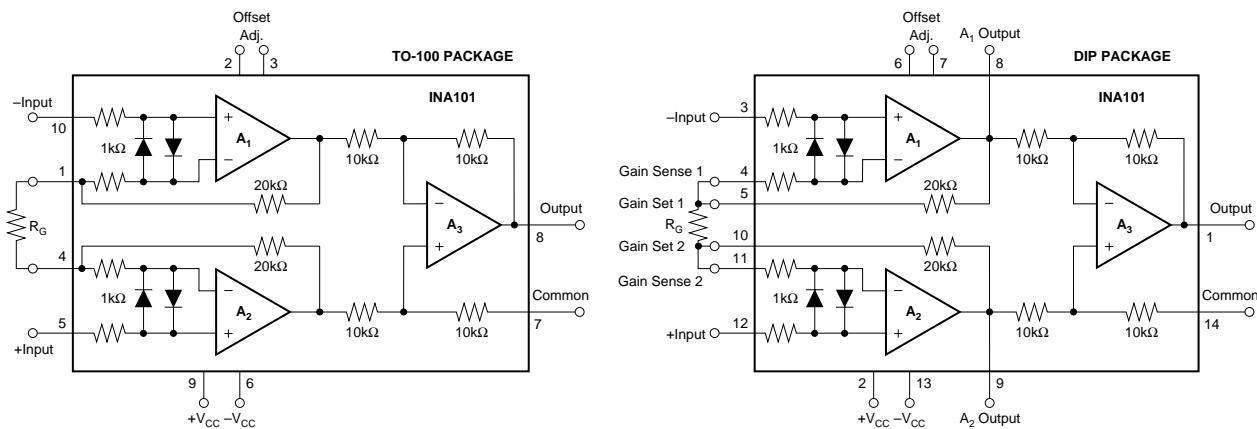


High Accuracy INSTRUMENTATION AMPLIFIER

FEATURES

- LOW DRIFT: $0.25\mu\text{V}/^\circ\text{C}$ max
- LOW OFFSET VOLTAGE: $25\mu\text{V}$ max
- LOW NONLINEARITY: 0.002%
- LOW NOISE: $13\text{nV}/\sqrt{\text{Hz}}$
- HIGH CMR: 106dB AT 60Hz
- HIGH INPUT IMPEDANCE: $10^{10}\Omega$
- 14-PIN PLASTIC, CERAMIC DIP,
SOL-16, AND TO-100 PACKAGES


