

适用于严苛、恶劣的应用并具有 5.5V 最大输入电压的 LMZ10505EXT 5A 电源模块

1 特性

- 集成屏蔽电感器
- 采用外部软启动、跟踪和精密使能组件实现灵活启动排序
- 针对浪涌电流和输入 UVLO 以及输出短路等故障的保护
- 便于装配和制造的单个外露焊盘和标准引脚分布
- 与以下器件引脚到引脚兼容:
 - LMZ10503EXT (最大 3A/15W)
 - LMZ10504EXT (最大 4A/20W)
- 针对现场可编程门阵列 (FPGA) 和特定用途集成电路 (ASIC) 供电的快速瞬态响应
- 电气规范
 - 总输出功率最大值达 25W
 - 输出电流高达 5A
 - 输入电压范围为 2.95V 至 5.5V
 - 输出电压范围为 0.8V 到 5V
 - 整个温度范围内的反馈电压精度达 $\pm 1.63\%$
- 性能优势
 - 可在高温环境下运行
 - 经低辐射发射 (EMI) 测试, 符合 EN55022 B 类标准
 - 通过 10V/m 辐射抗扰度电磁干扰 (EMI) 测试标准 EN61000 4-3
 - 通过振动标准
 - MIL-STD-883 方法 2007.2 条件 A
 - JESD22-B103B 条件 1
 - 通过降压标准
 - MIL-STD-883 方法 2002.3 条件 B
 - JESD22-B110 条件 B
- 使用 LMZ10505EXT 并借助 WEBENCH® 电源设计器进行定制设计

典型应用电路

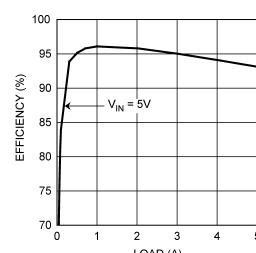
2 应用

- 从 3.3V 和 5V 电源轨到负载点的转换
- 空间受限型应用
- 噪声敏感型应用 (如收发器、医疗设备)

3 说明

LMZ10503EXT 电源模块是一款完整的易用型直流/直流解决方案, 可驱动高达 5A 的负载, 并具有出色的电源转换效率、输出电压精度、线路和负载调节功能。LMZ10505EXT 采用创新型封装, 可提高散热性能并支持手工或机器焊接。

LMZ10504 的输入电压轨范围为 2.95V 至 5.5V, 提供的高精度可调节输出电压低至 0.8V。PWM 开关的固定频率为 1MHz, 确保了 EMI 特性的可预测性。两个外部补偿组件经过调节可设置最快的响应时间, 并且允许选用陶瓷输出电容或电解输出电容。外部可编程软启动电容便于控制启动过程。LMZ10505EXT 是一款稳定可靠的解决方案, 具有以下功能: 用于针对过流或短路故障提供保护的无损逐周期峰值电流限制、热关断、输入低压锁定和预偏置启动。LMZ10505EXT 同样可为 WEBENCH® 和 Power Designer 工具提供全面支持。


器件信息⁽¹⁾⁽²⁾

器件型号	封装	封装尺寸 (标称值)
LMZ10505EXT	TO-PMOD (7)	9.85mm x 10.16mm

(1) 如需了解所有可用封装, 请参阅产品说明书末尾的可订购产品附录。

(2) 峰值回流温度等于 245°C。有关更多详细信息, 请参阅《LMZ1xxx 和 LMZ2xxx 电源模块系列设计摘要》(SNA214)。

效率 ($V_{OUT} = 3.3V$)

目录

1	特性	1	8.1	Application Information.....	14
2	应用	1	8.2	Typical Applications	14
3	说明	1	8.3	System Examples	20
4	修订历史记录	2	9	Power Supply Recommendations	23
5	Pin Configuration and Functions	3	10	Layout	23
6	Specifications	4	10.1	Layout Guidelines	23
6.1	Absolute Maximum Ratings	4	10.2	Layout Examples.....	24
6.2	ESD Ratings.....	4	10.3	Estimate Power Dissipation and Thermal Considerations	27
6.3	Recommended Operating Conditions	4	10.4	Power Module SMT Guidelines	28
6.4	Thermal Information	4	11	器件和文档支持	29
6.5	Electrical Characteristics.....	5	11.1	器件支持.....	29
6.6	Typical Characteristics	7	11.2	文档支持.....	29
7	Detailed Description	10	11.3	接收文档更新通知	29
7.1	Overview	10	11.4	社区资源.....	29
7.2	Functional Block Diagram	10	11.5	商标	30
7.3	Feature Description.....	10	11.6	静电放电警告.....	30
7.4	Device Functional Modes.....	13	11.7	Glossary	30
8	Application and Implementation	14	12	机械、封装和可订购信息	30

4 修订历史记录

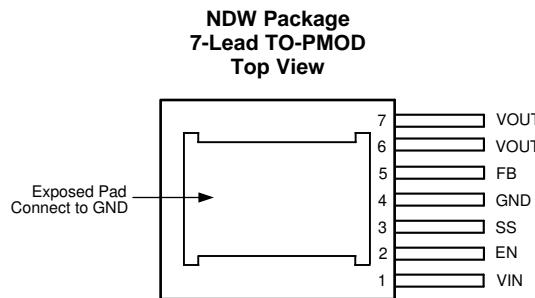
注：之前版本的页码可能与当前版本有所不同。

Changes from Revision I (June 2017) to Revision J

	Page
• 只进行了编辑性更改；无技术内容更改	1

Changes from Revision H (September 2015) to Revision I

	Page
• 已更改 更改了 WEBENCH 列表项的语言；在数据表中进一步添加了有关 WEBENCH 的其他内容和链接	1
• Updated Equation 1	10
• Moved the Low Radiated Emissions (EMI) footnote to the <i>Application Information</i> section	14


Changes from Revision G (October 2013) to Revision H

	Page
• 添加了 <i>ESD</i> 额定值表、特性 说明部分、器件功能模式、应用和实施部分、电源建议部分、布局部分、器件和文档支 持部分以及机械、封装和可订购信息部分	1

Changes from Revision F (April 2013) to Revision G

	Page
• Deleted 10 mils	4
• Changed 10 mils.....	23
• Changed 10 mils.....	27
• Added <i>Power Module SMT Guidelines</i>	28

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.		
EN	2	Analog	Active-high enable input for the device.
Exposed Pad	—	Ground	Exposed pad thermal connection. Connect this pad to the PC board ground plane in order to reduce thermal resistance value. It also provides an electrical connection to the input and output capacitors ground terminals.
FB	5	Analog	Feedback pin. This is the inverting input of the error amplifier used for sensing the output voltage.
GND	4	Ground	Power ground and signal ground. Connect the bottom feedback resistor between this pin and the feedback pin.
SS	3	Analog	Soft-start control pin. An internal 2- μ A current source charges and external capacitor connected between this pin and GND (pin 4) to set the output voltage ramp rate during startup. This pin can also be used to configure the tracking feature.
VIN	1	Power	A low-ESR input capacitance should be located as close as possible to VIN pin and GND pin.
VOUT	6, 7	Power	This is the output of the internal inductor. Connect an external resistor voltage divider from VOUT to FB to ground.

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

	MIN	MAX	UNIT
VIN, VOUT, EN, FB, SS to GND	–0.3	6	V
Power Dissipation	Internally Limited		
Junction Temperature	150		
Peak Reflow Case Temperature (30 sec)	245		
Storage Temperature, T _{stg}	–65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) For soldering specifications, refer to the [Absolute Maximum Ratings for Soldering](#) (SNOA549).

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾⁽²⁾	±2000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. Test method is per JESD22-A114S.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
VIN to GND	2.95	5.5	V
Junction Temperature (T _J)	–55	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	LMZ10505EXT	UNIT
	NDW (TO-PMOD)	
	7 PINS	
R _{θJA} Junction-to-ambient thermal resistance ⁽²⁾	20	°C/W
R _{θJC(top)} Junction-to-case (top) thermal resistance (no air flow)	1.9	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

(2) R_{θJA} measured on a 2.25-in × 2.25-in (5.8 cm × 5.8 cm) 4-layer board, with 1-oz. copper, thirty six thermal vias, no air flow, and 1-W power dissipation. Refer to Evaluation Board Application Note: [AN-2074 LMZ1050xEXT Evaluation Board](#) (SNVA450).

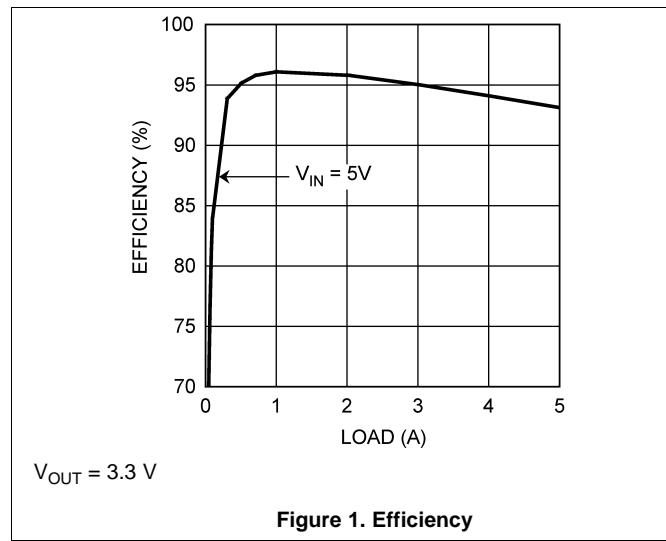
6.5 Electrical Characteristics

Specifications are for $T_J = 25^\circ\text{C}$ unless otherwise noted. Minimum and maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^\circ\text{C}$, and are provided for reference purposes only. $V_{IN} = V_{EN} = 3.3\text{ V}$, unless otherwise indicated in the conditions column.

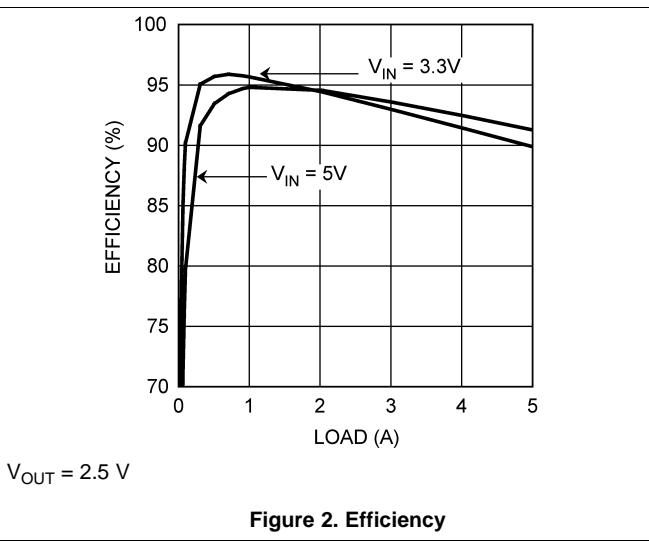
PARAMETER	TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
SYSTEM PARAMETERS						
V_{FB}	Total Feedback Voltage Variation Including Line and Load Regulation	$V_{IN} = 2.95\text{ V to }5.5\text{ V}$ $V_{OUT} = 2.5\text{ V}$ $I_{OUT} = 0\text{ A to }5\text{ A}$	over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	0.78	0.82	V
	Feedback Voltage Variation	$V_{IN} = 3.3\text{ V}$, $V_{OUT} = 2.5\text{ V}$ $I_{OUT} = 0\text{ A}$	over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	0.787	0.812	V
V_{FB}	Feedback Voltage Variation	$V_{IN} = 3.3\text{ V}$, $V_{OUT} = 2.5\text{ V}$ $I_{OUT} = 5\text{ A}$	over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	0.798	0.81	V
		Rising	over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	2.6	2.95	V
$V_{IN(UVLO)}$	Input UVLO Threshold (Measured at V_{IN} pin)	Falling	over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	2.4	1.95	V
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$			
I_{SS}	Soft-Start Current	Charging Current		2		μA
I_Q	Non-Switching Input Current	$V_{FB} = 1\text{ V}$		1.55		mA
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$		3	
I_{SD}	Shutdown Quiescent Current	$V_{IN} = 5.5\text{ V}$, $V_{EN} = 0\text{ V}$		267		μA
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$		500	
I_{OCL}	Output Current Limit (Average Current)	$V_{OUT} = 2.5\text{ V}$		7.3		A
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	5.1	8.7	
f_{FB}	Frequency Fold-back	In current limit		250		kHz
PWM SECTION						
f_{sw}	Switching Frequency			1000		kHz
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	700	1160	
D_{range}	PWM Duty Cycle Range		over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	0%	100%	
ENABLE CONTROL						
V_{EN-IH}	EN Pin Rising Threshold			1.23		V
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$		1.8	
V_{EN-IF}	EN Pin Falling Threshold			1.06		V
			over the operating junction temperature range T_J of $-55^\circ\text{C to }125^\circ\text{C}$	0.8		

(1) Minimum and maximum limits are 100% production tested at an ambient temperature (T_A) of 25°C . Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).

