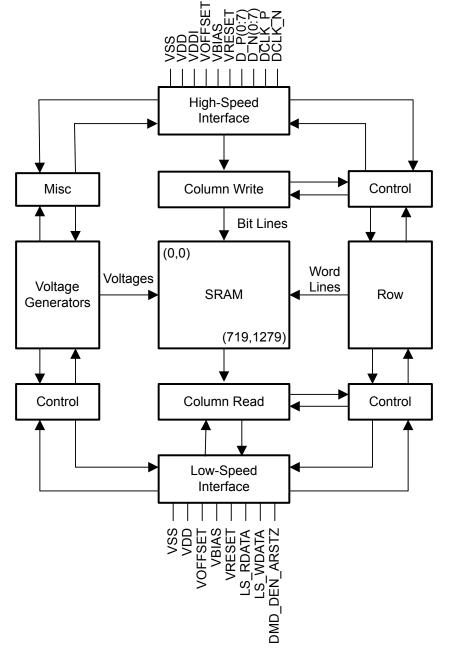
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

6.14 Software Requirements

CAUTION

The DMD has mandatory software requirements. Refer to *Software Requirements for TI DLP®Pico® TRP Digital Micromirror Devices* application report for additional information. Failure to use the specified software results in failure at power up.

7 Detailed Description


7.1 Overview

The DLP300S DMD is a 0.3 inch diagonal spatial light modulator of aluminum micromirrors. Pixel array size is 1280 columns by 720 rows in a square grid pixel arrangement. The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enable each micromirror to display 4 distinct pixels on the screen during every frame, resulting in a full 3.6MP image being displayed. The electrical interface is Sub Low Voltage Differential Signaling (SubLVDS) data.

This DMD is part of the chipset that includes the DLP300S DMD, DLPC1438 display and light controller and DLPA200x PMIC/LED driver. To ensure reliable operation, this DMD must always be used with DLPC1438 display and light controller and DLPA200x PMIC/LED driver.

7.2 Functional Block Diagram

- A. Details omitted for clarity
- B. Orientation is not representative of optical system
- C. Scale is not representative of layout

7.3 Feature Description

7.3.1 Power Interface

The power management IC, DLPA200x, contains 3 regulated DC supplies for the DMD reset circuitry: VBIAS, VRESET and VOFFSET, as well as the 2 regulated DC supplies for the DLPC1438 controller.

7.3.2 Low-Speed Interface

The Low Speed Interface handles instructions that configure the DMD and control reset operation. LS_CLK is the low–speed clock, and LS_WDATA is the low speed data input.

7.3.3 High-Speed Interface

The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed DDR transfer and compression techniques to save power and time. The high-speed interface is composed of differential SubLVDS receivers for inputs, with a dedicated clock.

7.3.4 Timing

The data sheet provides timing test results at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be considered. The Test Load Circuit Output Propagation Measurement shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as a precise representation of any particular system environment or depiction of the actual load presented by a production test. TI recommends that system designers use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is intended for characterization and measurement of AC timing signals only. This load capacitance value does not indicate the maximum load the device is capable of driving.

7.4 Device Functional Modes

DMD functional modes are controlled by the DLPC1438 controller. See the DLPC1438 controller data sheet or contact a TI applications engineer.

7.5 Optical Interface and System Image Quality Considerations

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

备注

7.5.1 Optical Interface and System Image Quality

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

7.5.1.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area is typically the same. Ensure this angle does not exceed the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination or projection pupils to block out flat-state and stray light from the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat–state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts in the display border or active area may occur.

7.5.1.2 Pupil Match

The optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display border or active area. These artifacts may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

7.5.1.3 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view. The window aperture is sized to anticipate several optical operating conditions. Overfill light directly illuminating the window aperture can create adverse imaging effects, and additional device heating leading to reduced device lifetime. Direct incident illumination should be prevented from striking the DMD window aperture.

