

LP5866

1 特性

- LED 矩阵拓扑:
 - 18 个恒定电流阱,具有 6 个扫描开关,可实现 108 个 LED 点
 - 可针对 1 至 6 个扫描开关进行配置
- 工作电压范围:
 - V_{CC}/V_{LED} 范围: 2.7V 至 5.5V
 - 逻辑引脚兼容 1.8V、3.3V 和 5V 电压
- 18 个高精度恒定电流阱:
 - 当 V_{CC} ≥ 3.3V 时,每个电流阱的电流为 0.1mA - 50mA
 - 器件间误差: 当通道电流 = 50mA 时为 ±3%
 - 通道间误差: 当通道电流 = 50mA 时为 ±3%
 - 相移可平衡瞬态功耗
- 超低功耗:
 - 关断模式: 当 EN = 低电平时 I_{CC} ≤ 1 μ A
 - 待机模式:当 EN 为高电平且 CHIP EN 为 0 (保留数据)时,I_{CC} ≤ 10 μA(LP5866MDBT 为 ≤ 15 μ A)
 - 工作模式: 当通道电流为 5mA 时, I_{CC} = 4.3mA (典型值)
- 灵活的调光选项:
 - 对每个 LED 点进行单独的开/关控制
 - 模拟调光(电流增益控制)
 - 为所有 LED 点提供全局 3 位最大电流 (MC)
 - 为红色、绿色和蓝色提供3组7位颜色电流 (CC) 设置
 - 为每个 LED 点提供单独的 8 位点电流 (DC) 设置
 - 以无可闻噪声的频率进行 PWM 调光
 - 为所有 LED 点实现全局 8 位 PWM 调光
 - 为 LED 点任意映射实现 3 组可编程 8 位 PWM 调光
 - 为每个 LED 点实现单独的 8 位或 16 位 PWM 调光
- 完整的可寻址 SRAM,可更大限度地减少数据流量
- 针对各个 LED 点进行开路和短路检测
- 提供重影消除和低亮度补偿功能
- 接口选项:
 - 当 IFS = 低电平时采用 1MHz (最大值) I²C 接
 - 当 IFS = 高电平时采用 12MHz (最大值) SPI 接口

2 应用

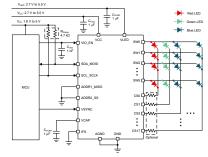
LP5866 具有 8 位模拟和 8 位/16 位 PWM 调光的 6 x 18 LED 矩阵驱动器

- 用于以下设备的 LED 动画和指示:
 - 键盘、鼠标和游戏附件
 - 大型和智能家用电器
 - 智能音箱、有线和无线音箱
 - 混音器、DJ 设备和广播
 - 接入设备、交换机和服务器
- 用于光学模块的恒定电流阱

3 说明

电子设备变得越来越智能,而且需要使用更多的 LED 提供动画效果和指示功能,因此需要使用高性能 LED 矩阵驱动器以小尺寸解决方案改善用户体验。

LP586x 器件是高性能 LED 矩阵驱动器系列。该系列 器件集成了 18 个具有 N (N = 1/2/4/6/8/11) 个开关 MOSFET 的恒定电流阱,以支持 N×18 个 LED 点或 N×6个RGB LED。LP5866集成了6个MOSFET, 从而支持多达 108 个 LED 点或 36 个 RGB LED。


LP5866 同时支持模拟调光和 PWM 调光方法。对于模 拟调光,能够以 256 个阶跃来调节每个 LED 点。对于 PWM 调光,集成式 8 位或 16 位可配置 PWM 发生器 可实现平滑且无可闻噪声的调光控制。也可以将每个 LED 点任意映射到 8 位组 PWM,以实现共同调光控 制。

LP5866 器件实现了完整的可寻址 SRAM,从而更大程 度减少数据流量。集成了重影消除电路以消除上下重 影。LP5866 还支持 LED 开路和短路检测功能。 LP5866 同时支持 1MHz (最大值) I²C 和 12MHz (最 大值)SPI。

器件信息

器件型号	封装 ⁽¹⁾	本体尺寸(标称值)
LP5866	VQFN (40)	5.00mm × 5.00mm
	TSSOP (38)	9.70mm × 4.40mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

简化原理图

Table of Contents

1 特性	1	7.4 Device Functional Modes	25
2 应用		7.5 Programming	26
3 说明		7.6 Register Maps	29
4 Device Comparison		8 Application and Implementation	41
5 Pin Configuration and Functions		8.1 Application Information	41
6 Specifications		8.2 Typical Application	
6.1 Absolute Maximum Ratings		8.3 Power Supply Recommendations	44
6.2 ESD Ratings		8.4 Layout	44
6.3 Recommended Operating Conditions		9 Device and Documentation Support	46
6.4 Thermal Information		9.1 接收文档更新通知	46
6.5 Electrical Characteristics		9.2 支持资源	46
6.6 Timing Requirements		9.3 Trademarks	
6.7 Typical Characteristics		9.4 静电放电警告	46
7 Detailed Description		9.5 术语表	
7.1 Overview		10 Revision History	
7.2 Functional Block Diagram		11 Mechanical, Packaging, and Orderable	
7.3 Feature Description		Information	47

4 Device Comparison

PART NUMBER	MATERIAL	LED DOT NUMBER	PACKAGE ⁽²⁾	SOFTWARE COMPATIBLE
LP5861	LP5861RSMR	18 × 1 = 18	VQFN-32	
LP5862	LP5862RSMR	18 × 2 = 36	VQFN-32	
LF 3002	LP5862DBTR	10 ^ 2 - 30	TSSOP-38	
LP5864	LP5864RSMR	18 × 4 = 72	VQFN-32	
LF3004	LP5864MRSMR ⁽¹⁾	10 ^ 4 - 72	VQI 14-32	
	LP5866RKPR		VQFN-40	Yes
LP5866	LP5866DBTR	18 × 6 = 108	TSSOP-38	
	LP5866MDBTR ⁽¹⁾		1330F-30	
LP5868	LP5868RKPR	18 × 8 = 144	VQFN-40	
LP5860	LP5860RKPR	40 44 400	VQFN-40	
LF3000	LP5860MRKPR ⁽¹⁾	18 × 11 = 198	VQFN-40	

⁽¹⁾ Extended temperature devices, supporting - 55°C to approximately 125°C operating ambient temperature.

⁽²⁾ The same packages are hardware compatible.

5 Pin Configuration and Functions

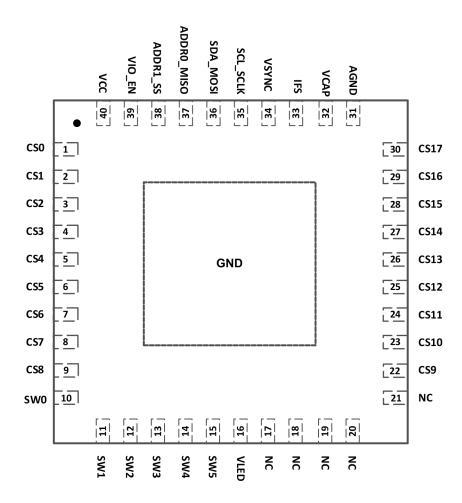


图 5-1. LP5866 RKP Package 40-Pin VQFN With Exposed Thermal Pad Top View

English Data Sheet: SNVSC36

提交文档反馈

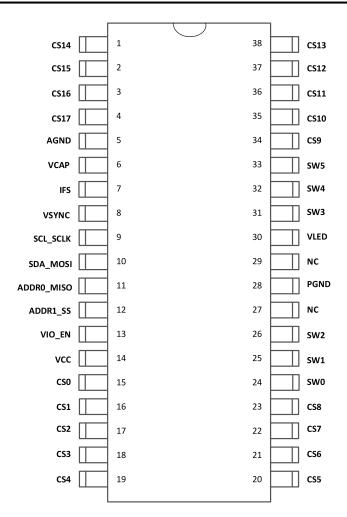


图 5-2. LP5866 DBT Package 38-Pin TSSOP Top View

表 5-1. Pin Functions

	PIN				
NAME	VQFN NO.	TSSOP NO.	I/O	DESCRIPTION	
CS0	1	15	0	Current sink 0. If not used, this pin must be left floating.	
CS1	2	16	0	Current sink 1. If not used, this pin must be left floating.	
CS2	3	17	0	Current sink 2. If not used, this pin must be left floating.	
CS3	4	18	0	Current sink 3. If not used, this pin must be left floating.	
CS4	5	19	0	Current sink 4. If not used, this pin must be left floating.	
CS5	6	20	0	Current sink 5. If not used, this pin must be left floating.	
CS6	7	21	0	Current sink 6. If not used, this pin must be left floating.	
CS7	8	22	0	Current sink 7. If not used, this pin must be left floating.	
CS8	9	23	0	Current sink 8. If not used, this pin must be left floating.	
SW0	10	24	0	High-side PMOS switch output for scan line 0. If not used, this pin must be left floating.	
SW1	11	25	0	High-side PMOS switch output for scan line 1. If not used, this pin must be left floating.	
SW2	12	26	0	High-side PMOS switch output for scan line 2. If not used, this pin must be left floating.	
SW3	13	31	0	High-side PMOS switch output for scan line 3. If not used, this pin must be left floating.	
SW4	14	32	0	High-side PMOS switch output for scan line 4. If not used, this pin must be left floating.	