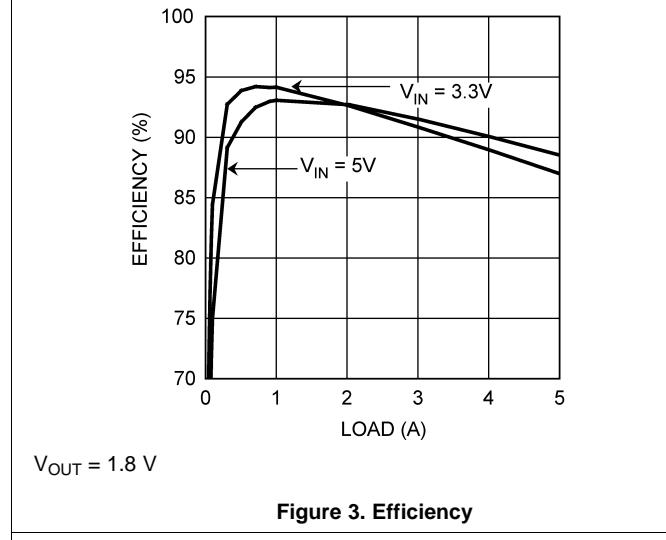
(2) Typical numbers are at 25°C and represent the most likely parametric normal.

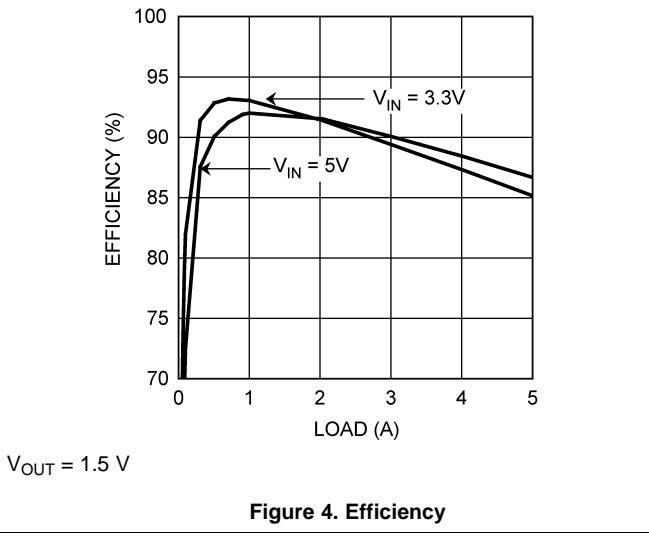

Electrical Characteristics (continued)

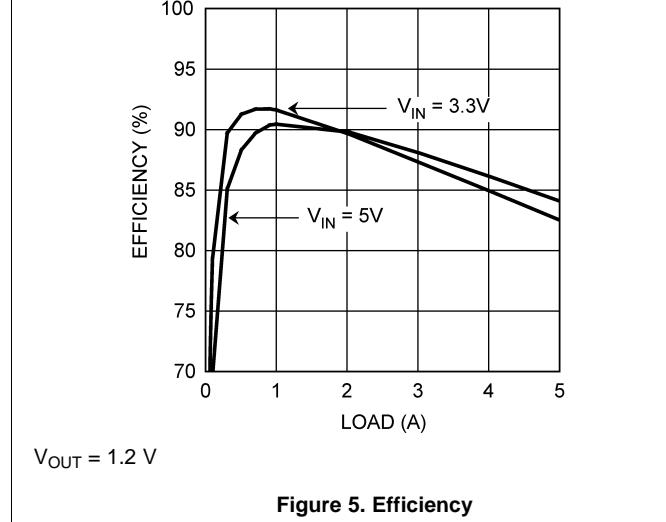
Specifications are for $T_J = 25^\circ\text{C}$ unless otherwise noted. Minimum and maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^\circ\text{C}$, and are provided for reference purposes only. $V_{IN} = V_{EN} = 3.3\text{ V}$, unless otherwise indicated in the conditions column.


PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
THERMAL CONTROL					
T_{SD}	T_J for Thermal Shutdown		145		$^\circ\text{C}$
T_{SD-HYS}	Hysteresis for Thermal Shutdown		10		$^\circ\text{C}$
PERFORMANCE PARAMETERS					
ΔV_{OUT}	Output Voltage Ripple	$V_{OUT} = 2.5\text{ V}$ Bandwidth Limit = 2 MHz	10		$\text{mV}_{\text{pk-pk}}$
		Refer to Table 5 Bandwidth Limit = 20 MHz	5		
$\Delta V_{FB} / V_{FB}$	Feedback Voltage Line Regulation	$\Delta V_{IN} = 2.95\text{ V to }5.5\text{ V}$ $I_{OUT} = 0\text{ A}$	0.04%		
		$I_{OUT} = 0\text{ A to }5\text{ A}$	0.25%		
$\Delta V_{OUT} / V_{OUT}$	Output Voltage Line Regulation	$\Delta V_{IN} = 2.95\text{ V to }5.5\text{ V}$ $I_{OUT} = 0\text{ A, }V_{OUT} = 2.5\text{ V}$	0.04%		
		$I_{OUT} = 0\text{ A, to }5\text{ A}$ $V_{OUT} = 2.5\text{ V}$	0.25%		
EFFICIENCY					
η	Peak Efficiency (1A) $V_{IN} = 5\text{ V}$	$V_{OUT} = 3.3\text{ V}$	96.1%		
		$V_{OUT} = 2.5\text{ V}$	94.8%		
		$V_{OUT} = 1.8\text{ V}$	93.1%		
		$V_{OUT} = 1.5\text{ V}$	92%		
		$V_{OUT} = 1.2\text{ V}$	90.4%		
		$V_{OUT} = 0.8\text{ V}$	86.8%		
η	Peak Efficiency (1A) $V_{IN} = 3.3\text{ V}$	$V_{OUT} = 2.5\text{ V}$	95.7%		
		$V_{OUT} = 1.8\text{ V}$	94.1%		
		$V_{OUT} = 1.5\text{ V}$	93%		
		$V_{OUT} = 1.2\text{ V}$	91.6%		
		$V_{OUT} = 0.8\text{ V}$	88.3%		
η	Full Load Efficiency (5A) $V_{IN} = 5\text{ V}$	$V_{OUT} = 3.3\text{ V}$	93.1%		
		$V_{OUT} = 2.5\text{ V}$	91.2%		
		$V_{OUT} = 1.8\text{ V}$	88.5%		
		$V_{OUT} = 1.5\text{ V}$	86.7%		
		$V_{OUT} = 1.2\text{ V}$	84.1%		
		$V_{OUT} = 0.8\text{ V}$	78.2%		
η	Full Load Efficiency (5A) $V_{IN} = 3.3\text{ V}$	$V_{OUT} = 2.5\text{ V}$	89.8%		
		$V_{OUT} = 1.8\text{ V}$	86.9%		
		$V_{OUT} = 1.5\text{ V}$	85.1%		
		$V_{OUT} = 1.2\text{ V}$	82.5%		
		$V_{OUT} = 0.8\text{ V}$	76.2%		

6.6 Typical Characteristics


Unless otherwise specified, the following conditions apply: $V_{IN} = V_{EN} = 5\text{ V}$, C_{IN} is $47\text{-}\mu\text{F}$ 10-V X5R ceramic capacitor; $T_A = 25^\circ\text{C}$ for efficiency curves and waveforms.


Figure 1. Efficiency


Figure 2. Efficiency

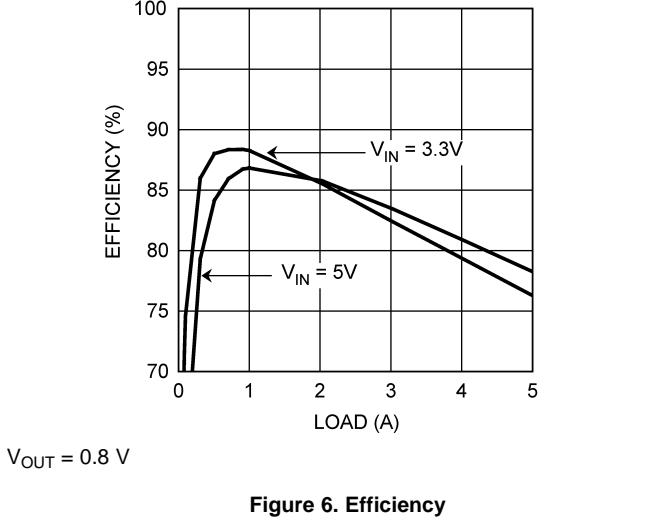

Figure 3. Efficiency

Figure 4. Efficiency

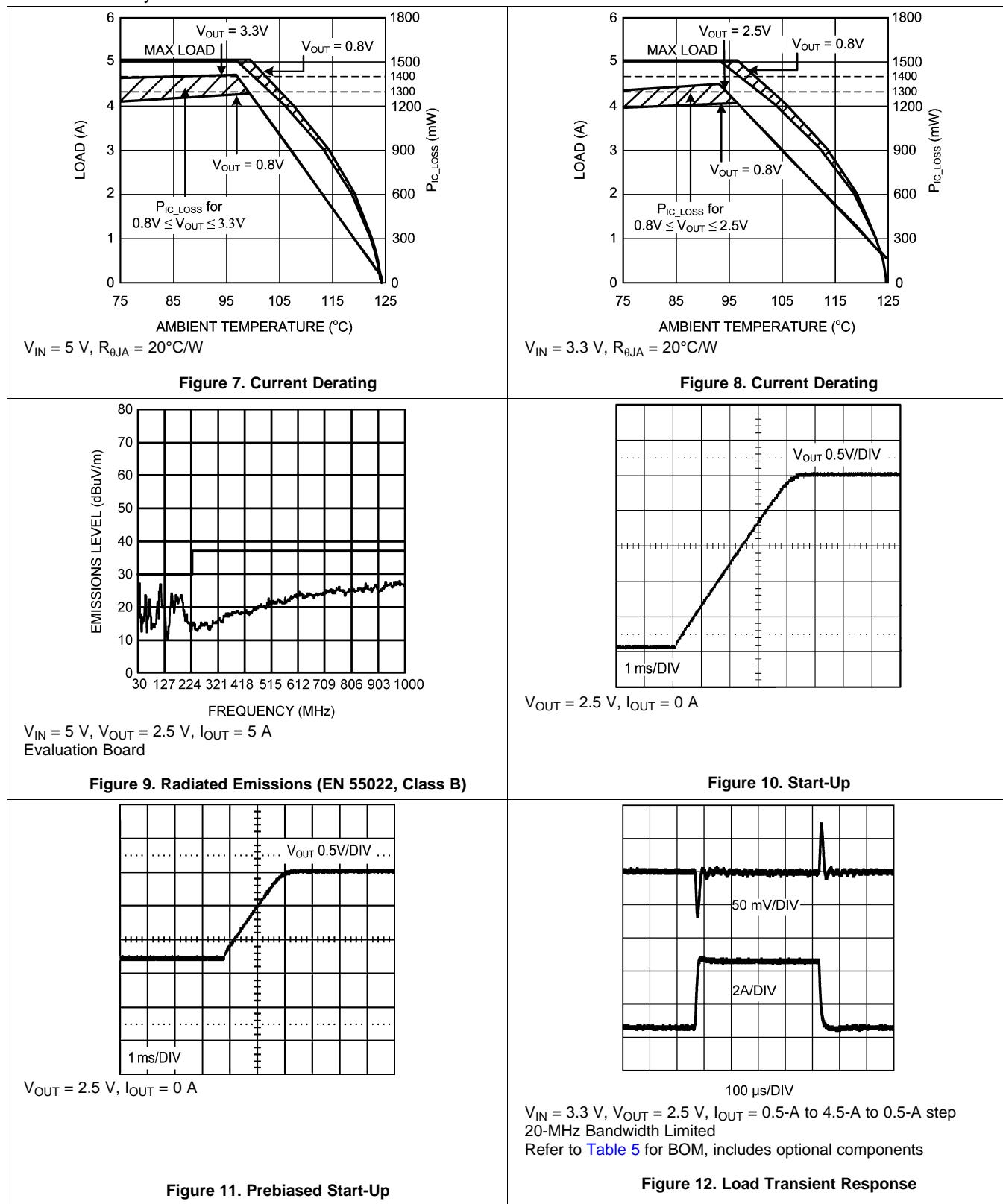
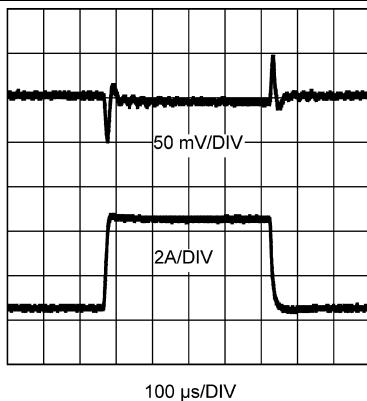
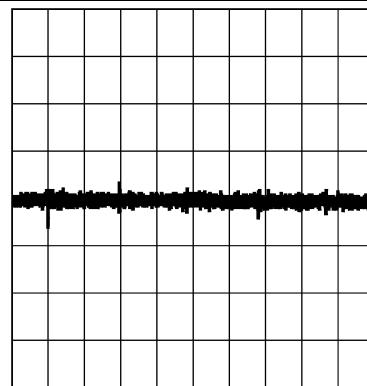