7.6 Micromirror Array Temperature Calculation

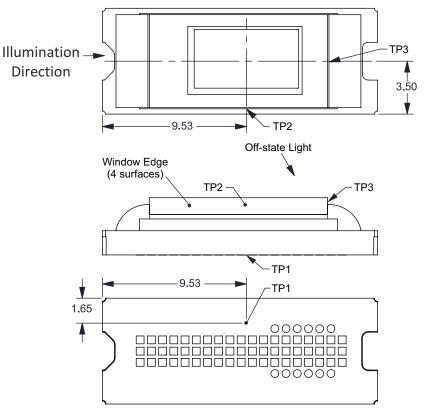


图 7-1. Thermal Test Point Location - FQK Package

Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship between array temperature and the reference ceramic temperature shown as TP1 in 🕅 7-1 is provided by the following equations:

$$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$
(1)

 $Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$

where

- T_{ARRAY} = Computed micromirror array temperature (°C)
- T_{CERAMIC} = Measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = Thermal resistance of package specified in 节 6.5 from array to ceramic TP1 (°C/W)

(2)

- Q_{ARRAY} = Total DMD power on the array (electrical + absorbed) (W)
- Q_{ELECTRICAL} = Nominal electrical power (W)
- Q_{INCIDENT} = measured total illumination optical power at DMD (W)
- Q_{ILLUMINATION} = (Q_{INCIDENT} × DMD average thermal absortivity) (W)
- DMD average thermal absortivity = 0.40

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 0.1 W. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for each DMD chip in a system. It assumes illumination distribution of 83.7% on the active array and 16.3% on the area outside the array.

Q _{ELECTRICAL} = 0.1 W	(3)
Q _{INCIDENT} = 0.9 W (measured)	(4)
T _{CERAMIC} = 35.0 °C (measured)	(5)
Q _{ARRAY} = 0.1 W + (0.9 W x 0.40) = 0.46 W	(6)
T _{ARRAY} = 35.0 °C + (0.46 W x 5.4 °C /W) = 37.5°C	(7)

7.7 Micromirror Landed-On/Landed-Off Duty Cycle

7.7.1 Definition of Micromirror Landed-On and Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state.

As an example, a landed duty cycle of 75/25 indicates that the referenced pixel is in the ON state 75% of the time (and in the OFF state 25% of the time), whereas 25/75 indicates that the pixel is in the OFF state 75% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.

When assessing landed duty cycle, the time spent switching from the current state to the opposite state is considered negligible and is thus ignored.

Because a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) nominally add to 100. In practice, image processing algorithms in the DLP chipset can result a total of less that 100.

7.7.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the usable life of the DMD.

The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

7.7.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD. This interaction can be used to reduce the impact that an asymmetrical landed duty cycle has on the useable life of the DMD.

7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the landed duty cycle of a given pixel depends on the image content being displayed by that pixel. To enhance reliability, when coupled with the DLPC1438 controller, the DLP300S DMD operates at a maximum 78/22 duty cycle and a minimum of 22/78 duty cycle.

In the simplest case for example, when the system displays maximum full scale brightness on a given pixel for a given time period, that pixel operates very close to a 78/22 landed duty cycle during that time period. Likewise, when the system displays a pixel value of zero, the pixel operates very close to a 22/78 landed duty cycle.

The nominal landed duty cycle is additionally biased from the worst case above toward 50/50 during the time between print layers. The duty cycle approaches 50/50 when the illuminated print time is the same as the between layer time.

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection or collection optic. Each application depends primarily on the optical architecture of the system and format of the data coming into the DLPC1438 controller. Applications include:

- DLP 3D Printer
 - Additive manufacturing
 - Vat polymerization
 - Masked stereolithography (mSLA 3D printer)
- Light exposure: programmable spatial and temporal light exposure

DMD power-up and power-down sequencing is strictly controlled by the DLPA2000/DLPA2005. Refer to # 9 for power-up and power-down specifications. For reliable operation, the DLP300S DMD must be used with the DLPC1438 controller and DLPA2000/DLPA2005 PMIC/LED driver.

8.2 Typical Application

图 8-1 and 图 8-2 show typical DLP 3D printer system block diagrams using the DLP300S DMD, DLPC1438 controller, and DLPA200x PMIC/LED driver.