表 5-1. Pin Functions (续)

	PIN			表 3-1.1 III T directions (庆)	
NAME	VQFN NO.	TSSOP NO.	I/O	DESCRIPTION	
SW5	15	33	0	High-side PMOS switch output for scan line 5. If not used, this pin must be left floating.	
VLED	16	30	Power	Power input for high-side switches	
NC	17, 18, 19, 20, 21	27, 29	-	No internal connection	
CS9	22	34	0	Current sink 9. If not used, this pin must be left floating.	
CS10	23	35	0	Current sink 10. If not used, this pin must be left floating.	
CS11	24	36	0	Current sink 11. If not used, this pin must be left floating.	
CS12	25	37	0	Current sink 12. If not used, this pin must be left floating.	
CS13	26	38	0	Current sink 13. If not used, this pin must be left floating.	
CS14	27	1	0	Current sink 14. If not used, this pin must be left floating.	
CS15	28	2	0	Current sink 15. If not used, this pin must be left floating.	
CS16	29	3	0	Current sink 16. If not used, this pin must be left floating.	
CS17	30	4	0	Current sink 17. If not used, this pin must be left floating.	
AGND	31	5	Ground	Analog ground. Must be connected to exposed thermal pad and common ground plane.	
VCAP	32	6	0	Internal LDO output. A 1- μ F capacitor must be connected between this pin with GND. Place the capacitor as close to the device as possible.	
IFS	33	7	I	Interface type select. I ² C is selected when IFS is low. SPI is selected when IFS is high. A resistor must be connected between VIO and this pin.	
VSYNC	34	8	I	External synchronize signal for display mode 2 and mode 3	
SCL_SCLK	35	9	I	I ² C clock input or SPI clock input. Pull up to VIO when configured as I ² C.	
SDA_MOSI	36	10	I/O	I ² C data input or SPI leader output follower input. Pull up to VIO when configured as I ² C.	
ADDR0_MISO	37	11	I/O	I ² C address select 0 or SPI leader input follower output	
ADDR1_SS	38	12	I	I ² C address select 1 or SPI follower select	
VIO_EN	39	13	Power,I	Power supply for digital circuits and chip enable. A 1-nF capacitor must be connected between this pin with GND and be placed as close to the device as possible.	
VCC	40	14	Power	Power supply for device. A 1- μ F capacitor must be connected between this pin with GND and be placed as close to the device as possible.	
GND	Exposed Thermal Pad	1	Ground	Must be connected to AGND and common ground plane	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage on V _{CC} / V _{LED} / VIO / EN / CS / SW / SDA / SCL / SCLK / MOSI / MISO / SS / ADDR0 / ADDR1 / VSYNC / IFS		- 0.3	6	V
Voltage on VCAP		- 0.3	2	V
T _J	Junction temperature	- 55	150	°C
T _{stg}	Storage temperature	- 65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±3000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Input voltage on V _{CC}	Supply voltage	2.7	5.5	V
Input voltage on V _{LED}	LED supply voltage	2.7	5.5	V
Input voltage on VIO_EN		1.65	5.5	V
Voltage on SDA / SCL / SCLK / MOSI / MISO / SS / ADDRx / VSYNC / IFS			VIC	V
T _A	Operating ambient temperature	- 40	85	°C
T _A	Operating ambient temperature, LP5866MDBT	- 55	125	°C

6.4 Thermal Information

Copyright © 2024 Texas Instruments Incorporated

		LP5866,	LP5866M	
	THERMAL METRIC (1)	RKP (VQFN)	DBT (TSSOP)	UNIT
		40 Pins	38 Pins	
R ₀ JA	Junction-to-ambient thermal resistance	31.4	67.0	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	22.9	20.1	°C/W
R ₀ JB	Junction-to-board thermal resistance	12.0	27.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	1.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	12.0	27.0	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	3.5	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

 V_{CC} = 3.3 V, V_{LED} = 3.8 V, VIO = 1.8 V and T_A = -40 °C to +85 °C (T_A = -55 °C to +125 °C for LP5866MDBT); Typical values are at T_A = 25 °C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power su	upplies					
V _{CC}	Device supply voltage		2.7		5.5	V
V _{UVR}	Undervoltage restart	V _{CC} rising, Test mode			2.5	V
V_{UVF}	Undervoltage shutdown	V _{CC} falling, Test mode	1.9			V
V_{UV_HYS}	Undervoltage shutdown hysteresis			0.3		V
V_{CAP}	Internal LDO output	V _{CC} = 2.7 V to 5.5 V		1.78		V
	Shutdown supply current I _{SHUTDOWN}	V_{EN} = 0 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED}		0.1	1	μΑ
		V_{EN} = 3.3 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED}		5.5	10	μΑ
I _{CC}	Standby supply current I _{STANDBY}	V_{EN} = 3.3 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED} , LP5866MDBT		5.5	15	μΑ
	Active mode supply current I _{NORMAL}	V_{EN} = 3.3 V, CHIP_EN = 1 (bit), all channels I _{OUT} = 5 mA (MC = 1, CC = 127, DC = 256), measure the current from V _{CC}		4.3	6	mA
V_{LED}	LED supply voltage		2.7		5.5	V
V_{VIO}	VIO supply voltage		1.65		5.5	V
I_{VIO}	VIO supply current	Interface idle			5	μΑ
Output S	tages					
loo	Constant current sink output range (CS0	2.7 <= V _{CC} < 3.3 V, PWM = 100%	0.1		40	mA
I _{CS}	- CS17)	V _{CC} >= 3.3 V PWM = 100%	0.1		50	mA
I_{LKG}	Leakage current (CS0 - CS17)	channels off, up_deghost = 0, V _{CS} = 5 V		0.1	1	μΑ
	Device to device current error, I _{ERR_DD} = (I _{AVE} - I _{SET}) / I _{SET} × 100%	All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	- 7		7	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	- 5		5	%
I _{ERR_DD}		All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	- 3.5		3.5	%
		All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100%	- 3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	- 3		3	%
		All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	- 5.5		5.5	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	- 5		5	%
I _{ERR_CC}	Channel to channel current error, I _{ERR_CC} = (I _{OUTX} - I _{AVE}) / I _{AVE} × 100%	All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	- 4		4	%
		All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100%	- 3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	- 3		3	%
f	LED PWM frequency	PWM_Fre = 1, PWM = 100%		62.5		KHz
f _{PWM}	LLD F WIN Hequency	PWM_Fre = 0, PWM = 100%		125		KHz

6.5 Electrical Characteristics (续)

 V_{CC} = 3.3 V, V_{LED} = 3.8 V, VIO = 1.8 V and T_A = -40 °C to +85 °C (T_A = -55 °C to +125 °C for LP5866MDBT); Typical values are at T_A = 25 °C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I _{OUT} = 50 mA, decreasing output voltage, when the LED current has dropped 5%			0.45	V
V_{SAT}	Output saturation voltage	I _{OUT} = 30 mA, decreasing output voltage, when the LED current has dropped 5%			0.4	V
		I _{OUT} = 10 mA, decreasing output voltage, when the LED current has dropped 5%			0.35	V
		V _{LED} = 2.7 V, I _{SW} = 200 mA		450		mΩ
R_{SW}	High-side PMOS ON resistance	V _{LED} = 3.8 V, I _{SW} = 200 mA		380		mΩ
		V _{LED} = 5 V, I _{SW} = 200 mA		310		$\mathbf{m}\Omega$
Logic Inte	erfaces					
V _{LOGIC_IL}	Low-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS			0.3	× VIO	V
V _{LOGIC_IH}	High-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS		0.7 × VIO			V
V _{EN_IL}	Low-level input voltage of EN				0.4	V
V _{EN_IH}	High-level input voltage of EN	When V _{CAP} powered up	1.4			V
I _{LOGIC_I}	Input current, SDA, SCL, SCLK, MOSI, SS, ADDRx		- 1		1	μΑ
V _{LOGIC_O}	Low-level output voltage, SDA, MISO	I _{PULLUP} = 3 mA			0.4	V
V _{LOGIC_O}	High-level output voltage, MISO	I _{PULLUP} = -3 mA	0.7 × VIO			V
Protectio	n Circuits				·	
V _{LOD_TH}	Thershold for channel open detection			0.25		V
V _{LSD_TH}	Thershold for channel short detection		V _{LE}	_{ED} - 1		V
T _{TSD}	Thermal-shutdown junction temperature			150		°C
T _{HYS}	Thermal shutdown temperature hysteresis			15		°C