APPLICATIONS

- STRAIN GAGES
- THERMOCOUPLES
- RTDs
- REMOTE TRANSDUCERS
- LOW-LEVEL SIGNALS
- MEDICAL INSTRUMENTATION

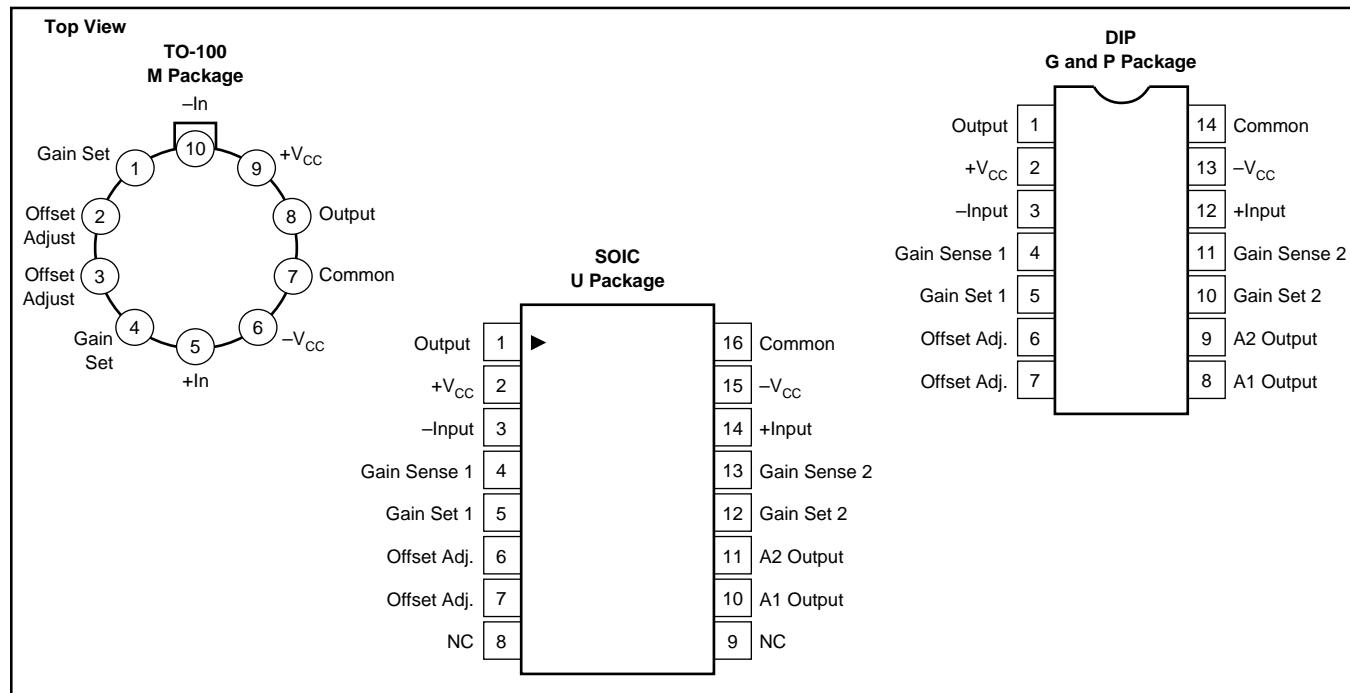
DESCRIPTION

The INA101 is a high accuracy instrumentation amplifier designed for low-level signal amplification and general purpose data acquisition. Three precision op amps and laser-trimmed metal film resistors are integrated on a single monolithic integrated circuit.

The INA101 is packaged in TO-100 metal, 14-pin plastic and ceramic DIP, and SOL-16 surface-mount packages. Commercial, industrial and military temperature range models are available.

SPECIFICATIONS

ELECTRICAL


At +25°C with ± 15 VDC power supply and in circuit of Figure 1, unless otherwise noted.

PARAMETER	INA101AM, AG			INA101SM, SG			INA101CM, CG			INA101HP, KU			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
GAIN Range of Gain Gain Equation Error from Equation, DC ⁽¹⁾	1	$G = 1 + (40k/R_G)$ $\pm(0.04 + 0.00016G - 0.02/G)$	1000	*	*	*	*	*	*	*	$\pm(0.1 + 0.00015G - 0.05/G)$	$\pm(0.3 + 0.0002G - 0.10/G)$	V/V V/V %
Gain Temp. Coefficient⁽³⁾ G = 1 G = 10 G = 100 G = 1000 Nonlinearity, DC ⁽²⁾		2 20 22 22	5 100 110 110	*	*	*	*	*	*	*	*	*	ppm/°C ppm/°C ppm/°C ppm/°C % of p-p FS
RATED OUTPUT Voltage Current Output Impedance Capacitive Load	± 10 ± 5	± 12.5 ± 10 0.2 1000		*	*	*	*	*	*	*	*	*	V mA Ω pF
INPUT OFFSET VOLTAGE Initial Offset at +25°C vs Temperature vs Supply vs Time		$\pm(25 + 200/G)$	$\pm(50 + 400/G)$		$\pm 10 + 100/G$	$\pm(25 + 200/G)$ $\pm(0.75 + 10/G)$		$\pm(10 + 100/G)$	$\pm(25 + 200/G)$ $\pm(0.25 + 10/G)$		$\pm(125 + 450/G)$ $\pm(2 + 20/G)$	$\pm(250 + 900/G)$	μV μV/°C μV/V μV/mo