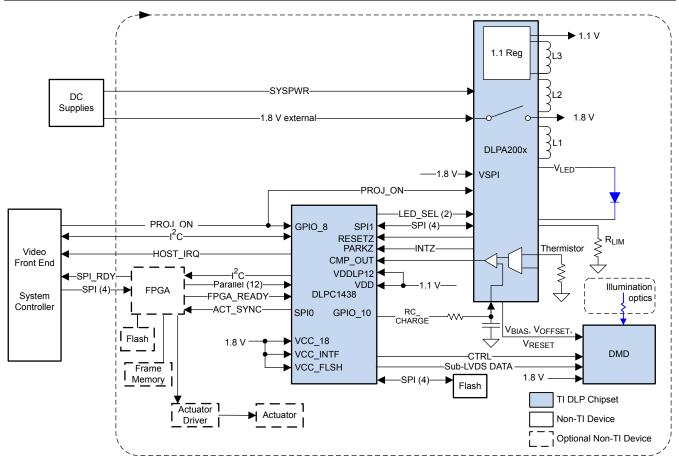


图 8-1. With FPGA

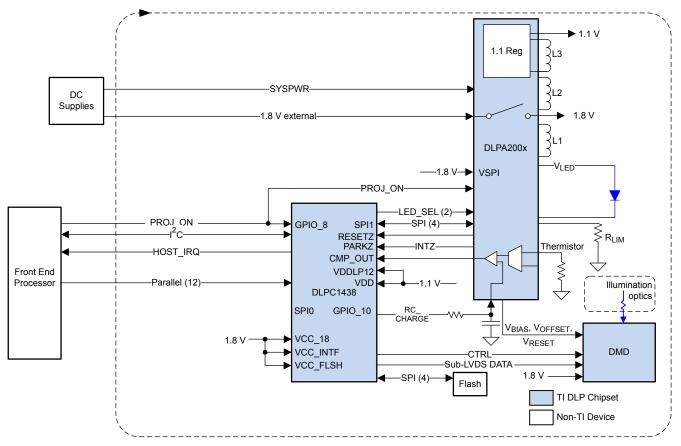
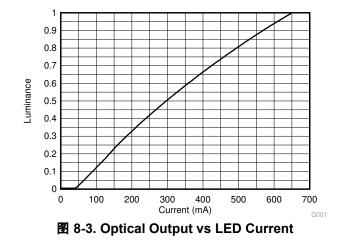


图 8-2. Without FPGA

8.2.1 Design Requirements

A DLP 3D printer can be created using the DLP300S, DLPC1438, and DLPA200x PMIC/LED driver. In addition to the DLP chipset, other IC components may be needed including a flash device to store the software and firmware to control the DLPC1438.

A 405nm LED typically supplies the illumination for the DMD. In addition to LEDs, other light sources are supported.


8.2.2 Detailed Design Procedure

The optical engine, which includes the LED, DMD, and sometimes the electronics is typically supplied by an optical OEM who specializes in designing optics for DLP projectors.

8.2.3 Application Curve

This device drives current though the LED(s). As the LED current increases, the brightness of the optical engine increases. This increase is somewhat non-linear, and the curve for typical optical output power changes with LED currents as shown in 8 - 3.

9 Power Supply Recommendations

The following power supplies are all required to operate the DMD:

- V_{SS}
- V_{BIAS}
- V_{DD}
- V_{DDI}
- V_{OFFSET}
- V_{RESET}

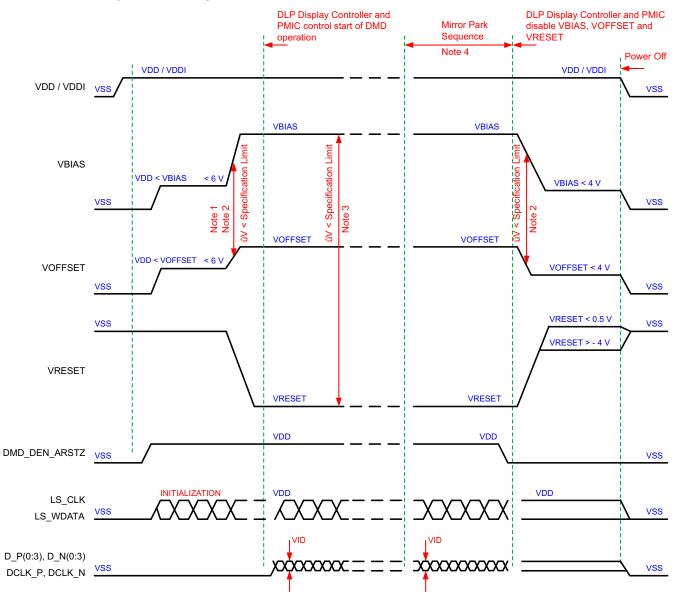
DMD power-up and power-down sequencing is strictly controlled by the DLPAxxxx device.

CAUTION

For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to any of the prescribed power-up and power-down requirements may affect device reliability. See the DMD power supply sequencing requirements in \mathbb{E} 9-1.

 V_{BIAS} , V_{DD} , V_{DDI} , V_{OFFSET} , and V_{RESET} power supplies must be coordinated during power-up and power-down operations. Failure to meet any of the below requirements significantly reduces DMD reliability and lifetime. Common ground V_{SS} must also be connected.

9.1 DMD Power Supply Power-Up Procedure


- During power-up, V_{DD} and V_{DDI} must always start and settle before V_{OFFSET}, V_{BIAS}, and V_{RESET} voltages are applied to the DMD.
- During power-up, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in *节* 6.4. Refer to 表 9-1 for power-up delay requirements.
- During power-up, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS} and V_{OFFSET}.
- Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements specified in # 6.1, in # 6.4, and in # 9.3.
- During power-up, LPSDR input pins must not be driven high until after V_{DD} /V_{DDI} have settled at operating voltages listed in # 6.4.

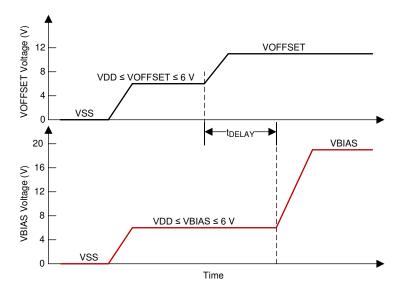
9.2 DMD Power Supply Power-Down Procedure

- Power-down sequence is the reverse order of the previous power-up sequence. During power-down, V_{DD} and V_{DDI} must be supplied until after V_{BIAS}, V_{RESET}, and V_{OFFSET} are discharged to within 4 V of ground.
- During power-down, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in # 6.4.
- During power-down, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS} and V_{OFFSET}.
- Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements specified in # 6.1, in # 6.4, and in # 9.3.
- During power-down, LPSDR input pins must be less than V_{DD} / V_{DDI} specified in $\frac{\# 6.4}{2}$.

9.3 Power Supply Sequencing Requirements

- A. Refer to 表 9-1 and 图 9-2 for critical power-up sequence delay requirements.
- B. To prevent excess current, the supply voltage delta |V_{BIAS} V_{OFFSET}| must be less than specified in 节 6.4. OEMs may find that the most reliable way to ensure this is to power V_{OFFSET} prior to V_{BIAS} during power-up and to remove V_{BIAS} prior to V_{OFFSET} during power-down. Refer to 表 9-1 and 图 9-2 for power-up delay requirements.
- C. To prevent excess current, the supply voltage delta $|V_{BIAS} V_{RESET}|$ must be less than specified limit shown in $\frac{11}{7}$ 6.4.
- D. When system power is interrupted, the ASIC driver initiates hardware power-down that disables V_{BIAS}, V_{RESET} and V_{OFFSET} after the Micromirror Park Sequence. Software power-down disables V_{BIAS}, V_{RESET}, and V_{OFFSET} after the Micromirror Park Sequence through software control.
- E. Drawing is not to scale and details are omitted for clarity.