6.6 Timing Requirements

		MIN	NOM	MAX	UNIT
MISC. Tim	ming Requirements				
f _{OSC}	Internal oscillator frequency		31.2		MHz
f _{OSC _ERR}	Device to device oscillator frequency error	- 3%		3%	
t _{POR_H}	Wait time from UVLO disactive to device NORMAL			500	μs
t _{CHIP_EN}	Wait time from setting Chip_EN (Register) =1 to device NORMAL			100	μs
t _{RISE}	LED output rise time		10		ns
t _{FALL}	LED output fall time		15		ns
t _{VSYNC_H}	The minimum high-level pulse width of VSYNC	200			μs
SPI timing	requirements				
f _{SCLK}	SPI Clock frequency			12	MHz
1	Cycle time	83.3			ns
2	SS active lead-time	50			ns
3	SS active leg time	50			ns
4	SS inactive time	50			ns

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

6.6 Timing Requirements (续)

		MIN	NOM MAX	UNIT
5	SCLK low time	36		ns
6	SCLK high time	36		ns
7	MOSI set-up time	20		ns
8	MOSI hold time	20		ns
9	MISO disable time		30	ns
10	MISO data valid time		35	ns
C _b	Bus capacitance	5	40	pF
I ² C stan	ndard mode timing requirements	<u>'</u>	,	
I ² C fast	mode timing requirements			
f _{SCL}	I ² C clock frequency	0	400	KHz
1	Hold time (repeated) START condition	0.6		μs
2	Clock low time	1.3		μs
3	Clock high time	0.6		μs
4	Setup time for a repeated START condition	0.6		μs
5	Data hold time	0		μs
6	Data setup time	100		ns
7	Rise time of SDA and SCL		300	ns
8	Fall time of SDA and SCL		300	ns
9	Setup time for STOP condition	0.6		μs
10	Bus free time between a STOP and a START condition	1.3		μs
I ² C fast	mode plus timing requirements			
f _{SCL}	I ² C clock frequency	0	1000	KHz
1	Hold time (repeated) START condition	0.26		μs
2	Clock low time	0.5		μs
3	Clock high time	0.26		μs
4	Setup time for a repeated START condition	0.26		μs
5	Data hold time	0		μs
6	Data setup time	50		ns
7	Rise time of SDA and SCL		120	ns
8	Fall time of SDA and SCL		120	ns
9	Setup time for STOP condition	0.26		μs
10	Bus free time between a STOP and a START condition	0.5		μs

Product Folder Links: *LP5866*English Data Sheet: SNVSC36

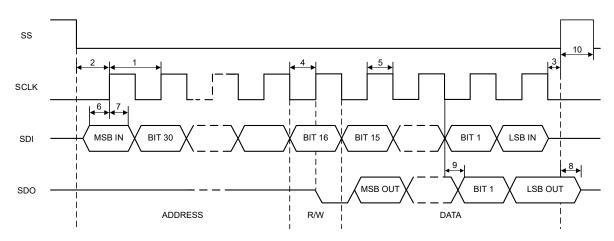


图 6-1. SPI Timing Parameters

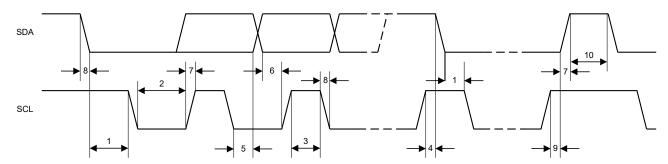
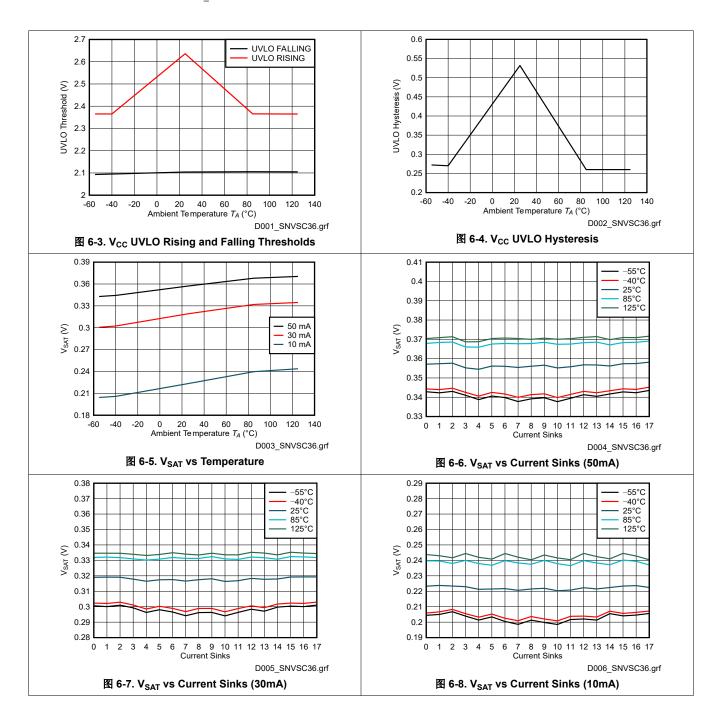
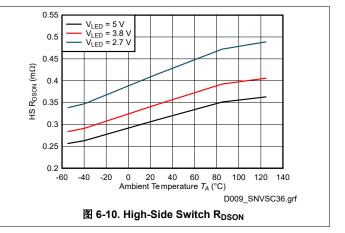



图 6-2. I²C Timing Parameters

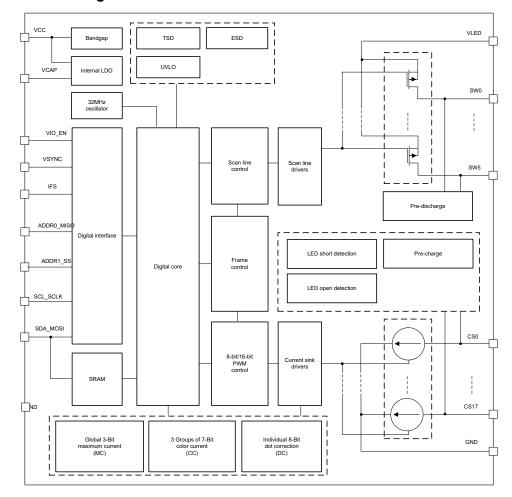

6.7 Typical Characteristics


Unless specified otherwise, typical characteristics apply over the full ambient temperature range (– 40°C < TA < +85°C), V_{CC} = 3.3V, V_{IO} = 3.3, V_{LED} = 5V, I_{LED_Peak} = 50mA, C_{VLED} = 1 μ F, C_{VCC} = 1 μ F

6.7 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range (– 40° C < TA < + 85° C), V_{CC} = 3.3V, V_{IO} = 3.3, V_{LED} = 5V, I_{LED_Peak} = 50mA, C_{VLED} = 1 μ F, C_{VCC} = 1 μ F

7 Detailed Description


7.1 Overview

The LP5866 is an 6 × 18 LED matrix driver. The device integrates 6 switching FETs with 18 constant current sinks. One LP5866 device can drive up to 108 LED dots or 36 RGB pixels by using time-multiplexing matrix scheme.

The LP5866 supports both analog dimming and PWM dimming methods. For analog dimming, the current gain of each individual LED dot can be adjusted with 256 steps through 8-bits dot correction. For PWM dimming, the integrated 8-bits or 16-bits configurable, > 20kHz PWM generators for each LED dot enable smooth, vivid animation effects without audible noise. Each LED can also be mapped into a 8-bits group PWM to achieve the group control with minimum data traffic.

The LP5866 device implements full addressable SRAM. The device supports entire SRAM data refresh and partial SRAM data update on demand to minimize the data traffic. The LP5866 implements the ghost cancellation circuit to eliminate both upside and downside ghosting. The LP5866 also uses low brightness compensation technology to support high density LED pixels. Both 1MHz (maximum) I²C and 12MHz (maximum) SPI interfaces are available in the LP5866.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Time-Multiplexing Matrix

The LP5866 device uses time-multiplexing matrix scheme to support up to 108 LED dots with one chip. The device integrates 18 current sinks with 6 scan lines to drive $18 \times 6 = 108$ LED dots or $6 \times 6 = 36$ RGB pixels. In matrix control scheme, the device scans from Line 0 to Line 5 sequentially as shown in $\boxed{8}$ 7-1. Current gain and PWM duty registers are programmable for each LED dot to support individual analog and PWM dimming.