INPUT BIAS CURRENT Initial Bias Current (each input) vs Temperature vs Supply Initial Offset Current vs Temperature		± 15 ± 0.2 ± 0.1 ± 15 ± 0.5	± 30		± 10 *	*		± 5 *	± 20		*	*	nA nA/°C nA/V nA nA/°C
INPUT IMPEDANCE Differential Common-mode		$10^{10} \parallel 3$ $10^{10} \parallel 3$			*	*		*	*		*	*	$\Omega \parallel pF$ $\Omega \parallel pF$
INPUT VOLTAGE RANGE Range, Linear Response CMR with 1kΩ Source Imbalance DC to 60Hz, G = 1 DC to 60Hz, G = 10 DC to 60Hz, G = 100 to 1000	± 10	± 12		*	*		*	*		*	*	*	V
INPUT NOISE Input Voltage Noise $f_B = 0.01$ Hz to 10Hz Density, G = 1000 $f_0 = 10$ Hz $f_0 = 100$ Hz $f_0 = 1$ kHz Input Current Noise $f_B = 0.01$ Hz to 10Hz Density $f_0 = 10$ Hz $f_0 = 100$ Hz $f_0 = 1$ kHz		0.8 18 15 13 50 0.8 0.46 0.35		*	*		*	*		*	*	*	μV, p-p nV/√Hz nV/√Hz nV/√Hz pA, p-p pA/√Hz pA/√Hz pA/√Hz
DYNAMIC RESPONSE Small Signal, ± 3 dB Flatness G = 1 G = 10 G = 100 G = 1000 Small Signal, ± 1 % Flatness G = 1 G = 10 G = 100 G = 1000 Full Power, G = 1 to 100 Slew Rate, G = 1 to 100 Settling Time (0.1%) G = 1 G = 100 G = 1000 Settling Time (0.01%) G = 1 G = 100 G = 1000		300 140 25 2.5 20 10 1 200 6.4 0.4 30 40 350 470 40 55 470 40 55 470 30 45 50 70 500 650		*	*		*	*		*	*	*	kHz kHz kHz kHz kHz kHz kHz Hz kHz V/μs μs μs μs μs μs μs μs μs
POWER SUPPLY Rated Voltage Voltage Range Current, Quiescent ⁽²⁾	± 5	± 15 ± 6.7		*	*	*		*	*	*	*	*	V V mA
TEMPERATURE RANGE⁽⁵⁾ Specification Operation Storage	-25 -55 -65		+85 +125 +150	-55 *	+125 *	*		*	*	0 -25 -40	+70 +85 +85	°C °C °C	

