

LM747

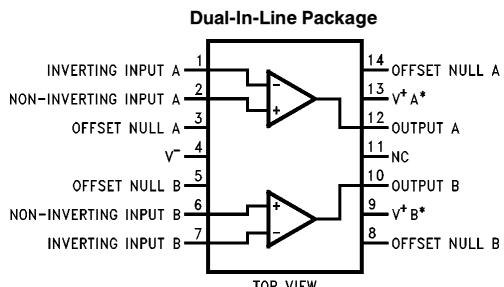
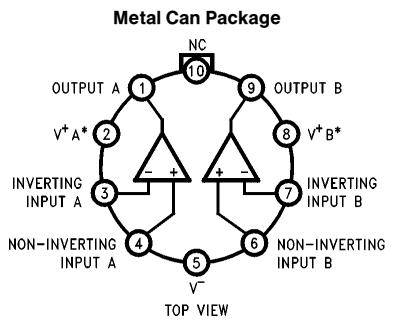
LM747 Dual Operational Amplifier

Literature Number: SNOS661

LM747 Dual Operational Amplifier

General Description

The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.



Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from 0°C to +70°C instead of -55°C to +125°C.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low power consumption
- No latch-up
- Balanced offset null

Connection Diagrams

TL/H/11479-4

TL/H/11479-5

Order Number LM747H
See NS Package Number H10C

Order Number LM747CN or LM747EN
See NS Package Number N14A

*V+ A and V+ B are internally connected.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

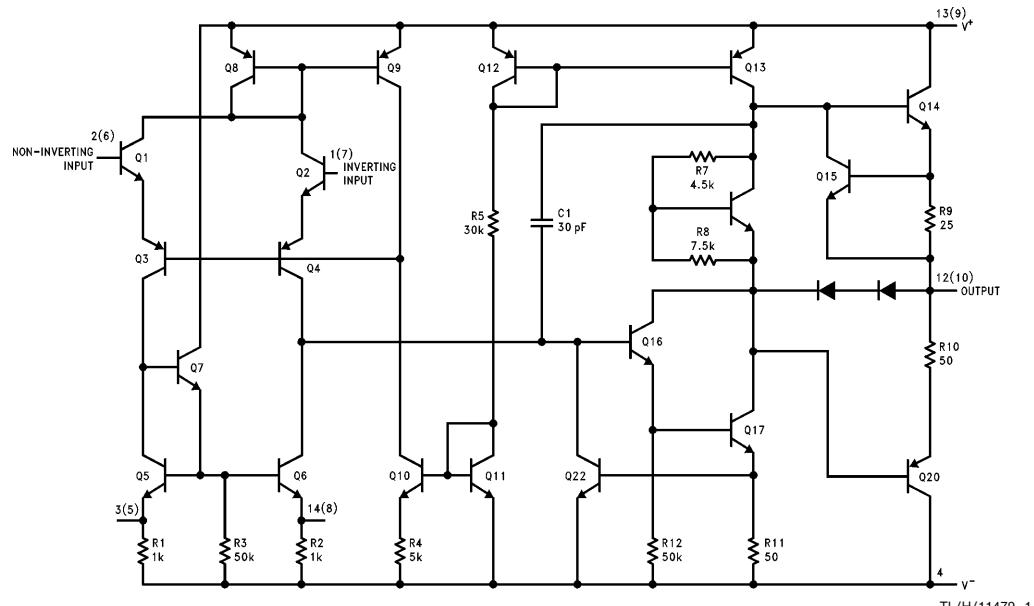
Supply Voltage LM747/LM747A LM747C/LM747E	$\pm 22V$ $\pm 18V$	$\pm 15V$ Indefinite
Power Dissipation (Note 1)	800 mW	-55°C to +125°C 0°C to +70°C
Differential Input Voltage	$\pm 30V$	-65°C to +150°C
		Lead Temperature (Soldering, 10 sec.) 300°C

Electrical Characteristics (Note 3)