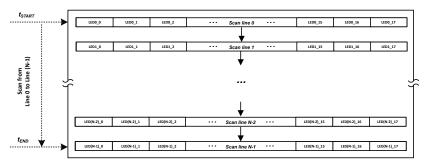


图 7-1. Scan Line Control Scheme

There are 6 high-side p-channel MOSFETs (PMOS) integrated in LP5866 device. Users can flexibly set the active scan numbers from 1 to 6 by configuring the 'Max_Line_Num' in Dev_initial register. The time-multiplexing matrix timing sequence follows the $\boxed{8}$ 7-2.

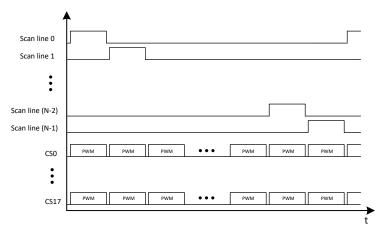


图 7-2. Time-Multiplexing Matrix Timing Sequence

One cycle time of the line switching can be calculated as below:

$$t_{line_switch} = t_{PWM} + t_{SW_BLK} + 2 \times t_{phase_shift}$$
 (1)

- t_{PWM} is the current sink active time, which equals to 8 us (PWM frequency set at 125 kHz) or 16 us (PWM frequency set at 62.5 kHz) by configuring 'PWM_Fre' in Dev_initial register.
- t_{SW_BLK} is the switch blank time, which equals to 1 us or 0.5 us by configuring 'SW_BLK' in Dev_config1 register.
- t_{phase_shift} is the PWM phase shift time, which equal to 0 or 125 ns by configuring 'PWM_Phase_Shift' in Dev_config1 register.

Total display time for one complete sub-period is t_{sub_period} and it can be calculated by the following equation:

$$t_{\text{sub_period}} = t_{\text{line_switch}} \times \text{Scan_line\#}$$
 (2)

Scan line# is the scan line number determined by 'Max Line Num' in Dev initial register.

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

The time-multiplexing matrix scheme time diagram is shown in $\[\]$ 7-3. The $t_{CS_ON_Shift}$ is the current sink turning on shift by configuring 'CS_ON_Shift' bit in Dev_config1 register.

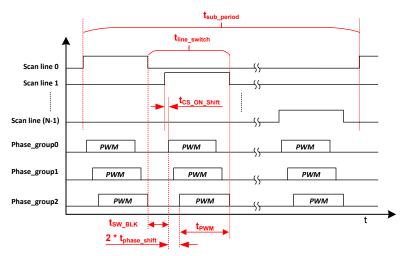


图 7-3. Time-Multiplexing Matrix Timing Diagram

The LP5866 device implements deghosting and low brightness compensation to remove the side effects of matrix topology:

- **Deghosting**: Both upside deghosting and downside deghosting are implemented to eliminate the LED unexpected weak turn-on.
 - Upside_deghosting: discharge each scan line during its off state. By configuring the 'Up_Deghost' in Dev_config3 register, the LP5866 discharges and clamps the scan line switch to a certain voltage.
 - Downside_deghosting: pre-charge each current sink voltage during its OFF state. The deghosting capability can be adjusted through the 'Down Deghost' in Dev config3 register.
- Low Brightness Compensation: three groups compensation are implemented to overcome the color-shift and non-uniformity in low brightness conditions. The compensation capability can be through 'Comp_Group1', 'Comp_Group2', and 'Comp_Group3' in Dev_config2 register.
 - Compensation group 1: CS0, CS3, CS6, CS9, CS12, CS15.
 - Compensation group 2: CS1, CS4, CS7, CS10, CS13, CS16.
 - Compensation group 3: CS2, CS5, CS8, CS11, CS14, CS17.

7.3.2 Analog Dimming (Current Gain Control)

Analog dimming of LP5866 is achieved by configuring the current gain control. There are several methods to control the current gain of each LED.

- Global 3-bits Maximum Current (MC) setting without external resistor
- · 3 groups of 7-bits Color Current (CC) setting
- · Individual 8-bit Dot Current (DC) setting

Global 3-Bits Maximum Current (MC) Setting

The MC is used to set the maximum current I_{OUT_MAX} for each current sink and this current is the maximum peak current for each LED dot. The MC can be set with 3 bits (8 steps) from 3 mA to 50 mA. When the device is powered on, the MC data is set to default value, which is 15 mA.

For data refresh Mode 1, MC data is effective immediately after new data is updated. For Mode 2 and Mode 3, to avoid unexpected MC data change during high speed data refreshing, MC data must be changed when all channels are off and new MC data is only be updated when the 'Chip_EN' bit in Chip_en register is set to 0, and

Copyright © 2024 Texas Instruments Incorporated

after the 'Chip_EN' returns to 1, the new MC data is effective. 'Down_Deghost' and 'Up_Deghost' in Dev_config3 work in the similar way with MC.

17

表 7-1. Maximum Current (MC) Register Setting

3-BITS MAXIMUM_C	URRENT REGISTER	I _{OUT_MAX}
Binary	Decimal	mA
000	0	3
001	1	5
010	2	10
011 (default)	3 (default)	15 (default)
100	4	20
101	5	30
110	6	40
111	7	50

3 Groups of 7-Bits Color Current (CC) Setting

The LP5866 device can adjust the output current of three color groups separately. For each color, the device has 7-bits data in 'CC_Group1', 'CC_Group2', and 'CC_Group3'. Thus, all color group currents can be adjusted in 128 steps from 0% to 100% of the maximum output current, I_{OUT MAX}.

The 18 current sinks have fixed mapping to the three color groups:

- CC-Group 1: CS0, CS3, CS6, CS9, CS12, CS15.
- CC-Group 2: CS1, CS4, CS7, CS10, CS13, CS16.
- CC-Group 3: CS2, CS5, CS8, CS11, CS14, CS17.

表 7-2. 3 Groups of 7-bits Color Current (CC) Setting

7-2. 3 Groups of 7-bits color durient (co) setting								
7-BITS CC_GROUP1/CC_GRO	OUP2/CC_GROUP3 REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX}						
Binary	Decimal	%						
000 0000	0	0						
000 0001	1	0.79						
000 0010	2	1.57						
100 0000 (default)	64 (default)	50.4 (default)						
111 1101	125	98.4						
111 1110	126	99.2						
111 1111	127	100						

Individual 8-bit Dot Current (DC) Setting

The LP5866 can individually adjust the output current of each LED by using dot current function through DC setting. The device allows the brightness deviations of the LEDs to adjusted be individually. Each output DC is programmed with a 8-bit depth, so the value can be adjusted with 256 steps within the range from 0% to 100% of (I_{OUT MAX} × CC/127).

表 7-3. Individual 8-bit Dot Current (DC) Setting

8-BIT DC I	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127				
Binary	Decimal	%				
0000 0000	0	0				
0000 0001	1	0.39				
0000 0010	2	0.78				

Product Folder Links: LP5866

Copyright © 2024 Texas Instruments Incorporated

	K 1-3. Illulvidual o-bit bot	current (bc) setting (续)
8-BIT DC I	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127
Binary	Decimal	%
1000 0000 (default)	128 (default)	50.2 (default)
1111 1101	253	99.2
1111 1110	254	99.6
1111 1111	255	100

表 7-3. Individual 8-bit Dot Current (DC) Setting (续)

In summary, the current gain of each current sink can be calculated as below:

$$I_{OUT}$$
 (mA) = $I_{OUT\ MAX} \times (CC/127) \times (DC/255)$ (3)

For time-multiplexing scan scheme, if the scan number is N, each LED dot average current I_{AVG} is shown as below:

$$I_{AVG}$$
 (mA) = I_{OUT} / N = $I_{OUT\ MAX}$ × (CC/127) × (DC/255) / N (4)

7.3.3 PWM Dimming

There are several methods to control the PWM duty cycle of each LED dot.

Individual 8-bit / 16-bit PWM for Each LED Dot

Every LED has an individual 8-bit or 16-bit PWM register that is used to change the LED brightness by PWM duty. The LP5866 uses an enhanced spectrum PWM (ES-PWM) algorithm to achieve 16-bit depth with high refresh rate, which can avoid flicker under a high speed camera. Comparing with conventional 8-bit PWM, 16-bit PWM can help to achieve ultimate high dimming resolution in LED animation applications.