图 9-1. Power Supply Sequencing Requirements (Power Up and Power Down)


表 9-1. Power-Up Sequence Delay Requirement

	PARAMETER	MIN	MAX	UNIT
t _{DELAY}	Delay requirement from V _{OFFSET} power up to V _{BIAS} power up	2		ms
VOFFSET	Supply voltage level during power–up sequence delay (see 9-2)		6	V

表 9-1. Power-Up Sequence Delay Requirement (continued)

	PARAMETER	MIN MAX	UNIT
V _{BIAS}	Supply voltage level during power–up sequence delay (see 图 9-2)	6	V

A. Refer to $\frac{1}{8}$ 9-1 for V_{OFFSET} and V_{BIAS} supply voltage levels during power-up sequence delay.

图 9-2. Power-Up Sequence Delay Requirement

10 Layout

10.1 Layout Guidelines

There are no specific layout guidelines for the DMD as typically DMD is connected using a board to board connector to a flex cable. Flex cable provides the interface of data and control signals between the DLPC1438 controller and the DLP300S DMD. For detailed layout guidelines refer to the layout design files. Some layout guideline for the flex cable interface with DMD are:

- Match lengths for the LS_WDATA and LS_CLK signals.
- Minimize vias, layer changes, and turns for the HS bus signals. Refer 🛽 10-1.
- Minimum of two 100-nF decoupling capacitor close to VBIAS. Capacitor C6 and C7 in 🛽 10-1.
- Minimum of two 100-nF decoupling capacitor close to VRST. Capacitor C9 and C8 in 图 10-1.
- Minimum of two 220-nF decoupling capacitor close to VOFS. Capacitor C5 and C4 in 图 10-1.
- Minimum of four 100-nF decoupling capacitor close to VDDI and VDD. Capacitor C1, C2, C3 and C10 in 图 10-1.

10.2 Layout Example

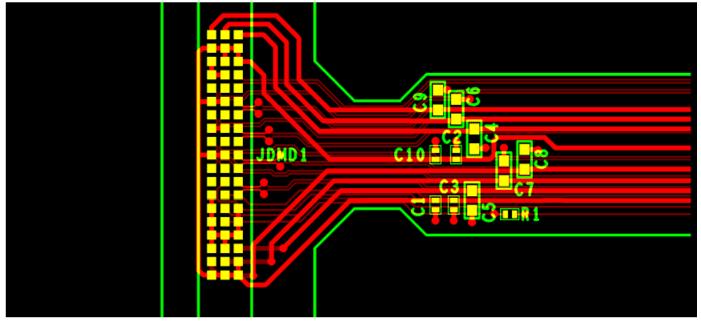


图 10-1. Power Supply Connections

11 Device and Documentation Support

11.1 Device Support

11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此 类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.1.2 Device Nomenclature

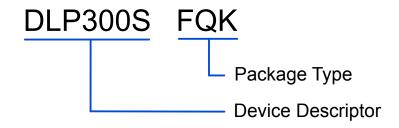
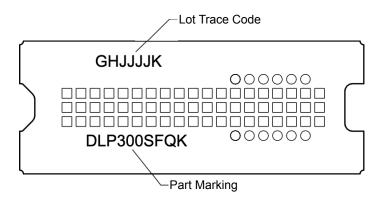



图 11-1. Part Number Description

11.1.3 Device Markings

The device marking includes the legible character string GHJJJJK DLP300SFQK. GHJJJJK is the lot trace code. DLP300SFQK is the orderable device number.

图 11-2. DMD Marking

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 Related Links

表 11-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 11-1. Related Links								
PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY			
DLP300S	Click here	Click here	Click here	Click here	Click here			
DLPC1438	Click here	Click here	Click here	Click here	Click here			
DLPA2000	Click here	Click here	Click here	Click here	Click here			

表 11-1. Related Links (continued)

PARTS	PARTS PRODUCT FOLDER		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
DLPA2005	Click here	Click here	Click here	Click here	Click here	

11.4 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

 $\mathsf{DLP}^{\texttt{R}}$ and $\mathsf{Pico}^{\texttt{R}}$ are registered trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DLP300SFQK	ACTIVE	CLGA	FQK	57	120	RoHS & Green	NI/AU	N / A for Pkg Type	0 to 40		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