Figure 5. Efficiency

Figure 6. Efficiency


Typical Characteristics (continued)

Unless otherwise specified, the following conditions apply: $V_{IN} = V_{EN} = 5$ V, C_{IN} is 47- μ F 10-V X5R ceramic capacitor; $T_A = 25^\circ\text{C}$ for efficiency curves and waveforms.


Typical Characteristics (continued)

Unless otherwise specified, the following conditions apply: $V_{IN} = V_{EN} = 5$ V, C_{IN} is 47- μ F 10-V X5R ceramic capacitor; $T_A = 25^\circ\text{C}$ for efficiency curves and waveforms.

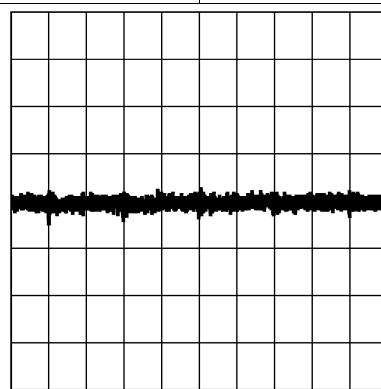
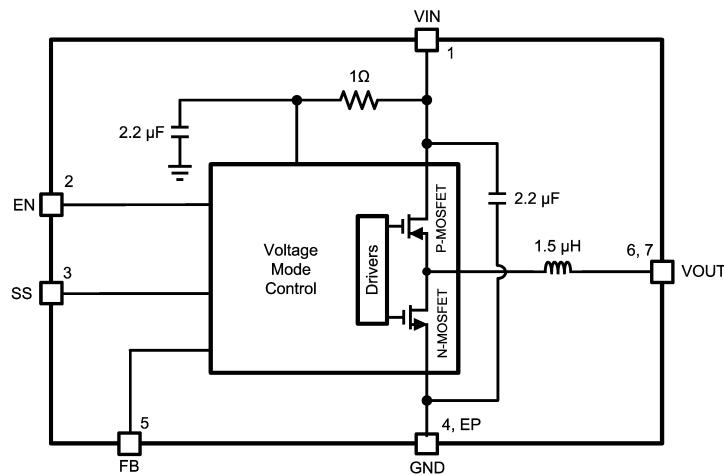

$V_{IN} = 5.0$ V, $V_{OUT} = 2.5$ V, I_{OUT} = 0.5-A to 4.5-A to 0.5-A step
20-MHz Bandwidth Limited
Refer to [Table 5](#) for BOM, includes optional components

Figure 13. Load Transient Response

$V_{IN} = 3.3$ V, $V_{OUT} = 2.5$ V, $I_{OUT} = 5$ A, 20 mV/DIV
Refer to [Table 5](#) for BOM

Figure 14. Output Voltage Ripple

$V_{IN} = 5.0$ V, $V_{OUT} = 2.5$ V, $I_{OUT} = 5$ A, 20 mV/DIV
Refer to [Table 5](#) for BOM


Figure 15. Output Voltage Ripple

7 Detailed Description

7.1 Overview

The LMZ10505EXT power module is a complete, easy-to-use DC-DC solution capable of driving up to a 5-A load with exceptional power conversion efficiency, output voltage accuracy, line and load regulation. The LMZ10505EXT is available in an innovative package that enhances thermal performance and allows for hand or machine soldering. The LMZ10505EXT is a reliable and robust solution with the following features: lossless cycle-by-cycle peak current limit to protect for overcurrent or short-circuit fault, thermal shutdown, input undervoltage lockout, and prebiased start-up.

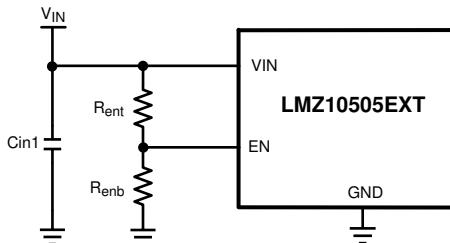
7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Enable

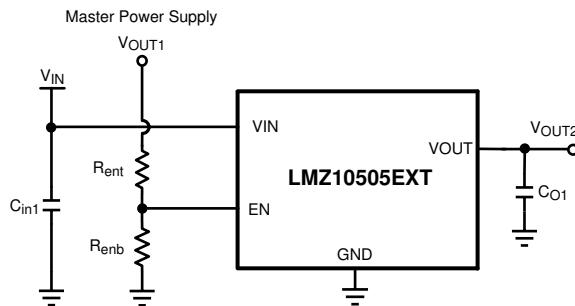
The LMZ10505EXT features an enable (EN) pin and associated comparator to allow the user to easily sequence the LMZ10505EXT from an external voltage rail, or to manually set the input UVLO threshold. The turnon or rising threshold and hysteresis for this comparator are typically 1.23 V and 0.15 V, respectively. The precise reference for the enable comparator allows the user to ensure that the LMZ10505EXT will be disabled when the system demands it to be.

The EN pin should not be left floating. For always-on operation, connect EN to VIN.


7.3.2 Enable and UVLO

Using a resistor divider from VIN to EN as shown in the schematic diagram below, the input voltage at which the part begins switching can be increased above the normal input UVLO level according to:

$$V_{IN(UVLO)} = 1.23 \text{ V} \times \frac{R_{ent} + R_{enb}}{R_{enb}} \quad (1)$$


For example, suppose that the required input UVLO level is 3.69 V. Choosing $R_{enb} = 10 \text{ k}\Omega$, then we calculate $R_{ent} = 20 \text{ k}\Omega$.

Feature Description (continued)

Figure 16. Setting Enable and UVLO

Alternatively, the EN pin can be driven from another voltage source to cater to system sequencing requirements commonly found in FPGA and other multi-rail applications. The following schematic shows an LMZ10505EXT that is sequenced to start based on the voltage level of a master system rail (V_{OUT1}).

Figure 17. Setting Enable and UVLO Using External Power Supply

7.3.3 Soft-Start

The LMZ10505EXT begins to operate when both the VIN and EN, voltages exceed the rising UVLO and enable thresholds, respectively. A controlled soft-start eliminates inrush currents during start-up and allows the user more control and flexibility when sequencing the LMZ10505EXT with other power supplies.

In the event of either VIN or EN decreasing below the falling UVLO or enable threshold respectively, the voltage on the soft-start pin is collapsed by discharging the soft-start capacitor by a 14- μ A (typical) current sink to ground.

7.3.4 Soft-Start Capacitor

Determine the soft-start capacitance with the following relationship:

$$C_{SS} = \frac{t_{ss} \times I_{ss}}{V_{REF}}$$

where

- V_{FB} is the internal reference voltage (nominally 0.8 V),
- I_{ss} is the soft-start charging current (nominally 2 μ A)
- and C_{SS} is the external soft-start capacitance.

(2)

Thus, the required soft-start capacitor per unit output voltage startup time is given by

$$C_{SS} = 2.5 \text{ nF} / \text{ms} \quad (3)$$

For example, a 4-ms soft-start time will yield a 10-nF capacitance. The minimum soft-start capacitance is 680 pF.

Feature Description (continued)

7.3.5 Tracking

The LMZ10505EXT can track the output of a master power supply during soft-start by connecting a resistor divider to the SS pin. In this way, the output voltage slew rate of the LMZ10505EXT will be controlled by a master supply for loads that require precise sequencing. When the tracking function is used, a small value soft-start capacitor should be connected to the SS pin to alleviate output voltage overshoot when recovering from a current limit fault.

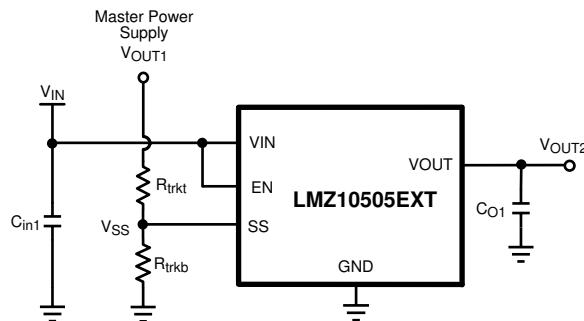


Figure 18. Tracking Using External Power Supply

7.3.6 Tracking – Equal Soft-Start Time

One way to use the tracking feature is to design the tracking resistor divider so that the master supply output voltage, V_{OUT1} , and the LMZ10505EXT output voltage, V_{OUT2} , both rise together and reach their target values at the same time. This is termed ratiometric start-up. For this case, the equation governing the values of tracking divider resistors R_{trkb} and R_{trkt} is given by:

$$R_{trkb} = \frac{R_{trkt}}{V_{OUT1} - 1.0\text{ V}} \quad (4)$$

Equation 4 includes an offset voltage, of 200 mV, to ensure that the final value of the SS pin voltage exceeds the reference voltage of the LMZ10505EXT. This offset will cause the LMZ10505EXT output voltage to reach regulation slightly before the master supply. For a value of 33 kΩ, 1% is recommended for R_{trkt} as a compromise between high-precision and low-quiescent current through the divider while minimizing the effect of the 2-µA soft-start current source.

For example, if the master supply voltage V_{OUT1} is 3.3 V and the LMZ10505EXT output voltage was 1.8 V, then the value of R_{trkb} needed to give the two supplies identical soft-start times would be 14.3 kΩ. Figure 19 shows an example of tracking using equal soft-start time.

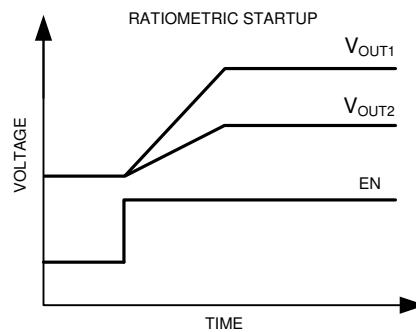
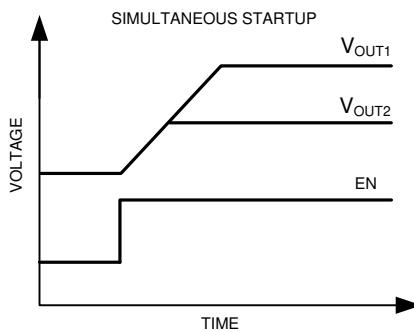


Figure 19. Timing Diagram for Tracking Using Equal Soft-Start Time

Feature Description (continued)

7.3.7 Tracking - Equal Slew Rates


Alternatively, the tracking feature can be used to have similar output voltage ramp rates. This is referred to as simultaneous start-up. In this case, the tracking resistors can be determined based on [Equation 5](#):

$$R_{trkb} = \frac{0.8 \text{ V}}{V_{OUT2} - 0.8 \text{ V}} \times R_{trkt} \quad (5)$$

and to ensure proper overdrive of the SS pin:

$$V_{OUT2} < 0.8 \times V_{OUT1} \quad (6)$$

For the example case of $V_{OUT1} = 5 \text{ V}$ and $V_{OUT2} = 2.5 \text{ V}$, with R_{trkt} set to $33 \text{ k}\Omega$ as before, R_{trkb} is calculated from [Equation 6](#) to be $15.5 \text{ k}\Omega$. [Figure 20](#) shows an example of tracking using equal slew rates.