* Specifications same as for INA101AM, AG.

NOTES: (1) Typically the tolerance of R_G will be the major source of gain error. (2) Nonlinearity is the maximum peak deviation from the best straight-line as a percentage of peak-to-peak full scale output. (3) Not including the TCR of R_G . (4) Adjustable to zero at any one gain. (5) θ_{JC} output stage = 113°C/W, θ_{JC} quiescent circuitry = 19°C/W, θ_{CA} = 83°C/W.

PIN CONFIGURATIONS

ORDERING INFORMATION

PRODUCT	PACKAGE	TEMPERATURE RANGE
INA101AM	10-Pin Metal TO-100	-25°C to +85°C
INA101CM	10-Pin Metal TO-100	-25°C to +85°C
INA101AG	14-Pin Ceramic DIP	-25°C to +85°C
INA101CG	14-Pin Ceramic DIP	-25°C to +85°C
INA101HP	14-Pin Plastic DIP	0°C to +70°C
INA101KU	SOL-16 Surface-Mount	0°C to +70°C
INA101SG	14-Pin Ceramic DIP	-55°C to +125°C
INA101SM	10-Pin Metal TO-100	-55°C to +125°C

ABSOLUTE MAXIMUM RATINGS

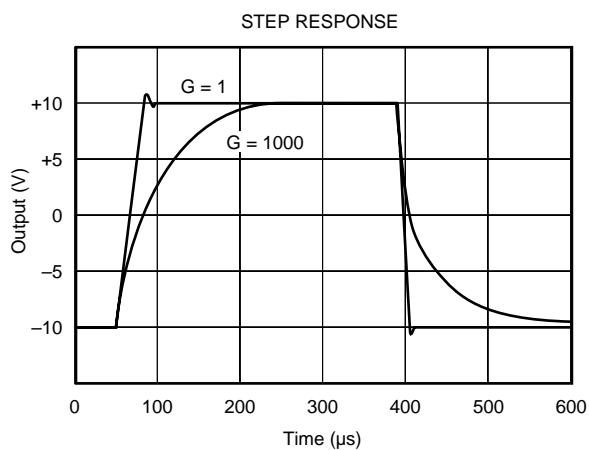
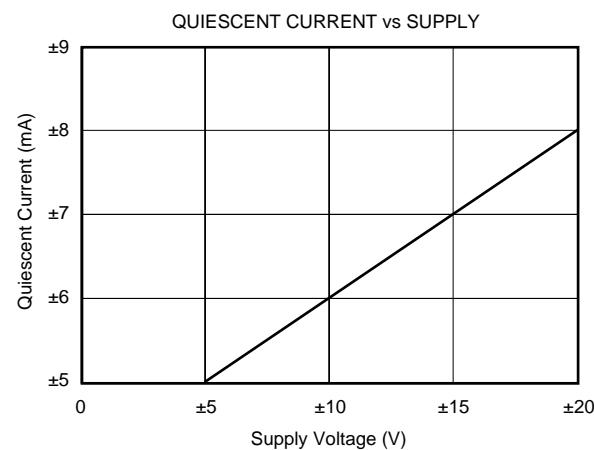
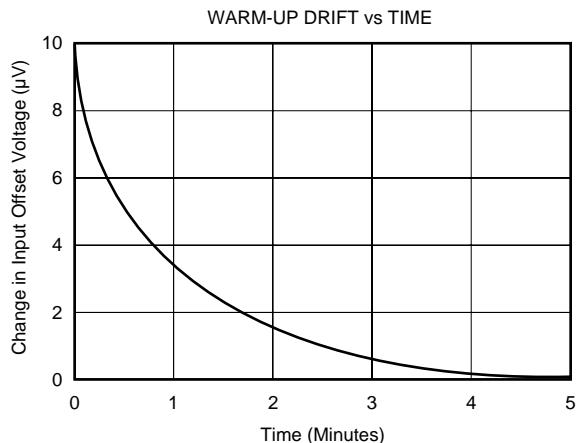
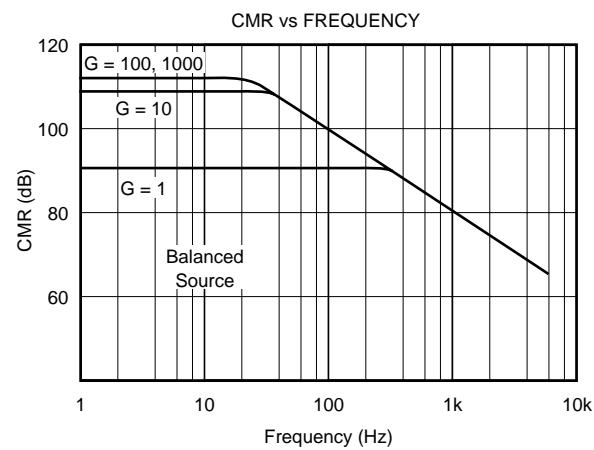
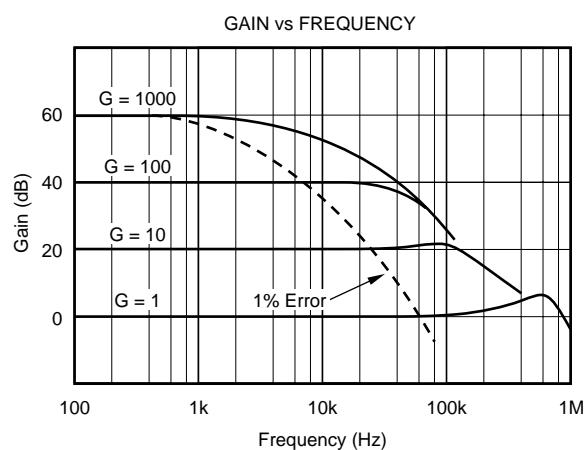
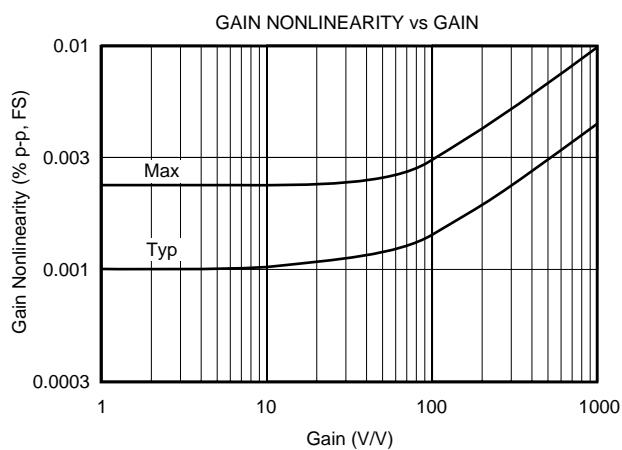
Supply Voltage	±20V
Power Dissipation	600mW
Input Voltage Range	±V _{CC}
Output Short Circuit (to ground)	Continuous
Operating Temperature M, G Package	-55°C to +125°C
P, U Package	-25°C to +85°C
Storage Temperature M, G Package	-65°C to +150°C
P, U Package	-40°C to +85°C
Lead Temperature (soldering, 10s) M, G, P Package	+300°C
Lead Temperature (wave soldering, 3s) U Package	+260°C

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA101AM	10-Pin Metal TO-100	007
INA101CM	10-Pin Metal TO-100	007
INA101AG	14-Pin Ceramic DIP	169
INA101CG	14-Pin Ceramic DIP	169
INA101HP	14-Pin Plastic DIP	010
INA101KU	SOL-16 Surface-Mount	211
INA101SG	14-Pin Ceramic DIP	169
INA101SM	10-Pin Metal TO-100	007