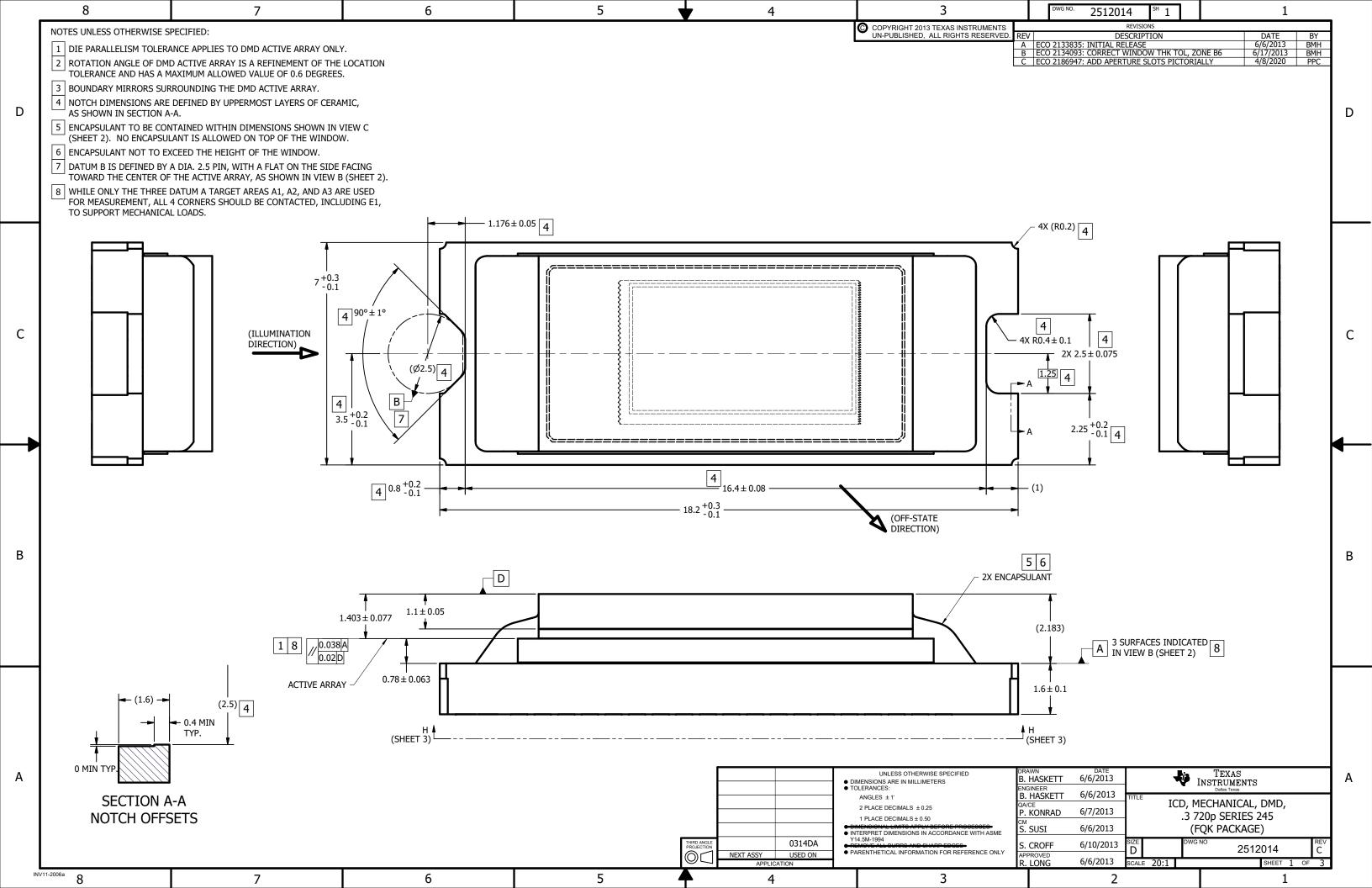
OBSOLETE: TI has discontinued the production of the device.