Figure 20. Timing Diagram for Tracking Using Equal Slew Rates

7.3.8 Current Limit

When a current greater than the output current limit (I_{OCL}) is sensed, the ON-time is immediately terminated and the low-side MOSFET is activated. The low-side MOSFET stays on for the entire next four switching cycles. During these skipped pulses, the voltage on the soft-start pin is reduced by discharging the soft-start capacitor by a current sink on the soft-start pin of nominally $14 \mu\text{A}$. Subsequent overcurrent events will drain more and more charge from the soft-start capacitor, effectively decreasing the reference voltage as the output drops due to the pulse skipping. Reactivation of the soft-start circuitry ensures that when the overcurrent situation is removed, the part will resume normal operation smoothly.

7.3.9 Overtemperature Protection

When the LMZ10505EXT senses a junction temperature greater than 145°C (typical), both switching MOSFETs are turned off and the part enters a standby state. Upon sensing a junction temperature below 135°C (typical), the part will re-initiate the soft-start sequence and begin switching once again.

7.4 Device Functional Modes

7.4.1 Prebias Start-up Capability

At start-up, the LMZ10505EXT is in a prebiased state when the output voltage is greater than zero. This often occurs in many multi-rail applications such as when powering an ASIC, FPGA, or DSP. The output can be prebiased in these applications through parasitic conduction paths from one supply rail to another. Even though the LMZ10505EXT is a synchronous converter, it will not pull the output low when a prebias condition exists. The LMZ10505EXT will not sink current during start-up until the soft-start voltage exceeds the voltage on the FB pin. Because the device does not sink current it protects the load from damage that might otherwise occur if current is conducted through the parasitic paths of the load.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMZ10505EXT is a step-down DC-to-DC power module. It is typically used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 5 A. The following design procedure can be used to select components for the LMZ10505EXT. Alternately, the WEBENCH software may be used to generate complete designs. When generating a design, the WEBENCH software uses iterative design procedure and accesses comprehensive databases of components. Visit www.ti.com for more details. Note that the low radiated emissions (EMI) are tested under the EN55022 Class B standard (EN 55022:2006, +A1:2007, FCC Part 15 Subpart B: 2007). See [Figure 28](#) and [Layout](#) for information on the device under test.

8.2 Typical Applications

This section provides several application solutions with an associated bill of materials. The compensation for each solution was optimized to work over the full input range. Many applications have a fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given input voltage operating point.

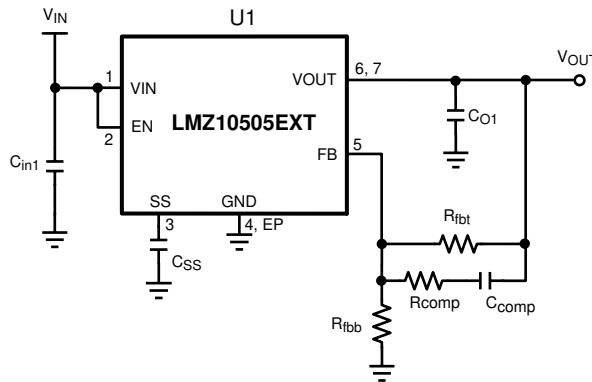


Figure 21. Typical Application Schematic

8.2.1 Design Requirements

For this example the following application parameters exist.

- $V_{IN} = 5 \text{ V}$
- $V_{OUT} = 2.5 \text{ V}$
- $I_{OUT} = 5 \text{ A}$
- $\Delta V_{OUT} = 20 \text{ mV}_{\text{pk-pk}}$
- $\Delta V_{o_tran} = \pm 20 \text{ mV}_{\text{pk-pk}}$

Table 1. Bill of Materials, $V_{IN} = 3.3 \text{ V to } 5 \text{ V}$, $V_{OUT} = 2.5 \text{ V}$, $I_{OUT (\text{MAX})} = 5 \text{ A}$, Optimized for Electrolytic Input and Output Capacitance

DESIGNATOR	DESCRIPTION	CASE SIZE	MANUFACTURER	MANUFACTURER P/N	QUANTITY
U1	Power module	PFM-7	Texas Instruments	LMZ10505EXTZ	1
C _{in1}	150 μF , 6.3 V, 18 m Ω	C2, 6.0 \times 3.2 \times 1.8 mm	Sanyo	6TPE150MIC2	1
C _{o1}	330 μF , 6.3 V, 18 m Ω	D3L, 7.3 \times 4.3 \times 2.8 mm	Sanyo	6TPE330MIL	1

Typical Applications (continued)

Table 1. Bill of Materials, $V_{IN} = 3.3\text{ V}$ to 5 V , $V_{OUT} = 2.5\text{ V}$, $I_{OUT\ (MAX)} = 5\text{ A}$, Optimized for Electrolytic Input and Output Capacitance (continued)

DESIGNATOR	DESCRIPTION	CASE SIZE	MANUFACTURER	MANUFACTURER P/N	QUANTITY
R_{fbt}	100 k Ω	0603	Vishay Dale	CRCW0603100KFKEA	1
R_{fbbb}	47.5 k Ω	0603	Vishay Dale	CRCW060347K5FKEA	1
R_{comp}	15 k Ω	0603	Vishay Dale	CRCW060315K0FKEA	1
C_{comp}	330 pF, $\pm 5\%$, C0G, 50 V	0603	TDK	C1608C0G1H331J	1
C_{ss}	10 nF, $\pm 10\%$, X7R, 16 V	0603	Murata	GRM188R71C103KA01	1

Table 2. Bill of Materials, $V_{IN} = 3.3\text{ V}$, $V_{OUT} = 0.8\text{ V}$, $I_{OUT\ (MAX)} = 5\text{ A}$, Optimized for Solution Size and Transient Response⁽¹⁾

DESIGNATOR	DESCRIPTION	CASE SIZE	MANUFACTURER	MANUFACTURER P/N	QUANTITY
U1	Power module	PFM-7	Texas Instruments	LMZ10505EXTT2	1
C_{in1}, C_{O1}	47 μF , X5R, 6.3 V	1206	TDK	C3216X5R0J476M	2
R_{fbt}	110 k Ω	0402	Vishay Dale	CRCW0402100KFKED	1
R_{comp}	1.0 k Ω	0402	Vishay Dale	CRCW04021K00FKED	1
C_{comp}	27 pF, $\pm 5\%$, C0G, 50 V	0402	Murata	GRM1555C1H270JZ01	1
C_{ss}	10 nF, $\pm 10\%$, X7R, 16 V	0402	Murata	GRM155R71C103KA01	1

(1) In the case where the output voltage is 0.8 V, it is recommended to remove R_{fbbb} and keep R_{fbt} , R_{comp} , and C_{comp} for a type III compensation.

8.2.2 Detailed Design Procedure

LMZ10505EXT is fully supported by WEBENCH and offers the following: component selection, performance, electrical, and thermal simulations as well as the Build-It board, for a reduced design time. On the other hand, all external components can be calculated by following the design procedure below.

1. Determine the input voltage and output voltage. Also, make note of the ripple voltage and voltage transient requirements.
2. Determine the necessary input and output capacitance.
3. Calculate the feedback resistor divider.
4. Select the optimized compensation component values.
5. Estimate the power dissipation and board thermal requirements.
6. Follow the PCB design guideline.
7. Learn about the LMZ10505EXT features such as enable, input UVLO, soft start, tracking, prebiased start-up, current limit, and thermal shutdown.

8.2.2.1 Custom Design With WEBENCH® Tools

[Click here](#) to create a custom design using the LMZ10505EXT device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 Input Capacitor Selection

A 22- μ F or 47- μ F high-quality dielectric (X5R, X7R) ceramic capacitor rated at twice the maximum input voltage is typically sufficient. The input capacitor must be placed as close as possible to the VIN pin and GND exposed pad to substantially eliminate the parasitic effects of any stray inductance or resistance on the PCB and supply lines.

Neglecting capacitor equivalent series resistance (ESR), the resultant input capacitor AC ripple voltage is a triangular waveform. The minimum input capacitance for a given peak-to-peak value (ΔV_{IN}) of V_{IN} is specified as follows:

$$C_{in} \geq \frac{I_{OUT} \times D \times (1-D)}{f_{sw} \times \Delta V_{IN}}$$

where

- the PWM duty cycle, D, is given by [Equation 8](#):

$$D = \frac{V_{OUT}}{V_{IN}} \quad (8)$$

If ΔV_{IN} is 1% of V_{IN} , this equals to 50 mV and $f_{sw} = 1$ MHz

$$C_{in} \geq \frac{5A \times \left(\frac{2.5V}{5V} \right) \times \left(1 - \frac{2.5V}{5V} \right)}{1 \text{ MHz} \times 50 \text{ mV}} \geq 25 \mu\text{F} \quad (9)$$

A second criteria before finalizing the C_{in} bypass capacitor is the RMS current capability. The necessary RMS current rating of the input capacitor to a buck regulator can be estimated by

$$I_{Cin(RMS)} = I_{OUT} \times \sqrt{D(1-D)} \quad (10)$$

$$I_{Cin(RMS)} = 5A \times \sqrt{\frac{2.5V}{5V} \left(1 - \frac{2.5V}{5V} \right)} = 2.5A \quad (11)$$

With this high AC current present in the input capacitor, the RMS current rating becomes an important parameter. The maximum input capacitor ripple voltage and RMS current occur at 50% duty cycle. Select an input capacitor rated for at least the maximum calculated $I_{Cin(RMS)}$.

Additional bulk capacitance with higher ESR may be required to damp any resonance effects of the input capacitance and parasitic inductance.

8.2.2.3 Output Capacitor Selection

In general, 22- μ F to 100- μ F high quality dielectric (X5R, X7R) ceramic capacitor rated at twice the maximum output voltage is sufficient given the optimal high frequency characteristics and low ESR of ceramic dielectrics. Although, the output capacitor can also be of electrolytic chemistry for increased capacitance density.

Two output capacitance equations are required to determine the minimum output capacitance. One equation determines the output capacitance (C_O) based on PWM ripple voltage. The second equation determines C_O based on the load transient characteristics. Select the largest capacitance value of the two.

The minimum capacitance, given the maximum output voltage ripple (ΔV_{OUT}) requirement, is determined by the following equation:

$$C_O \geq \frac{\Delta i_L}{8 \times f_{sw} \times [\Delta V_{OUT} - (\Delta i_L \times R_{ESR})]}$$

where

- and the peak to peak inductor current ripple (Δi_L) is equal to [Equation 13](#):

$$\Delta i_L = \frac{(V_{IN} - V_{OUT}) \times D}{L \times f_{sw}} \quad (13)$$

R_{ESR} is the total output capacitor ESR, L is the inductance value of the internal power inductor, where $L = 1.5 \mu\text{H}$, and $f_{SW} = 1 \text{ MHz}$. Therefore, per the design example:

$$\Delta i_L = \frac{(5 \text{ V} - 2.5 \text{ V}) \times \frac{2.5 \text{ V}}{5 \text{ V}}}{1.5 \mu\text{H} \times 1 \text{ MHz}} = 833 \text{ mA} \quad (14)$$

The minimum output capacitance requirement due to the PWM ripple voltage is:

$$C_O \geq \frac{833 \text{ mA}}{8 \times 1 \text{ MHz} \times [20 \text{ mV} - (833 \text{ mA} \times 3 \text{ m}\Omega)]} \quad (15)$$

$$C_O \geq 6 \mu\text{F} \quad (16)$$

Three mΩ is a typical R_{ESR} value for ceramic capacitors.

[Equation 17](#) provides a good first pass capacitance requirement for a load transient:

$$C_O \geq \frac{I_{step} \times V_{FB} \times L \times V_{IN}}{4 \times V_{OUT} \times (V_{IN} - V_{OUT}) \times \Delta V_{O_tran}}$$

where

- I_{step} is the peak to peak load step (10% to 90% of the maximum load for this example),
- $V_{FB} = 0.8 \text{ V}$,
- and ΔV_{O_tran} is the maximum output voltage deviation, which is $\pm 20 \text{ mV}$.