Parameter	Conditions	LM747A/LM747E			LM747			LM747C			Units	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Input Offset Voltage	$T_A = 25^\circ C$ $R_S \leq 10 k\Omega$ $R_S \leq 50\Omega$	0.8	3.0		1.0	5.0		2.0	6.0		mV	
	$R_S \leq 50\Omega$ $R_S \leq 10 k\Omega$											
Average Input Offset Voltage Drift			15								$\mu V^\circ C$	
Input Offset Voltage Adjustment Range	$T_A = 25^\circ C, V_S = \pm 20V$	± 10			± 15			± 15			mV	
Input Offset Current	$T_A = 25^\circ C$	3.0	30		20	200		20	200		nA	
		70			85	500			300			
Average Input Offset Current Drift			0.5								$nA^\circ C$	
Input Bias Current	$T_A = 25^\circ C$ $T_{AMIN} \leq T_A \leq T_{AMAX}$	30	80	0.210	80	500	1.5	80	500	0.8	nA μA	
Input Resistance	$T_A = 25^\circ C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		$M\Omega$	
	$V_S = \pm 20V$	0.5										
Input Voltage Range	$T_A = 25^\circ C$							± 12	± 13		V	
		± 12	± 13		± 12	± 13						
Large Signal Voltage Gain	$T_A = 25^\circ C, R_L \geq 2 k\Omega$ $V_S = \pm 20V, V_O = \pm 15V$	50									V/mV	
	$V_S = \pm 15V, V_O = \pm 10V$ $R_L \geq 2 k\Omega$				50	200		20	200			
	$V_S = \pm 20V, V_O = \pm 15V$	32										
	$V_S = \pm 15V, V_O = \pm 10V$				25			15				
	$V_S = \pm 5V, V_O = \pm 2V$	10										
Output Voltage Swing	$V_S = \pm 20V$ $R_L \geq 10 k\Omega$ $R_L \geq 2 k\Omega$	± 16 ± 15									V	
	$V_S = \pm 15V$ $R_L \geq 10 k\Omega$ $R_L \geq 2 k\Omega$				± 12	± 14		± 12	± 14			
Output Short Circuit Current	$T_A = 25^\circ C$	10	25	35	25			25			mA	
		10		40								
Common-Mode Rejection Ratio	$R_S \leq 10 k\Omega, V_{CM} = \pm 12V$				70	90		70	90		dB	
	$R_S \leq 50 k\Omega, V_{CM} = \pm 12V$	80	95									