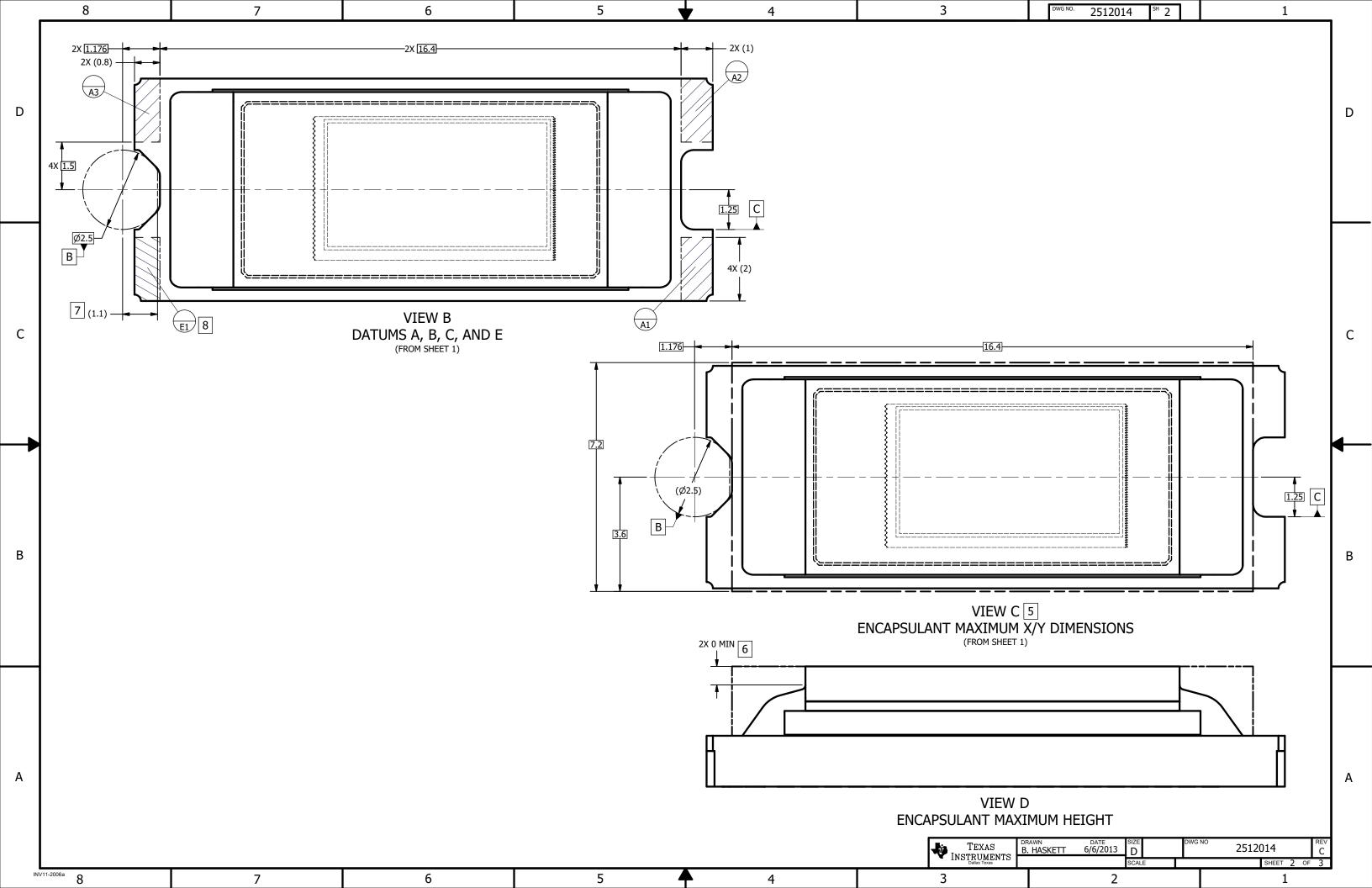
⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