Therefore the capacitance requirement for the given design parameters is:

$$C_O \geq \frac{4 \text{ A} \times 0.8 \text{ V} \times 1.5 \mu\text{H} \times 5 \text{ V}}{4 \times 2.5 \text{ V} \times (5 \text{ V} - 2.5 \text{ V}) \times 20 \text{ mV}} \quad (18)$$

$$C_O \geq 48 \mu\text{F} \quad (19)$$

In this particular design the output capacitance is determined by the load transient requirements.

[Table 3](#) lists some examples of commercially available capacitors that can be used with the LMZ10505EXT.

Table 3. Recommended Output Filter Capacitors

C_O (μF)	VOLTAGE (V), R_{ESR} ($\text{m}\Omega$)	MAKE	MANUFACTURER	PART NUMBER	CASE SIZE
22	6.3, < 5	Ceramic, X5R	TDK	C3216X5R0J226M	1206
47	6.3, < 5	Ceramic, X5R	TDK	C3216X5R0J476M	1206
47	6.3, < 5	Ceramic, X5R	TDK	C3225X5R0J476M	1210
47	10.0, < 5	Ceramic, X5R	TDK	C3225X5R1A476M	1210
100	6.3, < 5	Ceramic, X5R	TDK	C3225X5R0J107M	1210
100	6.3, 50	Tantalum	AVX	TPSD157M006#0050	D, $7.5 \times 4.3 \times 2.9 \text{ mm}$
100	6.3, 25	Organic Polymer	Sanyo	6TPE100MPB2	B2, $3.5 \times 2.8 \times 1.9 \text{ mm}$
150	6.3, 18	Organic Polymer	Sanyo	6TPE150MIC2	C2, $6.0 \times 3.2 \times 1.8 \text{ mm}$
330	6.3, 18	Organic Polymer	Sanyo	6TPE330MIL	D3L, $7.3 \times 4.3 \times 2.8 \text{ mm}$
470	6.3, 23	Niobium Oxide	AVX	NOME37M006#0023	E, $7.3 \times 4.3 \times 4.1 \text{ mm}$

8.2.2.3.1 Output Voltage Setting

A resistor divider network from V_{OUT} to the FB pin determines the desired output voltage as follows:

$$V_{OUT} = 0.8 \text{ V} \times \frac{R_{fbt} + R_{fbb}}{R_{fbb}} \quad (20)$$

R_{fbt} is defined based on the voltage loop requirements and R_{fbb} is then selected for the desired output voltage. Resistors are normally selected as 0.5% or 1% tolerance. Higher accuracy resistors such as 0.1% are also available.

The feedback voltage (at $V_{OUT} = 2.5$ V) is accurate to within $-2.5\% / +2.5\%$ over temperature and over line and load regulation. Additionally, the LMZ10505EXT contains error nulling circuitry to substantially eliminate the feedback voltage variation over temperature as well as the long-term aging effects of the internal amplifiers. In addition the zero nulling circuit dramatically reduces the $1/f$ noise of the bandgap amplifier and reference. The manifestation of this circuit action is that the duty cycle will have two slightly different but distinct operating points, each evident every other switching cycle.

8.2.2.4 Loop Compensation

The LMZ10505EXT preserves flexibility by integrating the control components around the internal error amplifier while using three small external compensation components from V_{OUT} to FB. An integrated type II (two pole, one zero) voltage-mode compensation network is featured. To ensure stability, an external resistor and small value capacitor can be added across the upper feedback resistor as a pole-zero pair to complete a type III (three pole, two zero) compensation network. The compensation components recommended in [Table 4](#) provide type III compensation at an optimal control loop performance. The typical phase margin is 45° with a bandwidth of 80 kHz. Calculated output capacitance values not listed in [Table 4](#) should be verified before designing into production. The [AN-2013 LMZ1050x/LMZ1050xEXT SIMPLE SWITCHER Power Module](#) (SNVA417) is a detailed application note that provides verification support. In general, calculated output capacitance values below the suggested value will have reduced phase margin and higher control loop bandwidth. Output capacitance values above the suggested values will experience a lower bandwidth and increased phase margin. Higher bandwidth is associated with faster system response to sudden changes such as load transients. Phase margin changes the characteristics of the response. Lower phase margin is associated with underdamped ringing and higher phase margin is associated with overdamped response. Losing all phase margin will cause the system to be unstable; an optimized area of operation is 30° to 60° of phase margin, with a bandwidth of 100 kHz ± 20 kHz.

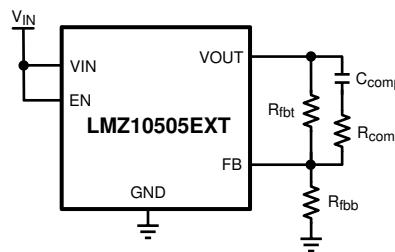
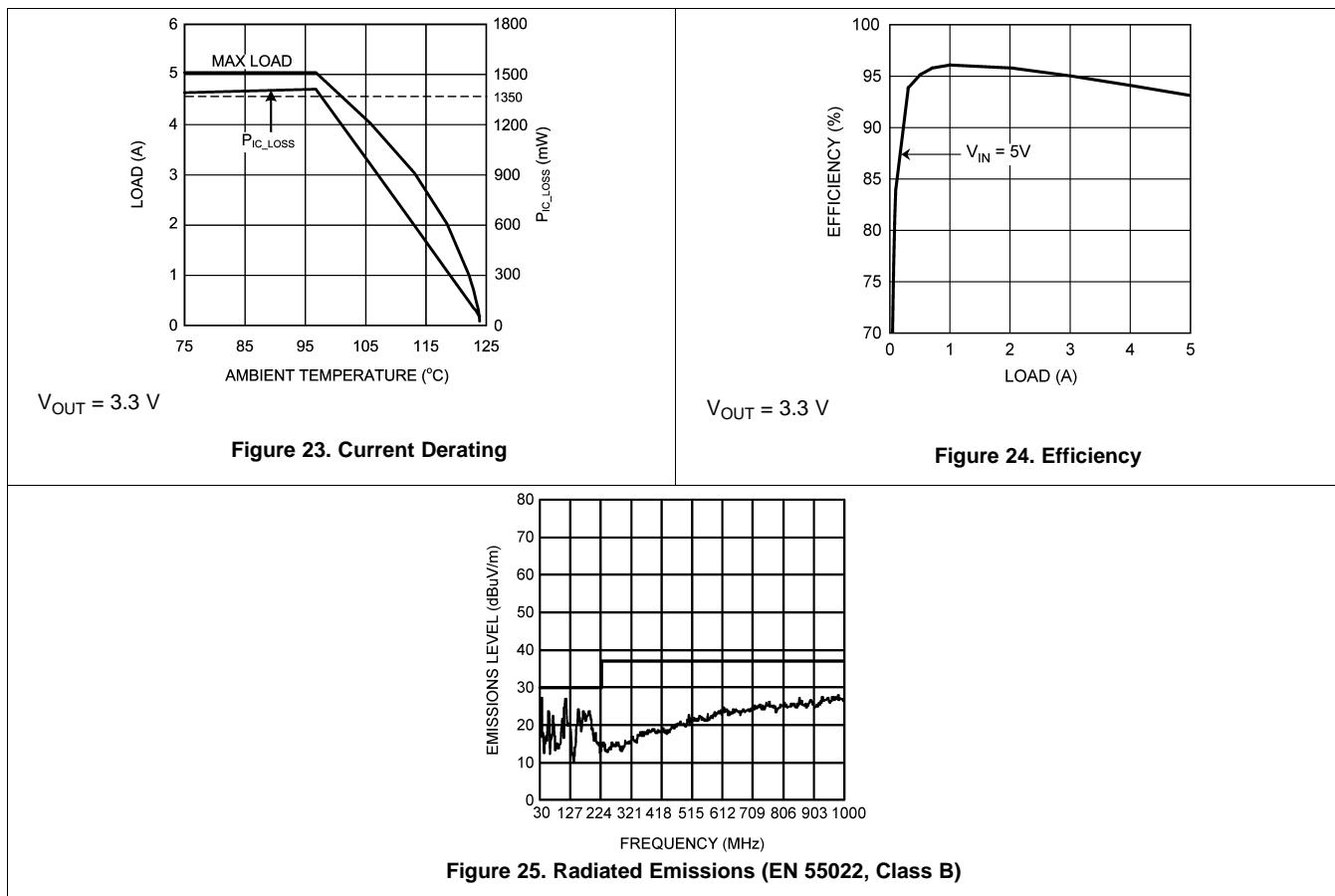


Figure 22. Loop Compensation Control Components

Table 4. LMZ10505EXT Compensation Component Values⁽¹⁾


V _{IN} (V)	C ₀ (μF)	ESR (mΩ)		R _{fbt} (kΩ)	C _{comp} (pF)	R _{comp} (kΩ)
		MIN	MAX			
5	22	2	20	200	27	1.5
	47	2	20	124	68	1.4
	100	1	10	82.5	150	0.681
	150	1	5	63.4	220	1
	150	10	25	63.4	220	3.48
	150	26	50	226	62	12.1
	220	15	30	150	100	6.98
	220	31	60	316	560	14

(1) In the special case where the output voltage is 0.8V, it is recommended to remove R_{fbb} and keep R_{fbt}, R_{comp}, and C_{comp} for a type III compensation.

Table 4. LMZ10505EXT Compensation Component Values⁰ (continued)

V _{IN} (V)	C _O (μF)	ESR (mΩ)		R _{fbt} (kΩ)	C _{comp} (pF)	R _{comp} (kΩ)
		MIN	MAX			
3.3	22	2	20	118	43	9.09
	47	2	20	76.8	100	3.32
	100	1	10	49.9	180	2.49
	150	1	5	40.2	330	1
	150	10	25	43.2	330	4.99
	150	26	50	143	100	7.5
	220	15	30	100	180	4.99
	220	31	60	200	100	8.06

8.2.3 Application Curves

8.3 System Examples

8.3.1 Application Schematic for 3.3-V to 5-V Input and 2.5-V Output With Optimized Ripple and Transient Response

The compensation for each solution was optimized to work over the stated input range. Many applications have a fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given input voltage operating point. This schematic is intended to serve as a helpful starting point towards an optimized design.

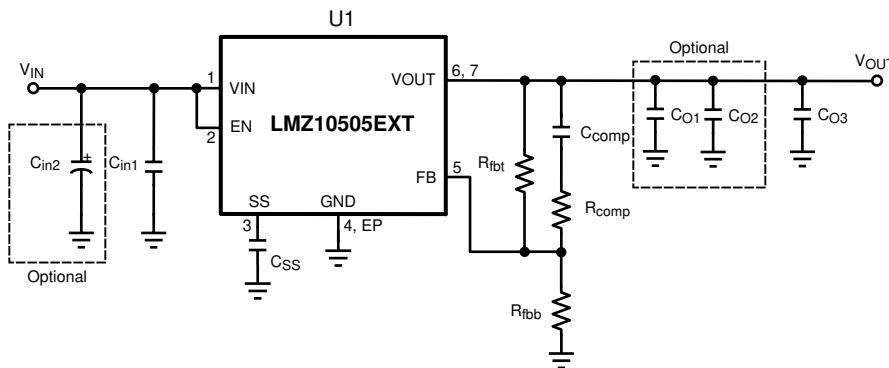


Figure 26. Schematic for 2.5-V Output Based on 3.3-V to 5-V Input

Table 5. Bill of Materials, $V_{IN} = 3.3$ V to 5 V, $V_{OUT} = 2.5$ V, $I_{OUT (MAX)} = 5$ A, Optimized for Low Input and Output Ripple Voltage and Fast Transient Response

DESIGNATOR	DESCRIPTION	CASE SIZE	MANUFACTURER	MANUFACTURER P/N	QUANTITY
U1	Power module	PFM-7	Texas Instruments	LMZ10505EXTTZ	1
C _{in1}	22 μF, X5R, 10 V	1210	AVX	1210ZD226MAT	2
C _{in2}	220 μF, 10 V, AL-Elec	E	Panasonic	EEE1AA221AP	1 ⁽¹⁾
C _{O1}	4.7 μF, X5R, 10 V	0805	AVX	0805ZD475MAT	1 ⁽¹⁾
C _{O2}	22 μF, X5R, 6.3 V	1206	AVX	12066D226MAT	1 ⁽¹⁾
C _{O3}	100 μF, X5R, 6.3 V	1812	AVX	18126D107MAT	1
R _{fb}	75 kΩ	0402	Vishay Dale	CRCW040275K0FKED	1
R _{fb_bb}	34.8 kΩ	0402	Vishay Dale	CRCW040234K8FKED	1
R _{comp}	1.0 kΩ	0402	Vishay Dale	CRCW04021K00FKED	1
C _{comp}	100 pF, ±5%, C0G, 50 V	0402	Murata	GRM1555C1H101JZ01	1
C _{ss}	10 nF, ±10%, X7R, 16 V	0402	Murata	GRM155R71C103KA01	1

(1) Optional components, include for low input and output voltage ripple.