3 Programmable Groups of 8-bit PWM Dimming

The group PWM Control is used to select LEDs into 1 to 3 groups where each group has a separate register for duty cycle control. Every LED has 2-bit selection in LED_DOT_GROUP Registers ($x = 0, 1, \dots, 29$.) to select whether it belongs to one of the three groups or not:

- 00: not a member of any group
- 01: member of group 1
- 10: member of group 2
- 11: member of group 3

8-bit PWM for Global Dimming

The Global PWM Control function affects all LEDs simultaneously.

The final PWM duty cycle can be calculated as below:

$$PWM_Final(8 bit) = PWM_Individual(8 bit) \times PWM_Group(8 bit) \times PWM_Global(8-bit)$$
 (5)

$$PWM_Final(16 bit) = PWM_Individual(16 bit) \times PWM_Group(8 bit) \times PWM_Global(8-bit)$$
(6)

The LP5866 supports 125-kHz or 62.5-kHz PWM output frequency. The PWM frequency is selected by configuring the 'PWM_Fre' in Dev_initial register. An internal 31.2-MHz oscillator is used for generating PWM outputs. The high-accuracy design of the oscillator ($f_{OSC_ERR} \le \pm 2\%$) enables a better synchronization if multiple LP5866 devices are connected together.

A PWM phase-shifting scheme is implemented in each current sink to avoid the current overshot when turning on simultaneously. As the LED drivers are not activated simultaneously, the peak load current from the pre-stage

power supply is significantly decreased. This scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases. By configuring the 'PWM_Phase_Shift' in Dev_config1 register, which is default off, the LP5866 supports $t_{phase\ shift}$ = 125-ns shifting time shown in $\boxed{8}$ 7-4.

- Phase 1: CS0, CS3, CS6, CS9, CS12, CS15.
- Phase 2: CS1, CS4, CS7, CS10, CS13, CS16.
- Phase 3: CS2, CS5, CS8, CS11, CS14, CS17.

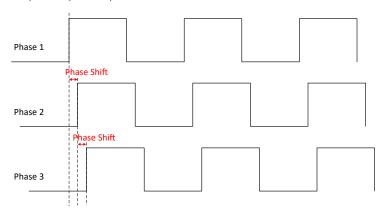


图 7-4. Phase Shift

To avoid high current sinks output ripple during line switching, current sinks can be configured to turn on with 1 clock delay (62.5 ns or 31.25 ns according to the PWM frequency) after lines turn on, as shown in $\boxed{8}$ 7-3. This function can be configured by 'CS_ON_Shift' in Dev_config1 register.

The LP5866 allows users to configure the dimming scale either exponentially (Gamma Correction) or linearly through the 'PWM_Scale_Mode' in Dev_config1 register. If a human-eye-friendly dimming curve is desired, using the internal fixed exponential scale is an easy approach. If a special dimming curve is desired, TI recommends using the linear scale with software correction. The LP5866 supports both linear and exponential dimming curves under 8-bit and 16-bit PWM depth. $\boxed{8}$ 7-5 is an example of 8-bit PWM depth.

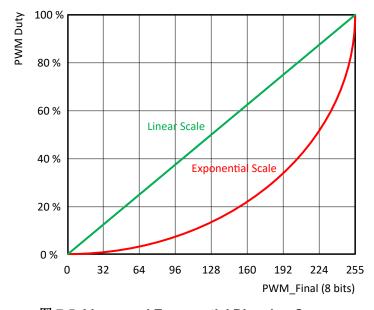


图 7-5. Linear and Exponential Dimming Curves

In summary, 图 7-6 illustrates the PWM control method:

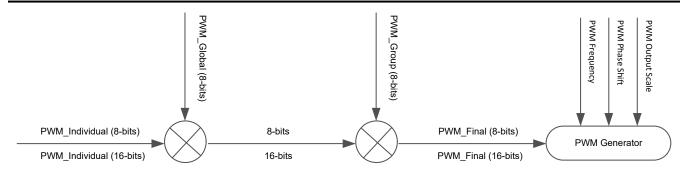


图 7-6. PWM Control Scheme

7.3.4 ON and OFF Control

The LP5866 device supports the individual ON and OFF control of each LED. For indication purpose, users can turn on and off the LED directly by writing 1-bit ON and OFF data to the corresponding Dot onoffx ($x = 0, 1, \dots$, 17) register.

7.3.5 Data Refresh Mode

The LP5866 supports three data refresh modes: Mode 1, Mode 2, and Mode 3, by configuring 'Data_Ref_Mode' in Dev initial register.

Mode 1: 8-bit PWM data without VSYNC command. Data is sent out for display instantly after received. With Mode 1, users can refresh the corresponding dot data, only instead of updating the whole SRAM. It is called 'on demand data refresh', which can save the total data volume effectively. As shown in 图 7-7, the red LED dots can be refreshed after sending the corresponding data while the others kept the same with last frame.

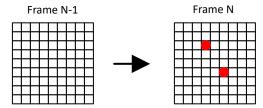


图 7-7. On Demand Data Refresh - Mode 1

Mode 2: 8-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Mode 3: 16-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Frame control is implemented in Mode 2 and Mode 3. Instead of refreshing the output instantly after data is received (Mode 1), the device holds the data and refreshes the whole frame data by a fixed frame rate, f_{VSYNC}. Usually, 24Hz, 50Hz, 60Hz, 120Hz or even higher frame rate is selected to achieve vivid animation effects. Whole SRAM Data Refresh is shown in 🖺 7-8, a new frame is updated after receiving the VSYNC command.

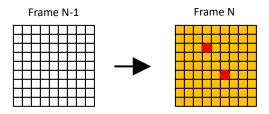


图 7-8. Whole SRAM Data Refresh

Product Folder Links: LP5866

Comparing with Mode 1, Mode 2 and Mode 3 provide a better synchronization when multiple LP5866 devices used together. A high-level pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame.

1 7-9 shows the VSYNC connections and 7-10 shows the timing requirements.

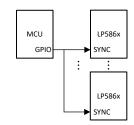


图 7-9. Multiple Devices Sync

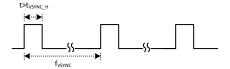


图 7-10. VSYNC Timing

Table 8-4 is the summary of the three data refresh modes.

表 7-4. Data Refresh Mode

MODE TYPE	PWM RESOLUTION	PWM OUTPUT	EXTERNAL VSYNC
Mode 1	8 Bits	Data update instantly	No
Mode 2	8 Bits	Data update by frame	Yes
Mode 3	16 Bits	Data update by frame	165

7.3.6 Full Addressable SRAM

SRAM is implemented inside the LP5866 device to support data writing and reading at the same time.

Although data refresh mechanisms are not the same for Mode 1 and Mode 2, and Mode 3, the data writing and reading follow the same method. Uses can update partial of the SRAM data only or the whole SRAM page simultaneously. The LP5866 supports auto-increment function to minimize data traffic and increase data transfer efficiency.

Please note that 16-bit PWM (Mode 3) and 8-bit PWM (Mode 1 and Mode 2) are assigned with different SRAM addresses.

7.3.7 Protections and Diagnostics

LED Open Detection

The LP5866 includes LED open detection (LOD) for the fault caused by any opened LED dot. The threshold for LED open is 0.25V typical. LED open detection is only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected lower than open threshold for continuously 4 subperiods.

₹ 7-11 shows the detection circuit of LOD function. When open fault is detected, 'Global_LOD' bit in Fault_state register is set to 1 and detailed fault state for each LED is also monitored in register Dot_lodx (x = 0, 1, …, 17). All open fault indicator bits can be cleared by setting LOD clear = 0Fh after the open condition is removed.

LOD removal function can be enabled by setting 'LOD_removal' bit in Dev_config2 register to 1. This function turns off the current sink of the open channel when scanning to the line where the opened LED is included.

Copyright © 2024 Texas Instruments Incorporated

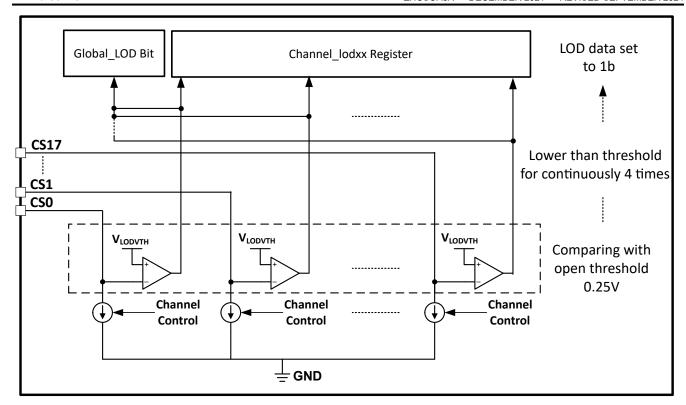


图 7-11. LOD Circuits

LED Short Detection

The LP5866 includes LED short detection (LSD) for the fault caused by any shorted LED. Threshold for channel short is (VLED - 1) V typical. LED short detection only performed when PWM ≥ 25 (Mode 1 and Mode 2) or PWM ≥ 6400 (Mode 3) and voltage on CSn is detected higher than short threshold for continuously 4 subperiods. As there is parasitic capacitance for the current sink, to make sure the LSD result is correct, TI recommends to set the LED current higher than 0.5mA.