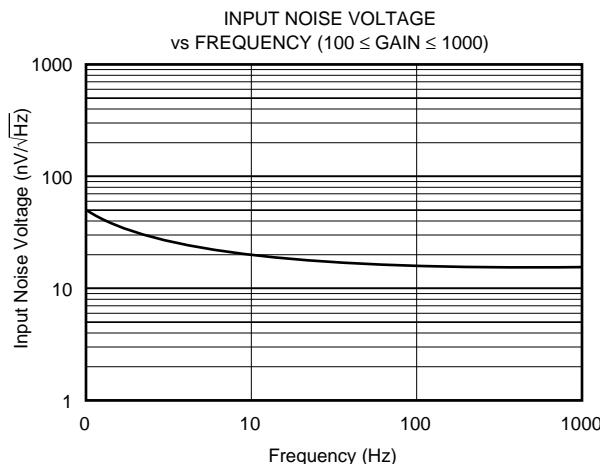
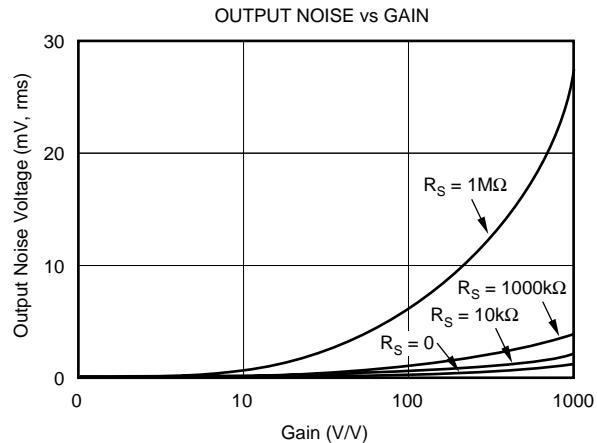
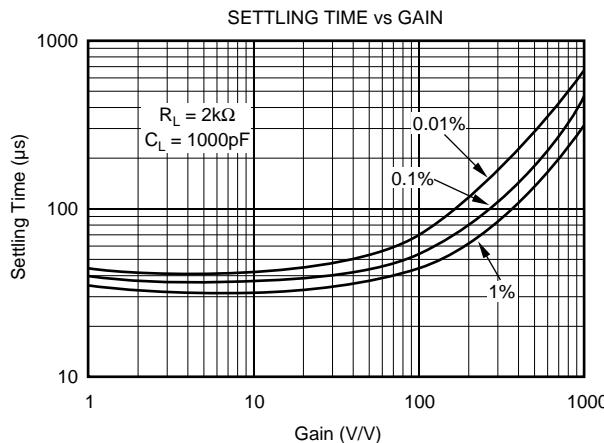
NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY







This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.




TYPICAL PERFORMANCE CURVES

At $+25^{\circ}\text{C}$, $V_{\text{CC}} = \pm 15\text{V}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $+25^\circ\text{C}$, $V_{\text{CC}} = \pm 15\text{V}$ unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA101. (Pin numbers shown are for the TO-100 metal package.) Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output Common terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance greater than 0.1Ω in series with the Common pin will cause common-mode rejection to fall below 106dB.

SETTING THE GAIN

Gain of the INA101 is set by connecting a single external resistor, R_G :

$$G = 1 + \frac{40\text{k}\Omega}{R_G} \quad (1)$$

The $40\text{k}\Omega$ term in equation (1) comes from the sum of the two internal feedback resistors. These are on-chip metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA101.

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater. The gain sense connections on the DIP and SOL-16 packages (see Figure 2) reduce the gain error produced by wiring or socket resistance.

OFFSET TRIMMING

The INA101 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows connection of an optional potentiometer connected to the Offset Adjust pins for trimming the input offset voltage. (Pin numbers shown are for the DIP package.) Use this adjustment to null the offset voltage in high gain ($G \geq 100$) with both inputs connected to ground. Do not use this adjustment to null offset produced by the source or other system offset since this will increase the offset voltage drift by $0.3\mu\text{V}/^\circ\text{C}$ per $100\mu\text{V}$ of adjusted offset.

Offset of the output amplifier usually dominates when the INA101 is used in unity gain ($G = 1$). The output offset

voltage can be adjusted with the optional trim circuit connected to the Common pin as shown in Figure 2. The voltage applied to Common terminal is summed with the output. Low impedance must be maintained at this node to assure good common-mode rejection. The op amp connected as a buffer provides low impedance.

THERMAL EFFECTS ON OFFSET VOLTAGE

To achieve lowest offset voltage and drift, prevent air currents from circulating near the INA101. Rapid changes in temperature will produce a thermocouple effect on the package leads that will degrade offset voltage and drift. A shield or cover that prevents air currents from flowing near the INA101 will assure best performance.