Table 6. Output Voltage Setting ($R_{fb} = 75$ kΩ)

V_{OUT}	R_{fb_bb}
2.5 V	34.8 kΩ
1.8 V	59 kΩ
1.5 V	84.5 kΩ
1.2 V	150 kΩ
0.9 V	590 kΩ

8.3.2 Application Schematic for 3.3-V to 5-V Input and 2.5-V Output

The compensation for each solution was optimized to work over the stated input range. Many applications have a fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given input voltage operating point. This schematic is intended to serve as a helpful starting point towards an optimized design.

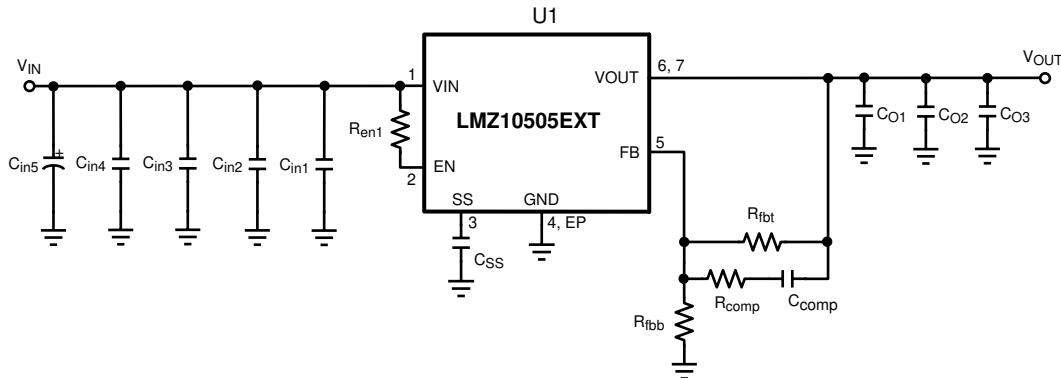


Figure 27. Schematic for 2.5-V Output Based on 3.3-V to 5-V Input

Table 7. Bill of Materials, $V_{IN} = 3.3$ V to 5 V, $V_{OUT} = 2.5$ V, $I_{OUT (MAX)} = 5$ A

DESIGNATOR	DESCRIPTION	CASE SIZE	MANUFACTURER	MANUFACTURER P/N	QUANTITY
U1	Power module	PFM-7	Texas Instruments	LMZ10505EXTTZ	1
C _{in1}	1 μ F, X7R, 16 V	0805	TDK	C2012X7R1C105K	1
C _{in2} , C _{O1}	4.7 μ F, X5R, 6.3 V	0805	TDK	C2012X5R0J475K	2
C _{in3} , C _{O2}	22 μ F, X5R, 16 V	1210	TDK	C3225X5R1C226M	2
C _{in4}	47 μ F, X5R, 6.3 V	1210	TDK	C3225X5R0J476M	1
C _{in5}	220 μ F, 10 V, AL-Elec	E	Panasonic	EEE1AA221AP	1
C _{O3}	100 μ F, X5R, 6.3 V	1812	TDK	C4532X5R0J107M	1
R _{fb}	75 k Ω	0805	Vishay Dale	CRCW080575K0FKEA	1
R _{fb}	34.8 k Ω	0805	Vishay Dale	CRCW080534K8FKEA	1
R _{comp}	1.1 k Ω	0805	Vishay Dale	CRCW08051K10FKEA	1
C _{comp}	180 pF, $\pm 5\%$, C0G, 50 V	0603	TDK	C1608C0G1H181J	1
R _{en1}	100 k Ω	0805	Vishay Dale	CRCW0805100KFKEA	1
C _{ss}	10 nF, $\pm 5\%$, C0G, 50 V	0805	TDK	C2012C0G1H103J	1

Table 8. Output Voltage Setting ($R_{fb} = 75$ k Ω)

V_{OUT}	R_{fb}
2.5 V	34.8 k Ω
1.8 V	59 k Ω
1.5 V	84.5 k Ω
1.2 V	150 k Ω
0.9 V	590 k Ω

8.3.3 EMI Tested Schematic for 2.5-V Output Based on 3.3-V to 5-V Input

The compensation for each solution was optimized to work over the stated input range. Many applications have a fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given input voltage operating point. This schematic is intended to serve as a helpful starting point towards an optimized design.

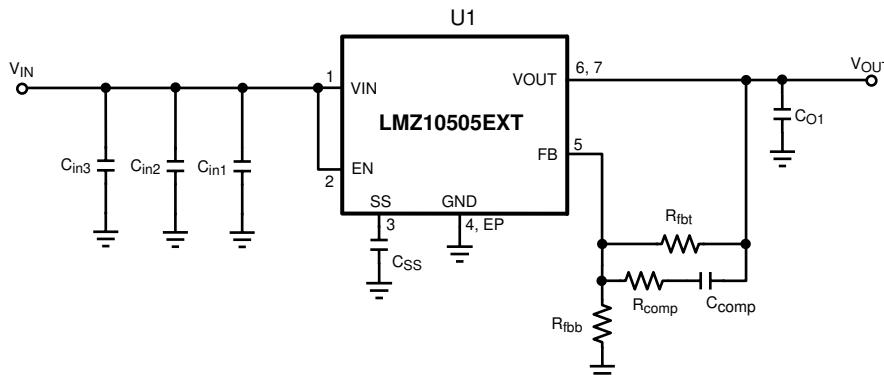


Figure 28. EMI Tested Schematic for 2.5-V Output Based on 3.3-V to 5-V Input

Table 9. Bill of Materials, $V_{IN} = 5$ V, $V_{OUT} = 2.5$ V, $I_{OUT (MAX)} = 5$ A, Tested with EN55022 Class B Radiated Emissions

DESIGNATOR	DESCRIPTION	CASE SIZE	MANUFACTURER	MANUFACTURER P/N	QUANTITY
U1	Power module	PFM-7	Texas Instruments	LMZ10505EXTTZ	1
C _{in1}	1 μ F, X7R, 16 V	0805	TDK	C2012X7R1C105K	1
C _{in2}	4.7 μ F, X5R, 6.3 V	0805	TDK	C2012X5R0J475K	1
C _{in3}	47 μ F, X5R, 6.3 V	1210	TDK	C3225X5R0J476M	1
C _{O1}	100 μ F, X5R, 6.3 V	1812	TDK	C4532X5R0J107M	1
R _{fb}	75 k Ω	0805	Vishay Dale	CRCW080575K0FKEA	1
R _{fb}	34.8 k Ω	0805	Vishay Dale	CRCW080534K8FKEA	1
R _{comp}	1.1 k Ω	0805	Vishay Dale	CRCW08051K10FKEA	1
C _{comp}	180 pF, $\pm 5\%$, C0G, 50 V	0603	TDK	C1608C0G1H181J	1
C _{ss}	10 nF, $\pm 5\%$, C0G, 50 V	0805	TDK	C2012C0G1H103J	1

Table 10. Output Voltage Setting ($R_{fb} = 75$ k Ω)

V_{OUT}	R_{fb}
3.3 V	23.7 k Ω
2.5 V	34.8 k Ω
1.8 V	59 k Ω
1.5 V	84.5 k Ω
1.2 V	150 k Ω
0.9 V	590 k Ω

9 Power Supply Recommendations

The LMZ10505EXT device is designed to operate from an input voltage supply range between 2.95 V and 5.5 V. This input supply should be well regulated and able to withstand maximum input current and maintain a stable voltage. The resistance of the input supply rail should be low enough that an input current transient does not cause a high enough drop at the LMZ10505EXT supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply is more than a few inches from the LMZ10505EXT, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. The amount of bulk capacitance is not critical, but a 47- μ F or 100- μ F electrolytic capacitor is a typical choice.

10 Layout

10.1 Layout Guidelines

PCB layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce and resistive voltage drop in the traces. These can send erroneous signals to the DC-DC converter resulting in poor regulation or instability. Good layout can be implemented by following a few simple design rules.

1. Minimize area of switched current loops.

From an EMI reduction standpoint, it is imperative to minimize the high di/dt current paths. The high current that does not overlap contains high di/dt , see [Figure 29](#). Therefore physically place input capacitor (C_{int1}) as close as possible to the LMZ10505EXT VIN pin and GND exposed pad to avoid observable high-frequency noise on the output pin. This will minimize the high di/dt area and reduce radiated EMI. Additionally, grounding for both the input and output capacitor should consist of a localized top side plane that connects to the GND exposed pad (EP).

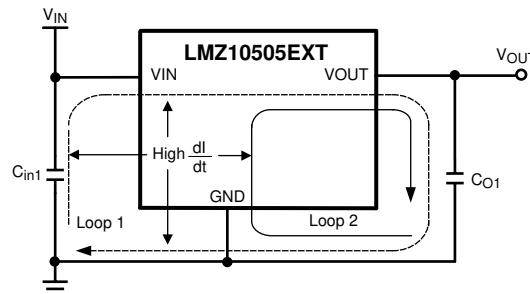
2. Have a single point ground.

The ground connections for the feedback, soft-start, and enable components should be routed only to the GND pin of the device. This prevents any switched or load currents from flowing in the analog ground traces. If not properly placed, poor grounding can result in degraded load regulation or erratic output voltage ripple behavior. Provide the single point ground connection from pin 4 to EP.

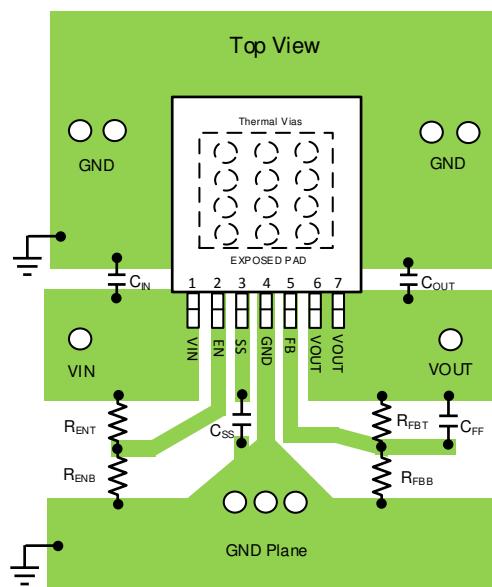
3. Minimize trace length to the FB pin.

Both feedback resistors, R_{fbt} and R_{fbb} , and the compensation components, R_{comp} and C_{comp} , should be located close to the FB pin. Because the FB node is high impedance, keep the copper area as small as possible. This is most important as relatively high-value resistors are used to set the output voltage.

4. Make input and output bus connections as wide as possible.


This reduces any voltage drops on the input or output of the converter and maximizes efficiency. To optimize voltage accuracy at the load, ensure that a separate feedback voltage sense trace is made at the load. Doing so will correct for voltage drops and provide optimum output accuracy.

5. Provide adequate device heat-sinking.


Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer. If the PCB has multiple copper layers, thermal vias can also be employed to make connection to inner layer heat-spreading ground planes. For best results use a 6 x 6 via array with minimum via diameter of 8 mil thermal vias spaced 59 mils (1.5 mm). Ensure enough copper area is used for heat-sinking to keep the junction temperature below 125°C.

10.2 Layout Examples

The PCB design is available in the LMZ10505EXT product folder at www.ti.com.