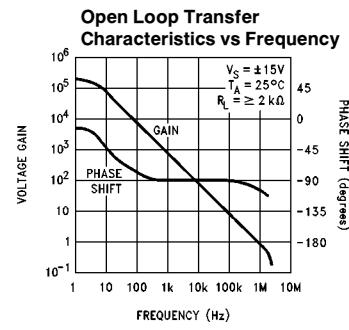
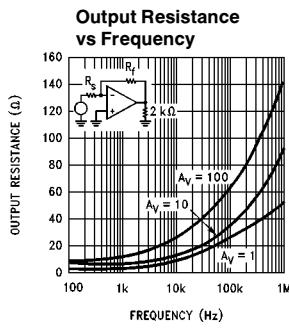
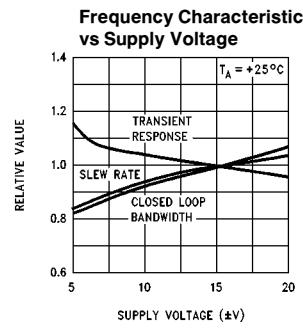
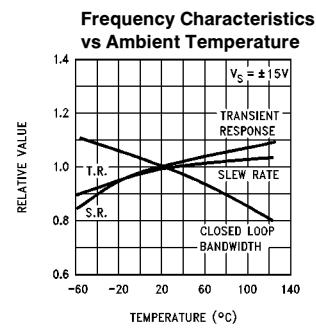
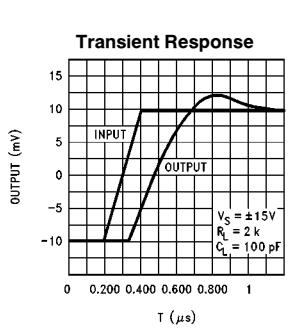
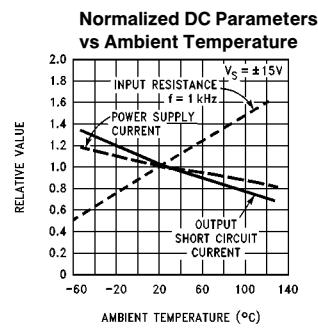
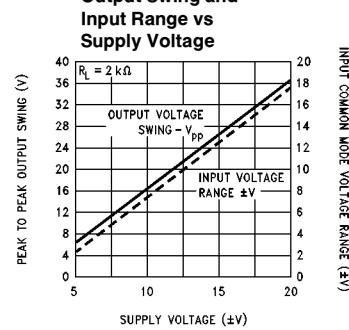
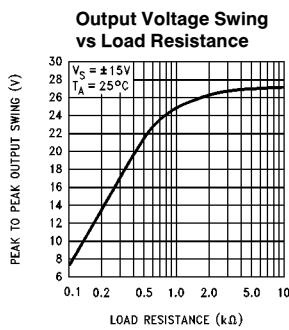
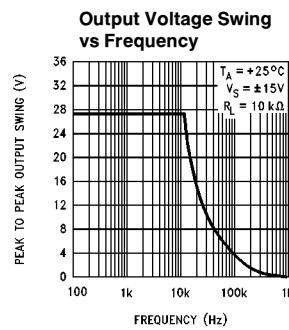
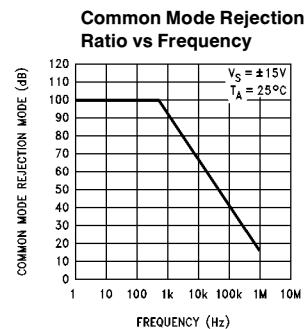
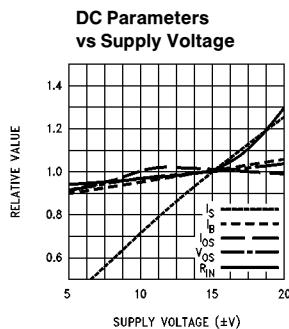
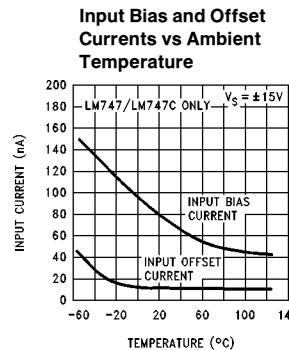
Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM747A/LM747E			LM747			LM747C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Supply Voltage Rejection Ratio	$V_S = \pm 20V$ to $V_S = \pm 5V$ $R_S \leq 50\Omega$ $R_S \leq 10\text{ k}\Omega$	86	96		77	96		77	96		dB
Transient Response Rise Time Overshoot	$T_A = 25^\circ\text{C}$, Unity Gain		0.25 6.0	0.8 20		0.3 5			0.3 5		μs %
Bandwidth (Note 4)	$T_A = 25^\circ\text{C}$	0.437	1.5								MHz
Slew Rate	$T_A = 25^\circ\text{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\text{V}/\mu\text{s}$
Supply Current/Amp	$T_A = 25^\circ\text{C}$		2.5		1.7	2.8		1.7	2.8		mA
Power Consumption/Amp	$T_A = 25^\circ\text{C}$ $V_S = \pm 20V$ $V_S = \pm 15V$		80	150		50	85		50	85	mW
LM747A	$V_S = \pm 20V$ $T_A = T_{A\text{MIN}}$ $T_A = T_{A\text{MAX}}$			165 135							mW
	$V_S = \pm 20V$ $T_A = T_{A\text{MIN}}$ $T_A = T_{A\text{MAX}}$			150 150 150							mW
LM747E	$V_S = \pm 20V$ $T_A = T_{A\text{MIN}}$ $T_A = T_{A\text{MAX}}$			150 150 150							mW
	$V_S = \pm 15V$ $T_A = T_{A\text{MIN}}$ $T_A = T_{A\text{MAX}}$				60 45	100 75					mW

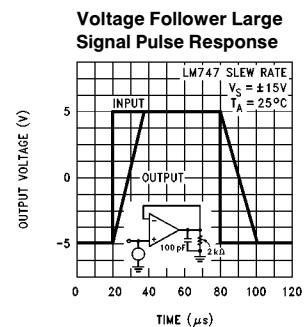
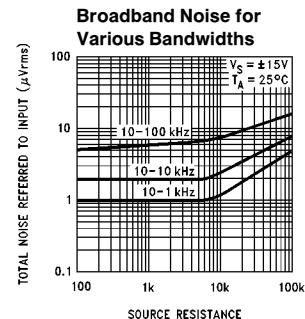
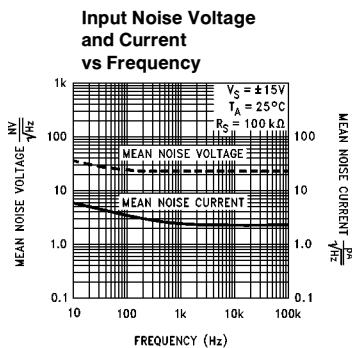
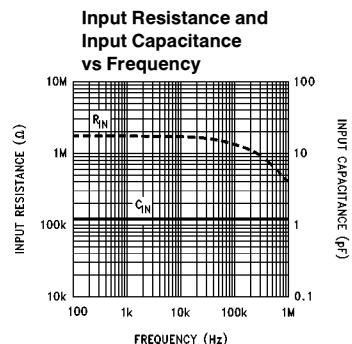