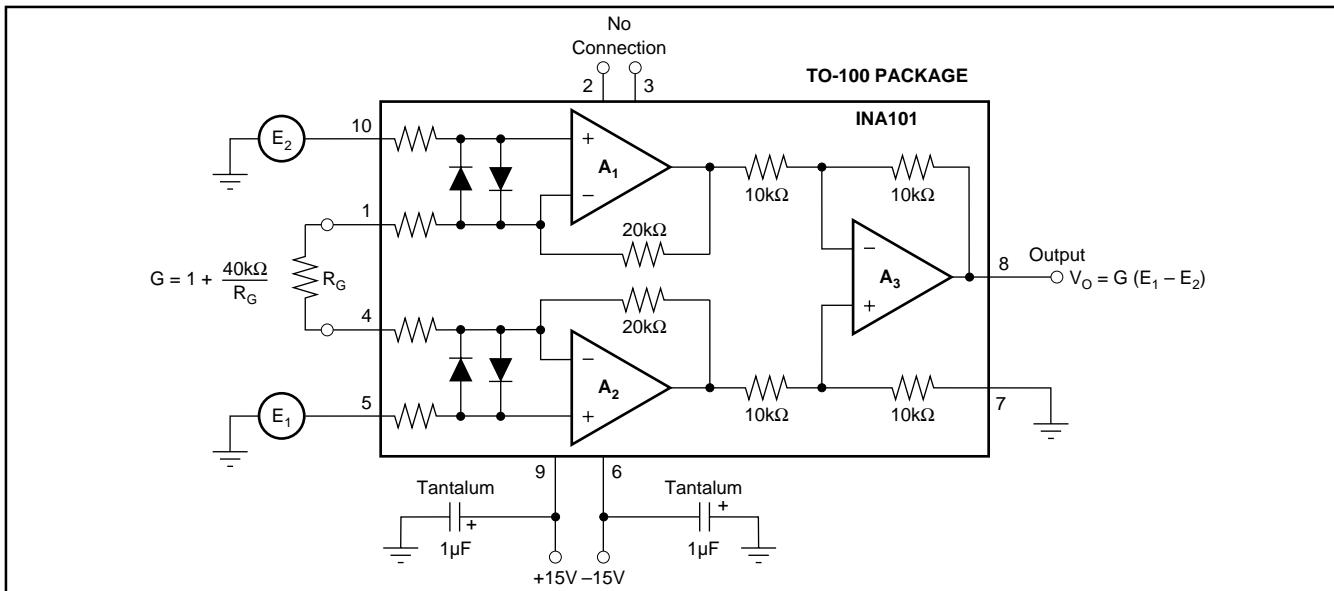


FIGURE 1. Basic Connections.