图 7-12 shows the detection circuit of LSD function. When short fault is detected, 'Global LSD bit' in Fault state register is set to 1 and detailed fault state for every channel can also be monitored in register Dot Isdx (x = 0, 1, ..., 17). All short fault indicator bits can be cleared by setting LSD clear = 0Fh after the short condition is removed.

LSD removal function can be enabled by setting 'LSD removal' bit in Dev config2 register to 1. This function turns off the upside deghosting function of the scan line where short LED is included.

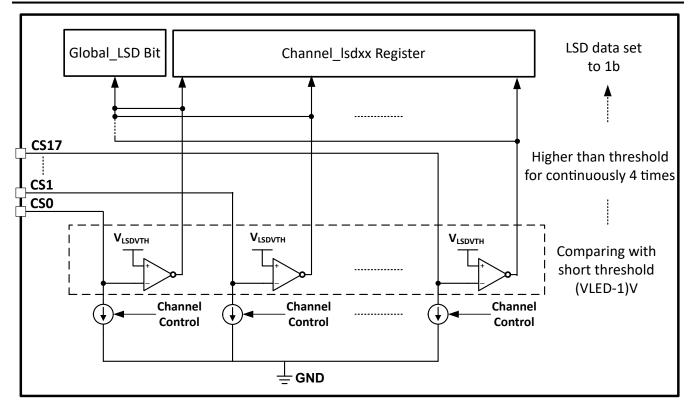


图 7-12. LSD Circuit

Thermal Shutdown

The LP5866 device implements thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160°C (typical) and above, the device switches into shutdown mode. The LP5866 exits thermal shutdown when the junction temperature of the device drops to 145°C (typical) and below.

UVLO (Undervoltage Lockout)

The LP5866 has an internal comparator that monitors the voltage at VCC. When VCC is below V_{UVF} , reset is active and the LP5866 enters INITIALIZATION state.

7.4 Device Functional Modes

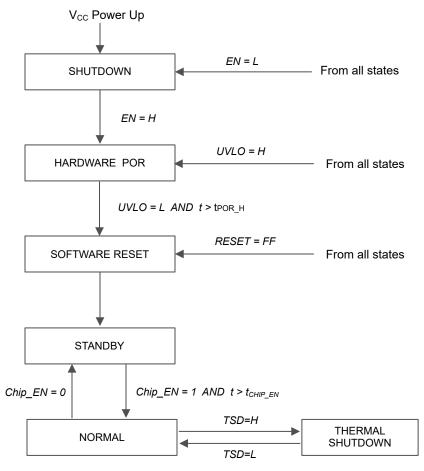


图 7-13. Device Functional Modes

- Shutdown: The device enters into shutdown mode from all states on VCC power up or EN pin is low.
- Hardware POR: The device enters into hardware POR when Enable pin is high or VCC fall under V_{UVF} causing UVLO = H from all states.
- Software reset: The device enters into software reset mode when VCC rise higher than V_{UVR} with the time t > t_{POR H}. In this mode, all the registers are reset. Entry can also be from any state when the RESET (register) = FFh or UVLO is low.
- Standby: The device enters the standby mode when Chip_EN (register) = 0. In this mode, the device enters into low power mode, but the I²C/SPI are still available for Chip EN only and the register data is retained.
- Normal: The device enters the normal mode when 'Chip_EN' = 1 with the time $t > t_{CHIP\ EN}$.
- Thermal shutdown: The device automatically enters the thermal shutdown mode when the junction temperature exceeds 160°C (typical). If the junction temperature decreases below 145°C (typical), the device returns to the normal mode.

Product Folder Links: LP5866

7.5 Programming

Interface Selection

The LP5866 supports two communication interfaces: I²C and SPI. If IFS is high, it enters into SPI mode. If IFS is low, it enters into I²C mode.

表 7-5. Interface Selection

INTERFACE TYPE	ENTRY CONDITION
I ² C	IFS = Low
SPI	IFS = High

I²C Interface

The LP5866 is compatible with I^2C standard specification. the device supports both fast mode (400kHz maximum) and fast plus mode (1MHz maximum).

I²C Data Transactions

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge after every byte rule. When the leader is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down.

I²C Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5-bits of the chip address, 2 higher bits of the register address, and 1 read and write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

表 7-6. I²C Data Format

			,							
Address Byte 1		(Chip Address	Register	R/W					
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Independent	1	0	0	ADDR1	ADDR0	9 th bit	8 th bit	R: 1 W: 0		
Broadcast	1	0	1	0	1	9 DIL		R. I W. U		
	Register Address									
Address Byte 2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit	1 th bit	0 th bit		

Copyright © 2024 Texas Instruments Incorporated

图 7-14. I²C Write Timing

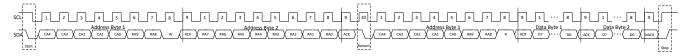


图 7-15. I²C Read Timing

Multiple Devices Connection

The LP5866 enters into I²C mode if IFS is connected to GND. The ADDR0/1 pin is used to select the unique I²C follower address for each device. The SCL and SDA lines must each have a pullup resistor (4.7K Ω for 400kHz, $2K\Omega$ for 1MHz) placed somewhere on the line and remain HIGH even when the bus is idle. VIO EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1nF cap as closer to VIO_EN pin as possible. Up to four LP5866 follower devices can share the same I²C bus by the different ADDR configurations.

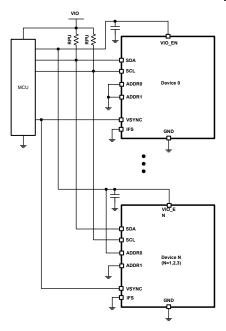


图 7-16. I²C Multiple Devices Connection

SPI Interface

The LP5866 is compatible with SPI serial-bus specification, and it operates as a follower. The maximum frequency supported by LP5866 is 12MHz.

SPI Data Transactions

MISO output is normally in a high impedance state. When the follower-select pin SS for the device is active (low) the MISO output is pulled low for read only. During write cycle MISO stays in high-impedance state. The follower-select signal SS must be low during the cycle transmission. SS resets the interface when high. Data is clocked in on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK.

Product Folder Links: LP5866

SPI Data Format

Copyright © 2024 Texas Instruments Incorporated

27

提交文档反馈

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which contains 8 higher bits of the register address. The Address Byte 2 is started with 2 lower bits of the register address and 1 read and write bit. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

表 7-7. SPI Data Format

Address Byte 1	Register Address										
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	9 th bit	8 th bit	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit			
Address Byte 2	Register	Address									
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	1 th bit	0 th bit	R: 0 W: 1	Don't Care							

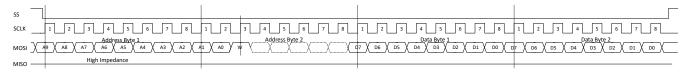


图 7-17. SPI Write Timing

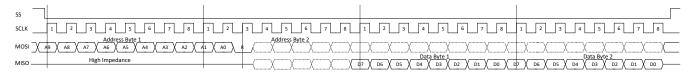


图 7-18. SPI Read Timing

Multiple Devices Connection

The device enters into SPI mode if IFS is pulled high to VIO through a pullup resistor ($4.7K\Omega$ recommended). VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1nF cap as closer to VIO_EN pin as possible. In SPI mode host can address as many devices as there are follower select pins on host.

Copyright © 2024 Texas Instruments Incorporated

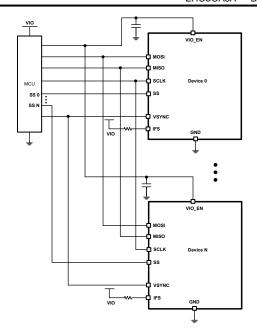


图 7-19. SPI Multiple Devices Connection

7.6 Register Maps

This section provides a summary of the register maps. For detailed register functions and descriptions, please refer to *LP5866 11x18 LED Matrix Driver Register Maps*.