Figure 29. Critical Current Loops to Minimize

Figure 30. PCB Layout Guide

Layout Examples (continued)

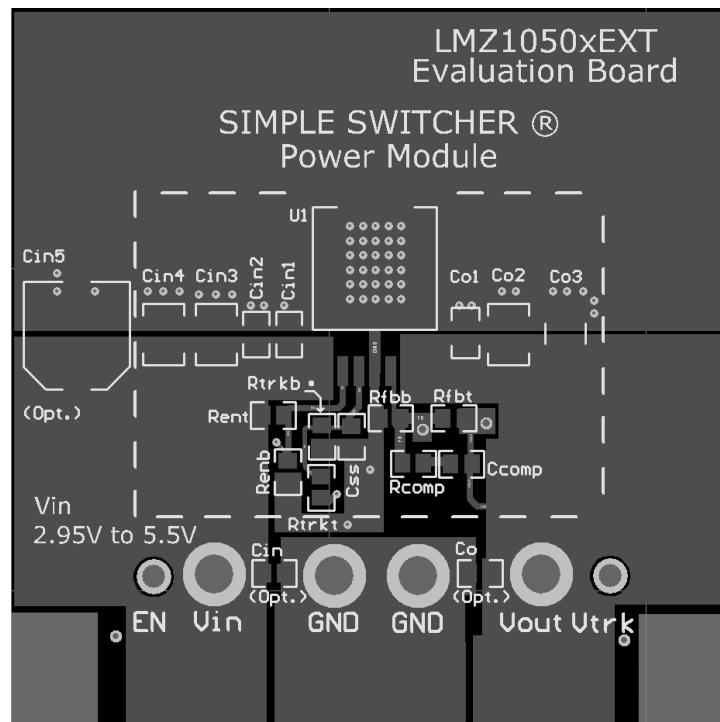


Figure 31. Top Copper

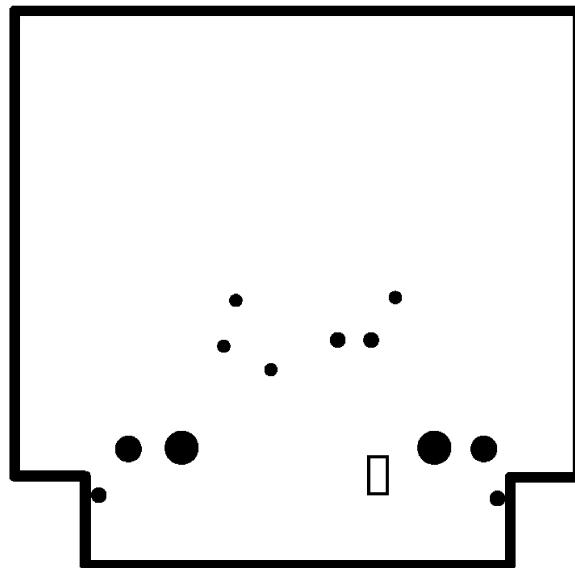


Figure 32. Internal Layer 1 (Ground)

Layout Examples (continued)

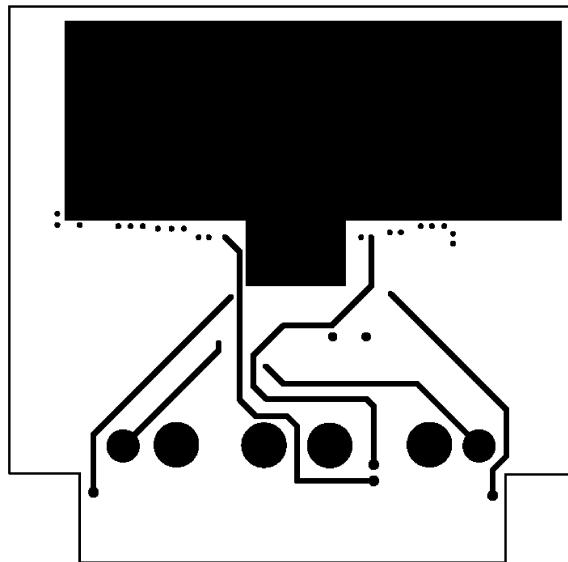


Figure 33. Internal Layer 2 (Ground and Signal Traces)

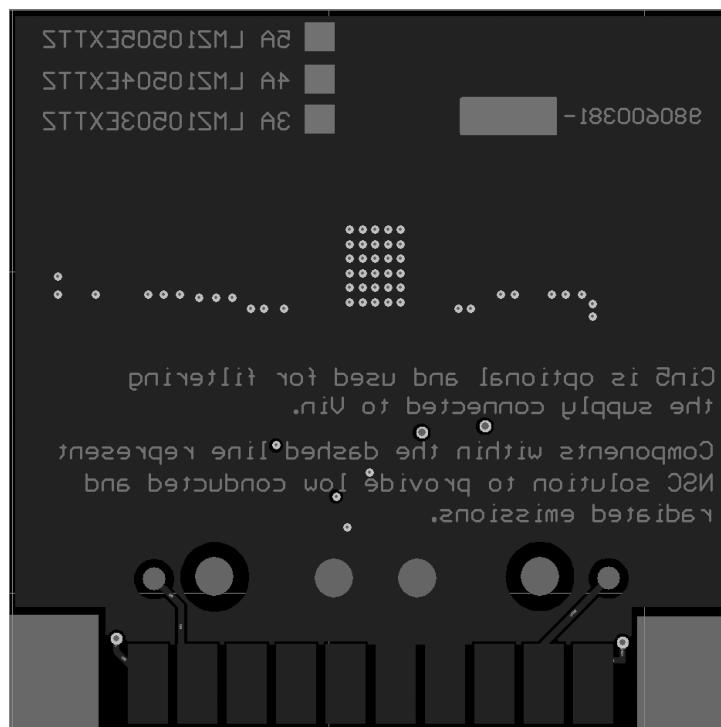


Figure 34. Bottom Copper

10.3 Estimate Power Dissipation and Thermal Considerations

Use the current derating curves in the [Typical Characteristics](#) section to obtain an estimate of power loss (P_{IC_LOSS}). For the design case of $V_{IN} = 5$ V, $V_{OUT} = 2.5$ V, $I_{OUT} = 5$ A, $T_{A(MAX)} = 85^\circ\text{C}$, and $T_{J(MAX)} = 125^\circ\text{C}$, the device must see a thermal resistance from case to ambient (θ_{CA}) of less than:

$$\theta_{CA} \geq \frac{T_{J(MAX)} - T_{A(MAX)}}{P_{IC_LOSS}} - \theta_{JC} \quad (21)$$

$$\theta_{CA} < \frac{125^\circ\text{C} - 85^\circ\text{C}}{1.36 \text{ W}} - 1.9 \frac{^\circ\text{C}}{\text{W}} < 27.5 \frac{^\circ\text{C}}{\text{W}} \quad (22)$$

Given the typical thermal resistance from junction to case (θ_{JC}) to be 1.9°C/W (typical). Continuously operating at a T_J greater than 125°C will have a shorten life span.

To reach $\theta_{CA} = 27.5^\circ\text{C/W}$, the PCB is required to dissipate heat effectively. With no airflow and no external heat, a good estimate of the required board area covered by 1-oz. copper on both the top and bottom metal layers is:

$$\text{Board Area_cm}^2 \geq \frac{500}{\theta_{CA}} \times \frac{^\circ\text{C} \times \text{cm}^2}{\text{W}} \quad (23)$$

$$\text{Board Area_cm}^2 \geq \frac{500}{27.5 \frac{^\circ\text{C}}{\text{W}}} \times \frac{^\circ\text{C} \times \text{cm}^2}{\text{W}} \quad (24)$$

As a result, approximately 18 square cm of 1-oz. copper on top and bottom layers is required for the PCB design.

The PCB copper heat sink must be connected to the exposed pad (EP). Approximately thirty six, 8 mils thermal vias spaced 59 mils (1.5 mm) apart must connect the top copper to the bottom copper. For an extended discussion and formulations of thermal rules of thumb, refer to [AN-2020 Thermal Design By Insight, Not Hindsight](#) (SNVA419). For an example of a high thermal performance PCB layout with θ_{JA} of 20°C/W , refer to the evaluation board application note [AN-2074 LMZ1050xEXT Evaluation Board](#) (SNVA450) and for results of a study of the effects of the PCB designs, refer to [AN-2026 Effect of PCB Design on Thermal Performance of SIMPLE SWITCHER Power Modules](#) (SNVA424).

10.4 Power Module SMT Guidelines

The recommendations below are for a standard module surface mount assembly.

- Land Pattern – Follow the PCB land pattern with either soldermask defined or non-soldermask defined pads
- Stencil Aperture
 - For the exposed die attach pad (DAP), adjust the stencil for approximately 80% coverage of the PCB land pattern
 - For all other I/O pads use a 1:1 ratio between the aperture and the land pattern recommendation
- Solder Paste – Use a standard SAC Alloy such as SAC 305, type 3 or higher
- Stencil Thickness – 0.125 to 0.15 mm
- Reflow - Refer to solder paste supplier recommendation and optimized per board size and density
- Maximum number of refows allowed is one
- Refer to [Design Summary LMZ1xxx and LMZ2xxx Power Modules Family](#) (SNAA214) for reflow information.

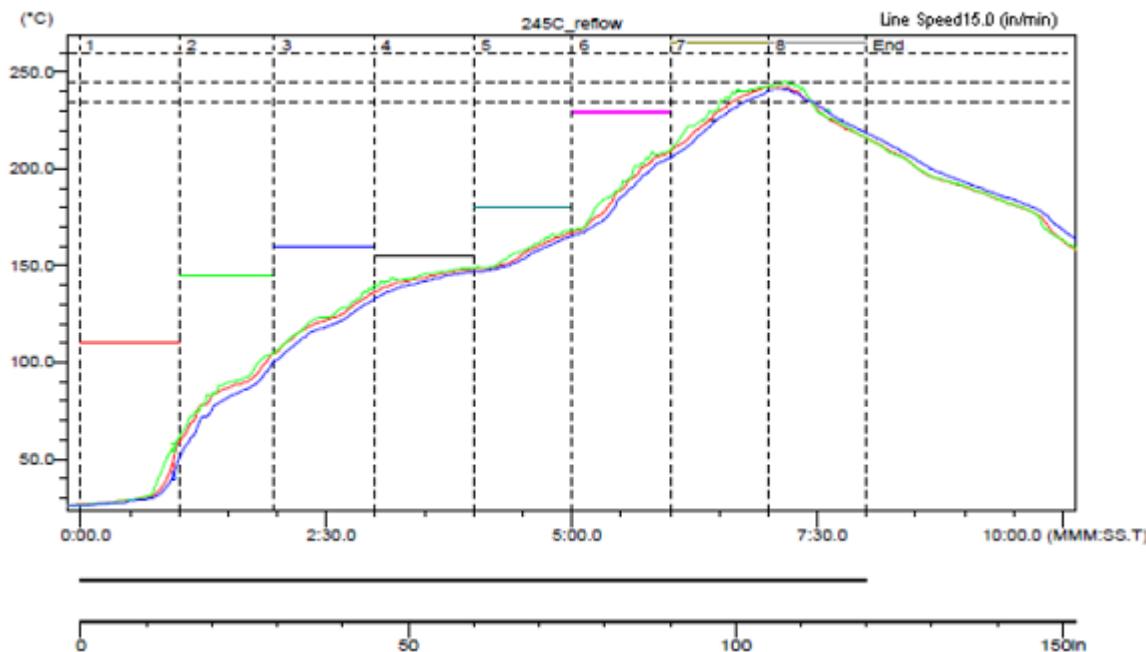


Figure 35. Sample Reflow Profile

Table 11. Sample Reflow Profile Table

PROBE	MAX TEMP (°C)	REACHED MAX TEMP	TIME ABOVE 235°C	REACHED 235°C	TIME ABOVE 245°C	REACHED 245°C	TIME ABOVE 260°C	REACHED 260°C
1	242.5	6.58	0.49	6.39	0.00	–	0.00	–
2	242.5	7.10	0.55	6.31	0.00	7.10	0.00	–
3	241.0	7.09	0.42	6.44	0.00	–	0.00	–

11 器件和文档支持

11.1 器件支持

11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息，不能构成与此类产品或服务或保修的适用性有关的认可，不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.1.2 开发支持

11.1.2.1 使用 WEBENCH® 工具创建定制设计

单击[此处](#)，以使用 LMZ10505EXT 器件并借助 WEBENCH® 电源设计器进行定制设计。

1. 首先输入输入电压 (V_{IN})、输出电压 (V_{OUT}) 和输出电流 (I_{OUT}) 要求。
2. 使用优化器拨盘优化该设计的关键参数，如效率、尺寸和成本。
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。

WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。

在多数情况下，可执行以下操作：

- 运行电气仿真，观察重要波形以及电路性能
- 运行热性能仿真，了解电路板热性能
- 将定制原理图和布局方案以常用 CAD 格式导出
- 打印设计方案的 PDF 报告并与同事共享