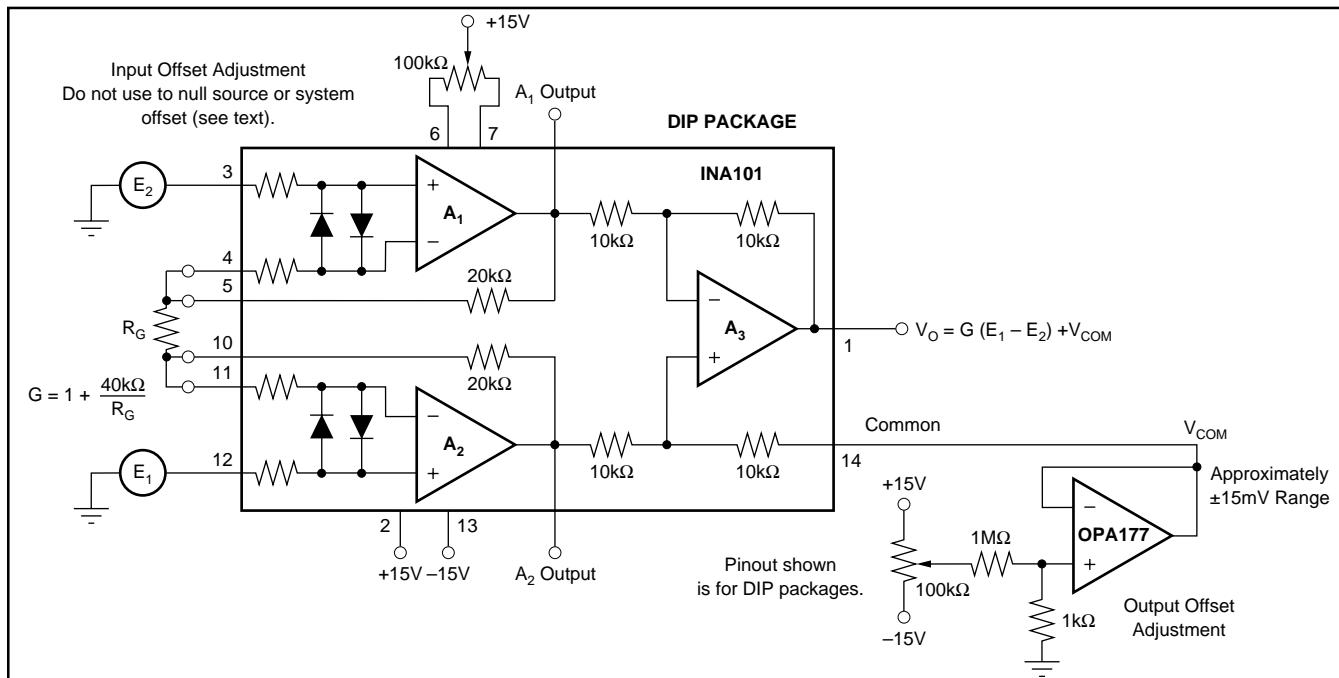


FIGURE 2. Optional Trimming of Input and Output Offset Voltage.

PACKAGING INFORMATION

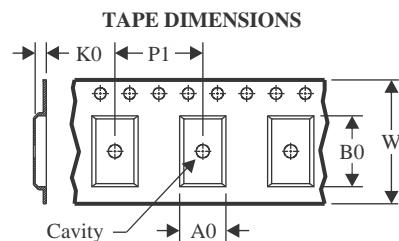
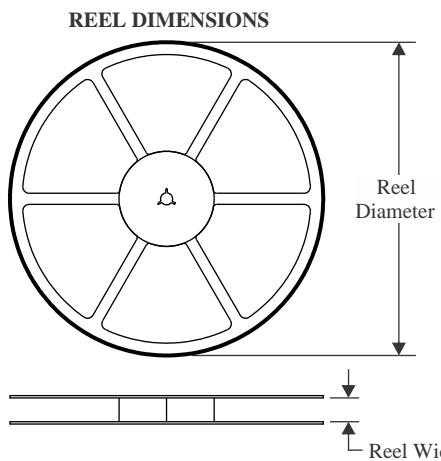
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
INA101AG	Last Time Buy	Production	CDIP SB (JD) 14	24 TUBE	Yes	AU	N/A for Pkg Type	-	INA101AG
INA101AG.A	Active	Production	CDIP SB (JD) 14	24 TUBE	Yes	AU	N/A for Pkg Type	-55 to 125	INA101AG
INA101AM	Last Time Buy	Production	TO-100 (LME) 10	20 TUBE	Yes	Call TI	N/A for Pkg Type	-	INA101AM
INA101AM.A	Active	Production	TO-100 (LME) 10	20 TUBE	Yes	Call TI	N/A for Pkg Type	-55 to 125	INA101AM
INA101CM	Last Time Buy	Production	TO-100 (LME) 10	20 TUBE	Yes	Call TI	N/A for Pkg Type	-	INA101CM
INA101CM.A	Active	Production	TO-100 (LME) 10	20 TUBE	Yes	Call TI	N/A for Pkg Type	-55 to 125	INA101CM
INA101HP	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	INA101HP
INA101HP.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	INA101HP
INA101KU	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-	INA101KU
INA101KU.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	INA101KU
INA101KU/1K	Active	Production	SOIC (DW) 16	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-	INA101KU
INA101KU/1K.A	Active	Production	SOIC (DW) 16	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	INA101KU
INA101SM	Last Time Buy	Production	TO-100 (LME) 10	20 TUBE	Yes	AU	N/A for Pkg Type	-	INA101SM
INA101SM.A	Active	Production	TO-100 (LME) 10	20 TUBE	Yes	AU	N/A for Pkg Type	-55 to 125	INA101SM

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

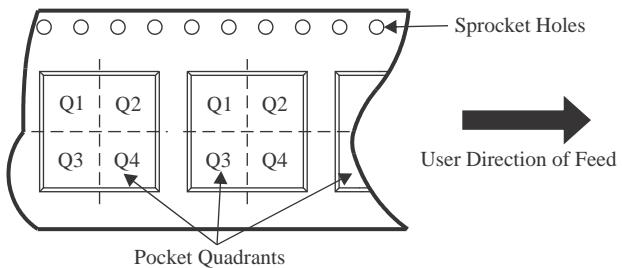
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