表 7-8. Register Section, Block Access Type Codes

the state of the ground state of the state o						
Access Type	Code	Description				
Read Type						
R	R	Read				
RC	R	Read				
	С	to Clear				
R-0	R	Read				
	-0	Returns 0s				
Write Type						
W	W	Write				
W0CP	W	W				
	0C	0 to clear				
	P	Requires privileged access				
Reset or Default Value						
-n		Value after reset or the default value				

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
Chip_en	000h	R/W	Reserved	eserved						Chip_EN	00h
Dev_initial	001h	R/W	Reserved	Max_Line_	Max_Line_Num Data_Ref_Mode				Mode	PWM_Fre	5Eh
Dev_config1	002h	R/W	Reserved	Reserved	Reserved	Reserved	SW_BLK	PWM_Sc ale_Mode	_	CS_ON_ Shift	00h
Dev_config2	003h	R/W	Comp_Gro	up3 Comp_Group2		Comp_Group1		LOD_rem oval	LSD_rem oval	00h	

Dev_config3	004h	R/W	Down_Deg	phost	Up_Degho	st	Maximum_	Current		Up_Degh ost_enabl e	47h
Global_bri	005h	R/W	PWM_Glob	NM_Global F						FFh	
Group0_bri	006h	R/W	PWM_Gro	up1							FFh
Group1_bri	007h	R/W	PWM_Gro	up2							FFh
Group2_bri	008h	R/W	PWM_Gro	up3							FFh
R_current_set	009h	R/W	Reserved	CC_Group	1						40h
G_current_set	00Ah	R/W	Reserved	CC_Group	2						40h
B_current_set	00Bh	R/W	Reserved	served CC_Group3					40h		
Dot_grp_sel0	00Ch	R/W	Dot L0-CS	3 group	Dot L0-CS	2 group	Dot L0-CS	1 group	Dot L0-CS	0 group	00h
Dot_grp_sel1	00Dh	R/W	Dot L0-CS	7 group	Dot L0-CS	6 group	Dot L0-CS	5 group	Dot L0-CS	4 group	00h
Dot_grp_sel2	00Eh	R/W	Dot L0-CS	11 group	Dot L0-CS	10 group	Dot L0-CS	9 group	Dot L0-CS	8 group	00h
Dot_grp_sel3	00Fh	R/W	Dot L0-CS	15 group	Dot L0-CS	14 group	Dot L0-CS	13 group	Dot L0-CS	12 group	00h
Dot_grp_sel4	010h	R/W	Reserved				Dot L0-CS	17 group	Dot L0-CS	16 group	00h
Dot_grp_sel5	011h	R/W	Dot L1-CS	3 group	Dot L1-CS	2 group	Dot L1-CS	1 group	Dot L1-CS	0 group	00h
Dot_grp_sel6	012h	R/W	Dot L1-CS	7 group	Dot L1-CS	6 group	Dot L1-CS	5 group	Dot L1-CS	4 group	00h
Dot_grp_sel7	013h	R/W	Dot L1-CS		Dot L1-CS	<u> </u>	Dot L1-CS		Dot L1-CS	8 group	00h
Dot_grp_sel8	014h	R/W	Dot L1-CS	15 group	Dot L1-CS	14 group	Dot L1-CS	13 group	Dot L1-CS	12 group	00h
Dot_grp_sel9	015h	R/W	Reserved	Reserved			Dot L1-CS17 group Dot L1-CS16 group			00h	
Dot_grp_sel10	016h	R/W	Dot L2-CS	3 group	Dot L2-CS	2 group	Dot L2-CS1 group Dot L2-		Dot L2-CS	0 group	00h
Dot_grp_sel11	017h	R/W	Dot L2-CS	Dot L2-CS7 group Dot L2-CS6 group		Dot L2-CS5 group Dot L2-CS4 group			00h		
Dot_grp_sel12	018h	R/W	Dot L2-CS	Dot L2-CS11 group Dot L2-CS10 group		Dot L2-CS9 group Dot L2-CS8 group			8 group	00h	
Dot_grp_sel13	019h	R/W	Dot L2-CS	Dot L2-CS15 group Dot L2-CS14 group		Dot L2-CS13 group Dot L2-CS12 group			12 group	00h	
Dot_grp_sel14	01Ah	R/W	Reserved				Dot L2-CS17 group Dot L2-CS16 group			16 group	00h
Dot_grp_sel15	01Bh	R/W	Dot L3-CS	3 group	Dot L3-CS	2 group	Dot L3-CS1 group Dot L3-CS0 group			00h	
Dot_grp_sel16	01Ch	R/W	Dot L3-CS	· ·	Dot L3-CS		Dot L3-CS5 group Dot L3-CS4		4 group	00h	
Dot_grp_sel17	01Dh	R/W	Dot L3-CS	11 group	Dot L3-CS	10 group	Dot L3-CS9 group Dot L3-CS8 group			8 group	00h
Dot_grp_sel18	01Eh	R/W	Dot L3-CS	15 group	Dot L3-CS	14 group	Dot L3-CS13 group Dot L3-CS12 group				00h
Dot_grp_sel19	01Fh	R/W	Reserved				Dot L3-CS17 group Dot L3-CS16 group			00h	
Dot_grp_sel20	020h	R/W	Dot L4-CS	3 group	Dot L4-CS	2 group	Dot L4-CS1 group Dot L4		Dot L4-CS	0 group	00h
Dot_grp_sel21	021h	R/W	Dot L4-CS	7 group	Dot L4-CS	6 group	Dot L4-CS5 group Do		Dot L4-CS	4 group	00h
Dot_grp_sel22	022h	R/W	Dot L4-CS		Dot L4-CS		Dot L4-CS9 group D		Dot L4-CS		00h
Dot_grp_sel23	023h	R/W	Dot L4-CS	15 group	Dot L4-CS	14 group	Dot L4-CS		Dot L4-CS		00h
Dot_grp_sel24	024h	R/W	Reserved				Dot L4-CS17 group		Dot L4-CS		00h
Dot_grp_sel25	025h	R/W	Dot L5-CS	• •	Dot L5-CS		Dot L5-CS		Dot L5-CS	· ·	00h
Dot_grp_sel26	026h	R/W	Dot L5-CS		Dot L5-CS	<u> </u>	Dot L5-CS	· ·	Dot L5-CS		00h
Dot_grp_sel27	027h	R/W	Dot L5-CS		Dot L5-CS		Dot L5-CS		Dot L5-CS	<u> </u>	00h
Dot_grp_sel28	028h	R/W	Dot L5-CS	15 group	Dot L5-CS	14 group	Dot L5-CS		Dot L5-CS		00h
Dot_grp_sel29	029h	R/W	Reserved	Ι	I	I	Dot L5-CS		Dot L5-CS		00h
Dot_onoff0	043h	R/W	Dot L0- CS7 onoff	Dot L0- CS6 onoff	Dot L0- CS5 onoff	Dot L0- CS4 onoff	Dot L0- CS3 onoff	Dot L0- CS2 onoff	Dot L0- CS1 onoff	Dot L0- CS0 onoff	FFh
Dot_onoff1	044h	R/W	Dot L0- CS15 onoff	Dot L0- CS14 onoff	Dot L0- CS13 onoff	Dot L0- CS12 onoff	Dot L0- CS11 onoff	Dot L0- CS10 onoff	Dot L0- CS9 onoff	Dot L0- CS8 onoff	FFh
Dot_onoff2	045h	R/W	Reserved	•					Dot L0- CS17 onoff	Dot L0- CS16 onoff	03h