Note 1: The maximum junction temperature of the LM747C/LM747E is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

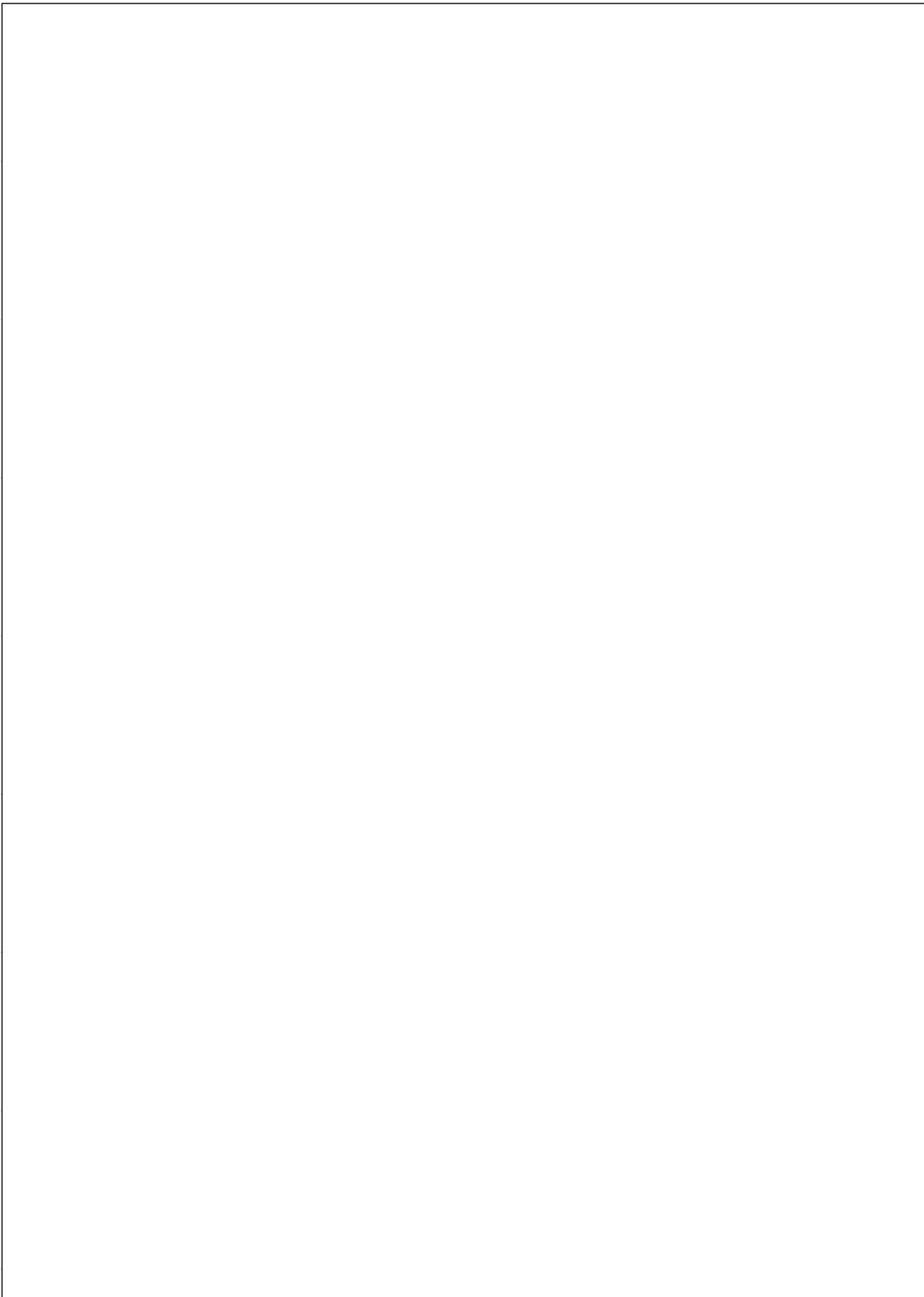
Note 3: These specifications apply for $\pm 5V \leq V_S \leq \pm 20V$ and $-55^\circ C \leq T_A \leq 125^\circ C$ for the LM747A and $0^\circ C \leq T_A \leq 70^\circ C$ for the LM747E unless otherwise specified. The LM747 and LM747C are specified for $V_S = \pm 15V$ and $-55^\circ C \leq T_A \leq 125^\circ C$ and $0^\circ C \leq T_A \leq 70^\circ C$, respectively, unless otherwise specified.