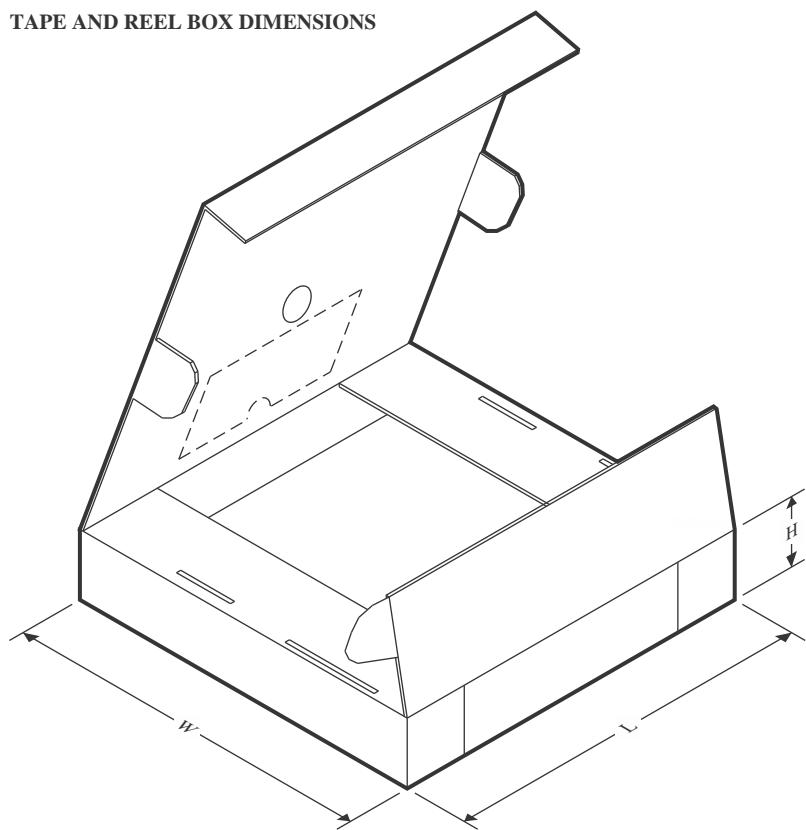


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

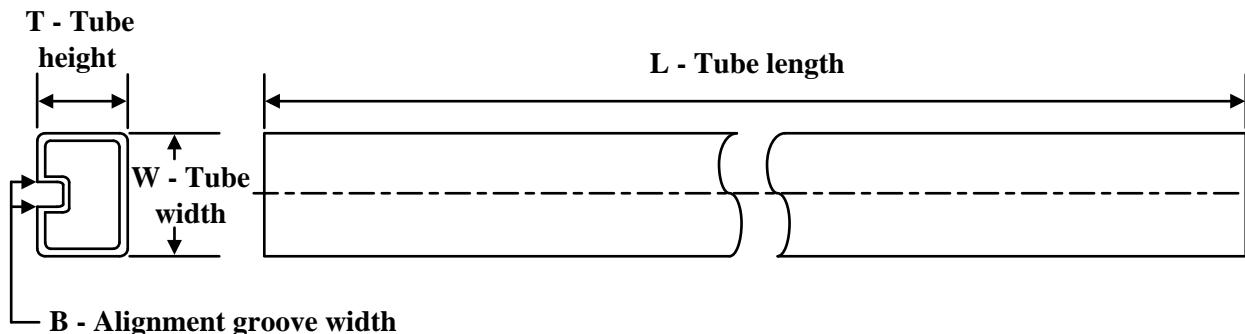
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA101KU/1K	SOIC	DW	16	1000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA101KU/1K	SOIC	DW	16	1000	353.0	353.0	32.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
INA101AG	JD	CDIP SB	14	24	506.98	15.24	12290	NA
INA101AG.A	JD	CDIP SB	14	24	506.98	15.24	12290	NA
INA101AM	LME	TO-CAN	10	20	532.13	21.59	889	NA
INA101AM.A	LME	TO-CAN	10	20	532.13	21.59	889	NA
INA101CM	LME	TO-CAN	10	20	532.13	21.59	889	NA
INA101CM.A	LME	TO-CAN	10	20	532.13	21.59	889	NA
INA101HP	N	PDIP	14	25	506	13.97	11230	4.32
INA101HP.A	N	PDIP	14	25	506	13.97	11230	4.32
INA101KU	DW	SOIC	16	40	507	12.83	5080	6.6
INA101KU.A	DW	SOIC	16	40	507	12.83	5080	6.6
INA101SM	LME	TO-CAN	10	20	532.13	21.59	889	NA
INA101SM.A	LME	TO-CAN	10	20	532.13	21.59	889	NA

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025