有关 WEBENCH 工具的详细信息，请访问 www.ti.com.cn/WEBENCH。

11.2 文档支持

11.2.1 相关文档

请参阅如下相关文档：

- [《AN-2027 LMZ14203 SIMPLE SWITCHER 电源模块的反向应用》\(SNVA425\)](#)
- [《焊接的绝对最大额定值》\(SNOA549\)](#)
- [《AN-2074 LMZ1050xEXT 评估板》\(SNVA450\)](#)
- [《AN-2024 LMZ1420x/LMZ1200x 评估板》\(SNVA422\)](#)
- [《AN-2013 LMZ1050x/LMZ1050xEXT SIMPLE SWITCHER 电源模块》\(SNVA417\)](#)
- [《AN-2020 热设计：学会洞察先机，不做事后诸葛》\(SNVA419\)](#)
- [《AN-2026 PCB 设计对 SIMPLE SWITCHER 电源模块热性能的影响》\(SNVA424\)](#)
- [《LMZ1xxx 和 LMZ2xxx 电源模块系列设计摘要》\(SNAA214\)](#)

11.3 接收文档更新通知

要接收文档更新通知，请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community **TI's Engineer-to-Engineer (E2E) Community**. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support **TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 商标

E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

11.7 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LMZ10505EXTTZ/NOPB	Active	Production	TO-PMOD (NDW) 7	250 SMALL T&R	Exempt	SN	Level-3-245C-168 HR	-55 to 125	LMZ10505 EXT
LMZ10505EXTTZ/NOPB.A	Active	Production	TO-PMOD (NDW) 7	250 SMALL T&R	Exempt	SN	Level-3-245C-168 HR	-55 to 125	LMZ10505 EXT
LMZ10505EXTTZE/NO.A	Active	Production	TO-PMOD (NDW) 7	45 TUBE	Yes	SN	Level-3-245C-168 HR	-55 to 125	LMZ10505 EXT
LMZ10505EXTTZE/NOPB	Active	Production	TO-PMOD (NDW) 7	45 TUBE	Exempt	SN	Level-3-245C-168 HR	-55 to 125	LMZ10505 EXT
LMZ10505EXTTZX/NO.A	Active	Production	TO-PMOD (NDW) 7	500 LARGE T&R	Yes	SN	Level-3-245C-168 HR	-55 to 125	LMZ10505 EXT
LMZ10505EXTTZX/NOPB	Active	Production	TO-PMOD (NDW) 7	500 LARGE T&R	Exempt	SN	Level-3-245C-168 HR	-55 to 125	LMZ10505 EXT

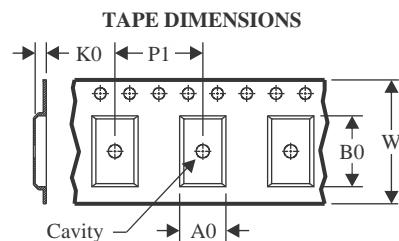
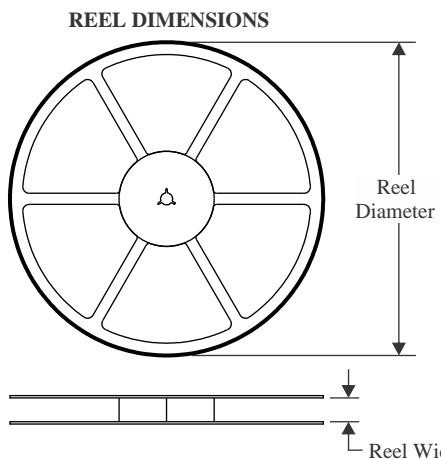
⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

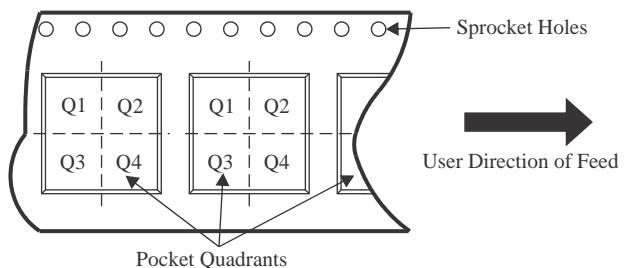
⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

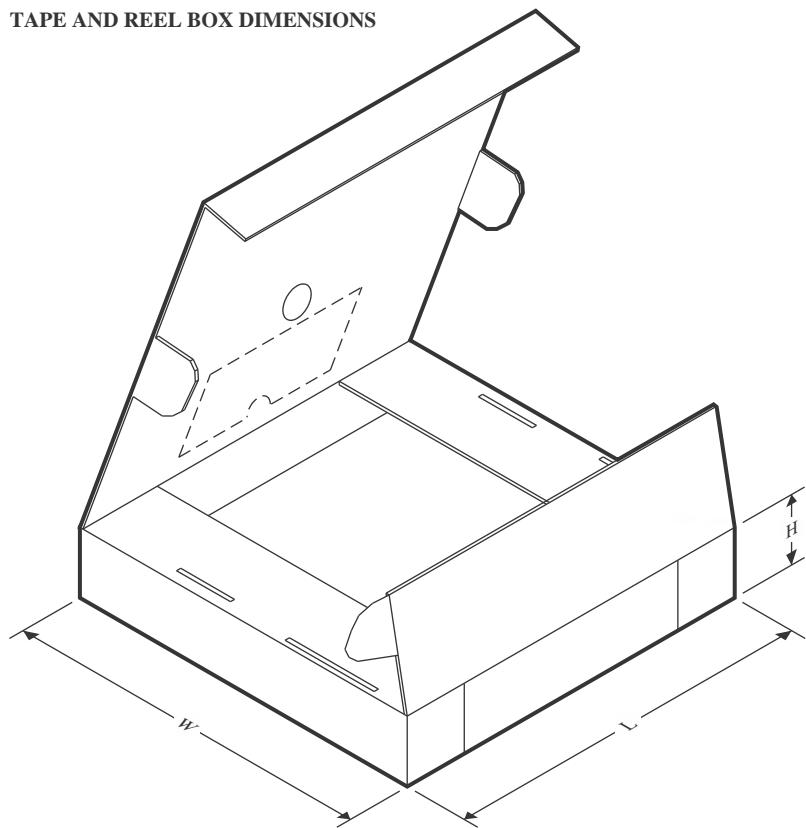


⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.



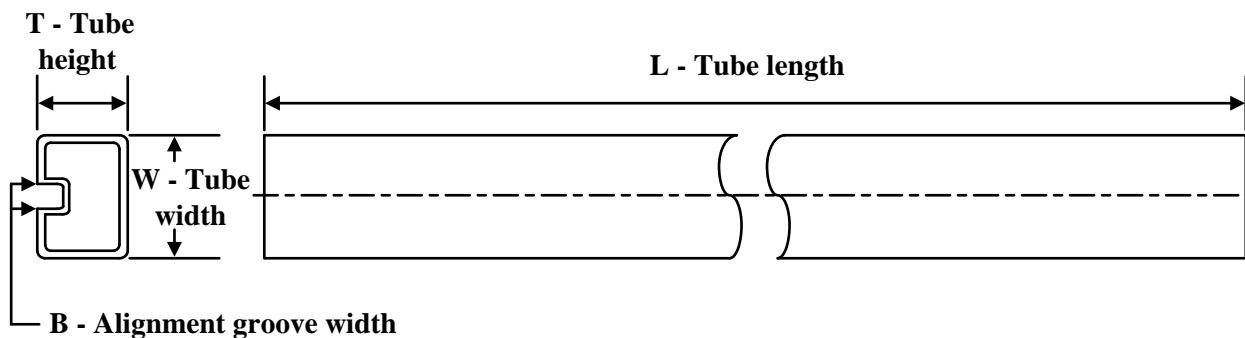
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

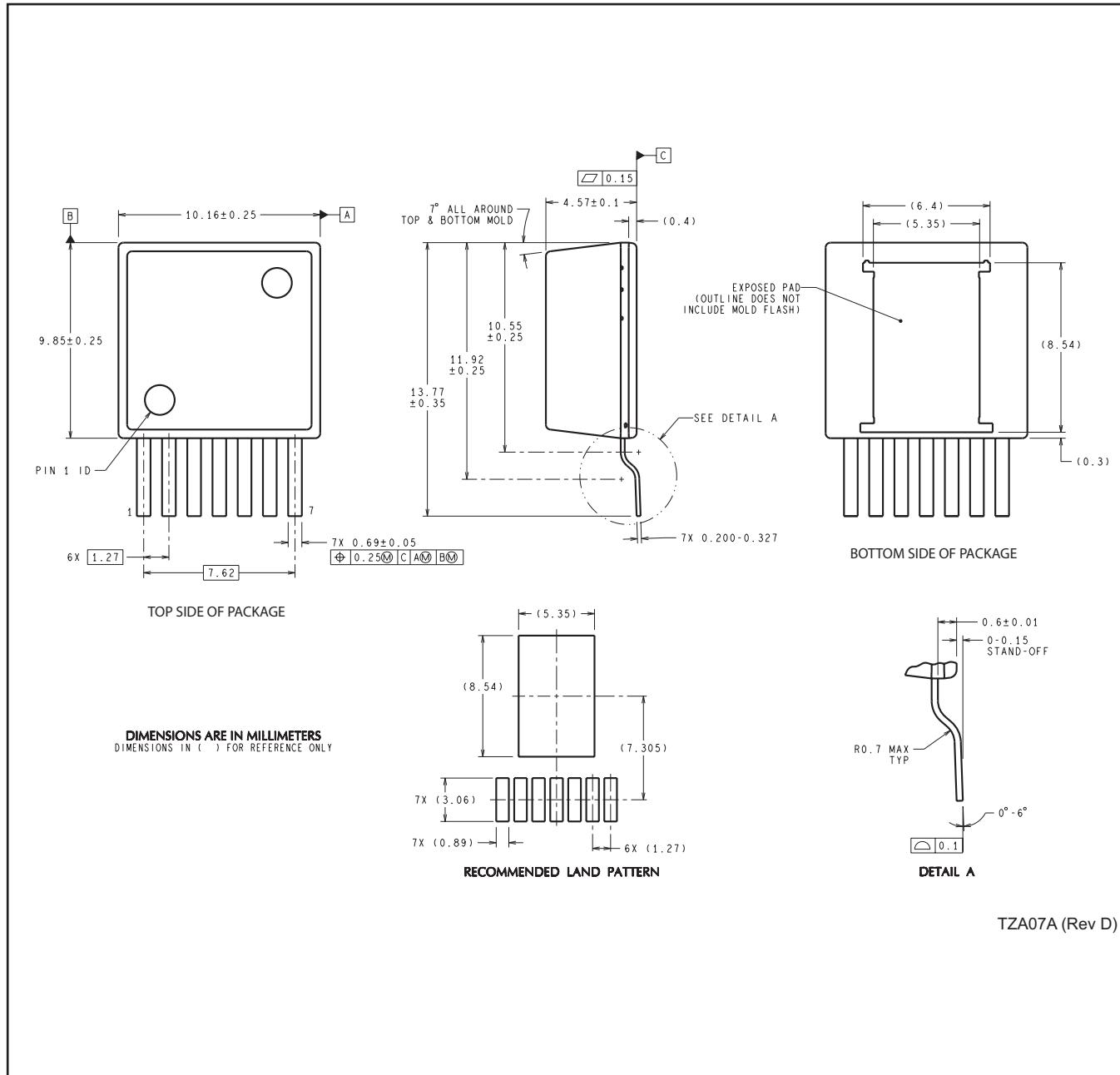

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMZ10505EXTTZ/NOPB	TO-PMOD	NDW	7	250	330.0	24.4	10.6	14.22	5.0	16.0	24.0	Q2
LMZ10505EXTZX/NOPB	TO-PMOD	NDW	7	500	330.0	24.4	10.6	14.22	5.0	16.0	24.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMZ10505EXTTZ/NOPB	TO-PMOD	NDW	7	250	356.0	356.0	45.0
LMZ10505EXTZX/NOPB	TO-PMOD	NDW	7	500	356.0	356.0	45.0


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
LMZ10505EXTTZE/NO.A	NDW	TO-PMOD	7	45	502	17	6700	8.4
LMZ10505EXTTZE/NOPB	NDW	TO-PMOD	7	45	502	17	6700	8.4

MECHANICAL DATA

NDW0007A

TZA07A (Rev D)

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2026，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月