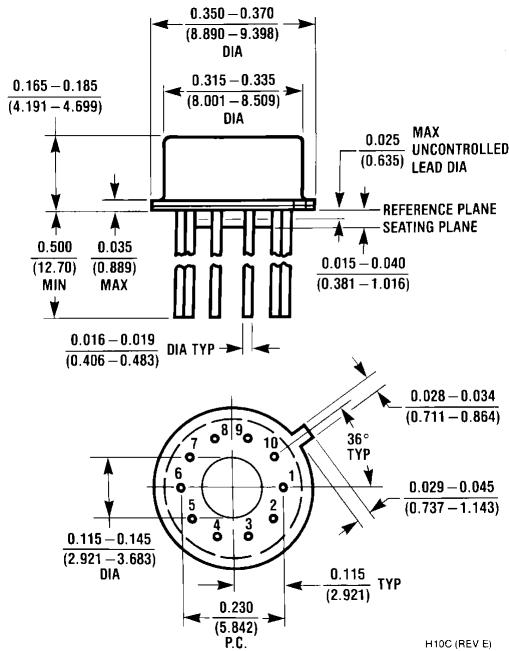












Note 4: Calculated value from: 0.35/Rise Time (μs).

Schematic Diagram (Each Amplifier)

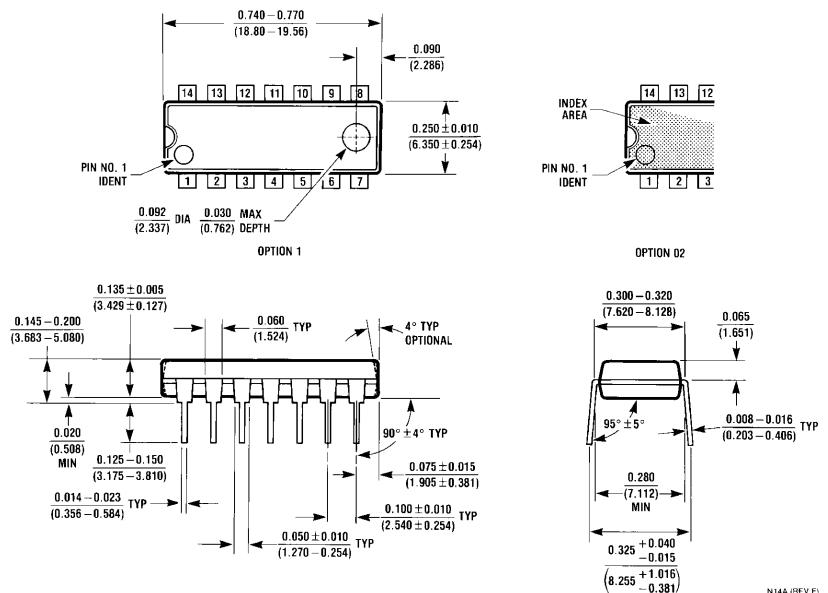





Note: Numbers in parentheses are pin numbers for amplifier B. DIP only.


Typical Performance Characteristics


Typical Performance Characteristics (Continued)

TL/H/11479-3



Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LM747H
NS Package Number H10C

Physical Dimensions inches (millimeters) (Continued)

Dual-In-Line Package (N)
Order Number LM747CN or LM747EN
NS Package Number N14A

N14A (REV F)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

**National Semiconductor
Corporation**
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

**National Semiconductor
Europe**
Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

**National Semiconductor
Hong Kong Ltd.**
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

**National Semiconductor
Japan Ltd.**
Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LM747 MWC	Active	Production	WAFERSALE (YS) 0	1 NOT REQUIRED	-	Call TI	Level-1-NA-UNLIM	-40 to 85	

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025