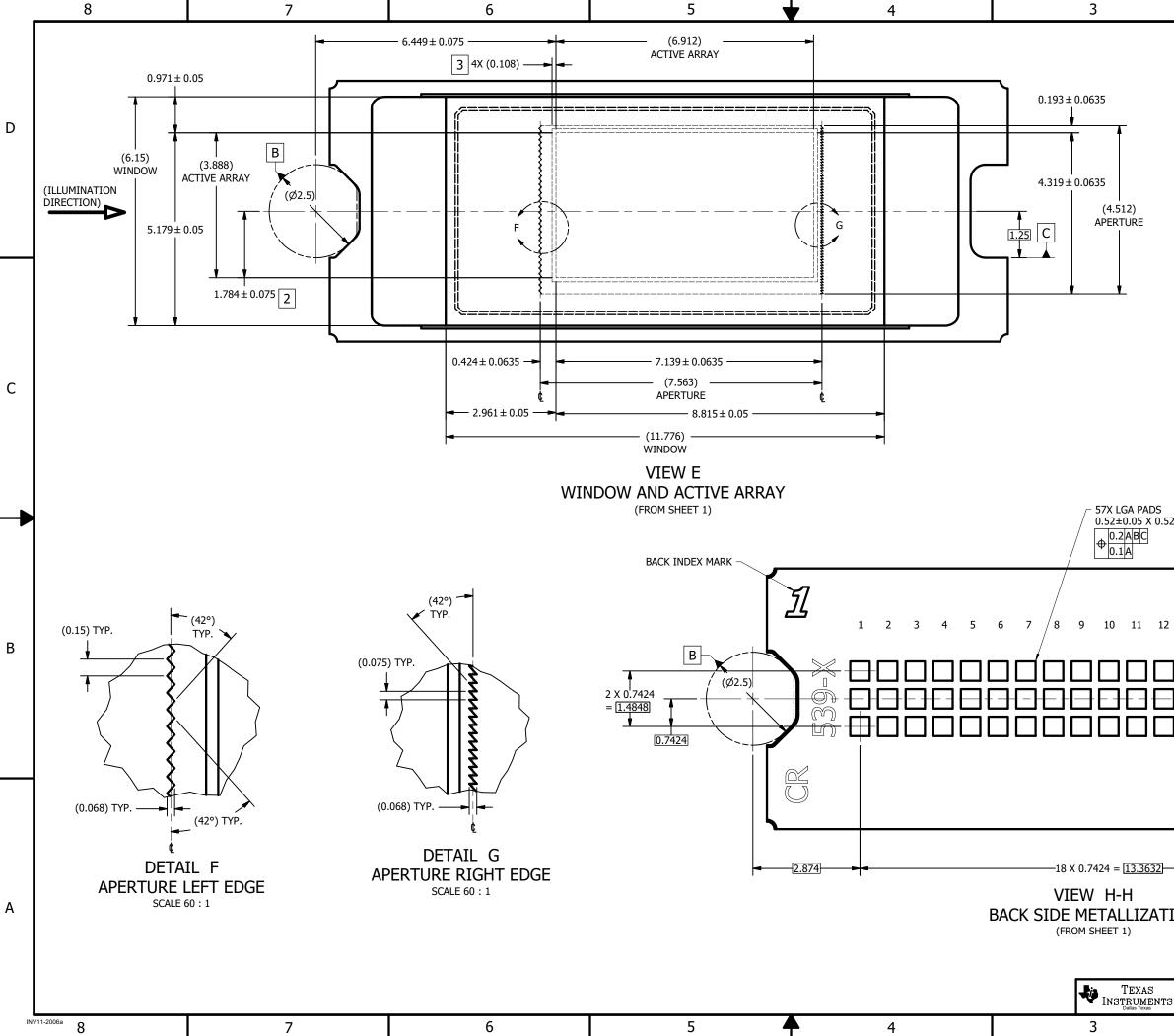
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.


⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DWG	^{5 NO.} 2512014	^{SH} 3	1	
		<u> </u>		D
				С
2 13 14 0 0 0 0 0 0 0 0		± 0.05)	1.25 C 2X (0.7424)	В
TION 'S B. HASKET	т 6/6/2013 D SCALE 2		424)	A

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司