www.ti.com.cn

							IICOCAJA	DECLIVIDE		/IOLD OLI IL	
Dot_onoff3	046h	R/W	Dot L1- CS7 onoff	Dot L1- CS6 onoff	Dot L1- CS5 onoff	Dot L1- CS4 onoff	Dot L1- CS3 onoff	Dot L1- CS2 onoff	Dot L1- CS1 onoff	Dot L1- CS0 onoff	FFh
Dot_onoff4	047h	R/W	Dot L1- CS15 onoff	Dot L1- CS14 onoff	Dot L1- CS13 onoff	Dot L1- CS12 onoff	Dot L1- CS11 onoff	Dot L1- CS10 onoff	Dot L1- CS9 onoff	Dot L1- CS8 onoff	FFh
Dot_onoff5	048h	R/W	Reserved						Dot L1- CS17 onoff	Dot L1- CS16 onoff	03h
Dot_onoff6	049h	R/W	Dot L2- CS7 onoff	Dot L2- CS6 onoff	Dot L2- CS5 onoff	Dot L2- CS4 onoff	Dot L2- CS3 onoff	Dot L2- CS2 onoff	Dot L2- CS1 onoff	Dot L2- CS0 onoff	FFh
Dot_onoff7	04Ah	R/W	Dot L2- CS15 onoff	Dot L2- CS14 onoff	Dot L2- CS13 onoff	Dot L2- CS12 onoff	Dot L2- CS11 onoff	Dot L2- CS10 onoff	Dot L2- CS9 onoff	Dot L2- CS8 onoff	FFh
Dot_onoff8	04Bh	R/W	Reserved						Dot L2- CS17 onoff	Dot L2- CS16 onoff	03h
Dot_onoff9	04Ch	R/W	Dot L3- CS7 onoff	Dot L3- CS6 onoff	Dot L3- CS5 onoff	Dot L3- CS4 onoff	Dot L3- CS3 onoff	Dot L3- CS2 onoff	Dot L3- CS1 onoff	Dot L3- CS0 onoff	FFh
Dot_onoff10	04Dh	R/W	Dot L3- CS15 onoff	Dot L3- CS14 onoff	Dot L3- CS13 onoff	Dot L3- CS12 onoff	Dot L3- CS11 onoff	Dot L3- CS10 onoff	Dot L3- CS9 onoff	Dot L3- CS8 onoff	FFh
Dot_onoff11	04Eh	R/W	Reserved						Dot L3- CS17 onoff	Dot L3- CS16 onoff	03h
Dot_onoff12	04Fh	R/W	Dot L4- CS7 onoff	Dot L4- CS6 onoff	Dot L4- CS5 onoff	Dot L4- CS4 onoff	Dot L4- CS3 onoff	Dot L4- CS2 onoff	Dot L4- CS1 onoff	Dot L4- CS0 onoff	FFh
Dot_onoff13	050h	R/W	Dot L4- CS15 onoff	Dot L4- CS14 onoff	Dot L4- CS13 onoff	Dot L4- CS12 onoff	Dot L4- CS11 onoff	Dot L4- CS10 onoff	Dot L4- CS9 onoff	Dot L4- CS8 onoff	FFh
Dot_onoff14	051h	R/W	Reserved						Dot L4- CS17 onoff	Dot L4- CS16 onoff	03h
Dot_onoff15	052h	R/W	Dot L5- CS7 onoff	Dot L5- CS6 onoff	Dot L5- CS5 onoff	Dot L5- CS4 onoff	Dot L5- CS3 onoff	Dot L5- CS2 onoff	Dot L5- CS1 onoff	Dot L5- CS0 onoff	FFh
Dot_onoff16	053h	R/W	Dot L5- CS15 onoff	Dot L5- CS14 onoff	Dot L5- CS13 onoff	Dot L5- CS12 onoff	Dot L5- CS11 onoff	Dot L5- CS10 onoff	Dot L5- CS9 onoff	Dot L5- CS8 onoff	FFh
Dot_onoff17	054h	R/W	Reserved						Dot L5- CS17 onoff	Dot L5- CS16 onoff	03h
Fault_state	064h	R	Reserved						Global_L OD	Global_L SD	00h
Dot_lod0	065h	R	Dot L0- CS7 LOD	Dot L0- CS6 LOD	Dot L0- CS5 LOD	Dot L0- CS4 LOD	Dot L0- CS3 LOD	Dot L0- CS2 LOD	Dot L0- CS1 LOD	Dot L0- CS0 LOD	00h
Dot_lod1	066h	R	Dot L0- CS15 LOD	Dot L0- CS14 LOD	Dot L0- CS13 LOD	Dot L0- CS12 LOD	Dot L0- CS11 LOD	Dot L0- CS10 LOD	Dot L0- CS9 LOD	Dot L0- CS8 LOD	00h
Dot_lod2	067h	R	Reserved						Dot L0- CS17 LOD	Dot L0- CS16 LOD	00h
Dot_lod3	068h	R	Dot L1- CS7 LOD	Dot L1- CS6 LOD	Dot L1- CS5 LOD	Dot L1- CS4 LOD	Dot L1- CS3 LOD	Dot L1- CS2 LOD	Dot L1- CS1 LOD	Dot L1- CS0 LOD	00h
Dot_lod4	069h	R	Dot L1- CS15 LOD	Dot L1- CS14 LOD	Dot L1- CS13 LOD	Dot L1- CS12 LOD	Dot L1- CS11 LOD	Dot L1- CS10 LOD	Dot L1- CS9 LOD	Dot L1- CS8 LOD	00h
Dot_lod5	06Ah	R	Reserved				1		Dot L1- CS17 LOD	Dot L1- CS16 LOD	00h

Dot_lod6	06Bh	R	Dot L2- CS7 LOD	Dot L2- CS6 LOD	Dot L2- CS5 LOD	Dot L2- CS4 LOD	Dot L2- CS3 LOD	Dot L2- CS2 LOD	Dot L2- CS1 LOD	Dot L2- CS0 LOD	00h
Dot_lod7	06Ch	R	Dot L2- CS15 LOD	Dot L2- CS14 LOD	Dot L2- CS13 LOD	Dot L2- CS12 LOD	Dot L2- CS11 LOD	Dot L2- CS10 LOD	Dot L2- CS9 LOD	Dot L2- CS8 LOD	00h
Dot_lod8	06Dh	R	Reserved						Dot L2- CS17 LOD	Dot L2- CS16 LOD	00h
Dot_lod9	06Eh	R	Dot L3- CS7 LOD	Dot L3- CS6 LOD	Dot L3- CS5 LOD	Dot L3- CS4 LOD	Dot L3- CS3 LOD	Dot L3- CS2 LOD	Dot L3- CS1 LOD	Dot L3- CS0 LOD	00h
Dot_lod10	06Fh	R	Dot L3- CS15 LOD	Dot L3- CS14 LOD	Dot L3- CS13 LOD	Dot L3- CS12 LOD	Dot L3- CS11 LOD	Dot L3- CS10 LOD	Dot L3- CS9 LOD	Dot L3- CS8 LOD	00h
Dot_lod11	070h	R	Reserved						Dot L3- CS17 LOD	Dot L3- CS16 LOD	00h
Dot_lod12	071h	R	Dot L4- CS7 LOD	Dot L4- CS6 LOD	Dot L4- CS5 LOD	Dot L4- CS4 LOD	Dot L4- CS3 LOD	Dot L4- CS2 LOD	Dot L4- CS1 LOD	Dot L4- CS0 LOD	00h
Dot_lod13	072h	R	Dot L4- CS15 LOD	Dot L4- CS14 LOD	Dot L4- CS13 LOD	Dot L4- CS12 LOD	Dot L4- CS11 LOD	Dot L4- CS10 LOD	Dot L4- CS9 LOD	Dot L4- CS8 LOD	00h
Dot_lod14	073h	R	Reserved						Dot L4- CS17 LOD	Dot L4- CS16 LOD	00h
Dot_lod15	074h	R	Dot L5- CS7 LOD	Dot L5- CS6 LOD	Dot L5- CS5 LOD	Dot L5- CS4 LOD	Dot L5- CS3 LOD	Dot L5- CS2 LOD	Dot L5- CS1 LOD	Dot L5- CS0 LOD	00h
Dot_lod16	075h	R	Dot L5- CS15 LOD	Dot L5- CS14 LOD	Dot L5- CS13 LOD	Dot L5- CS12 LOD	Dot L5- CS11 LOD	Dot L5- CS10 LOD	Dot L5- CS9 LOD	Dot L5- CS8 LOD	00h
Dot_lsd0	086h	R	Dot L0- CS7 LSD	Dot L0- CS6 LSD	Dot L0- CS5 LSD	Dot L0- CS4 LSD	Dot L0- CS3 LSD	Dot L0- CS2 LSD	Dot L0- CS1 LSD	Dot L0- CS0 LSD	00h
Dot_lsd1	087h	R	Dot L0- CS15 LSD	Dot L0- CS14 LSD	Dot L0- CS13 LSD	Dot L0- CS12 LSD	Dot L0- CS11 LSD	Dot L0- CS10 LSD	Dot L0- CS9 LSD	Dot L0- CS8 LSD	00h
Dot_lsd2	088h	R	Reserved						Dot L0- CS17 LSD	Dot L0- CS16 LSD	00h
Dot_lsd3	089h	R	Dot L1- CS7 LSD	Dot L1- CS6 LSD	Dot L1- CS5 LSD	Dot L1- CS4 LSD	Dot L1- CS3 LSD	Dot L1- CS2 LSD	Dot L1- CS1 LSD	Dot L1- CS0 LSD	00h
Dot_lsd4	08Ah	R	Dot L1- CS15 LSD	Dot L1- CS14 LSD	Dot L1- CS13 LSD	Dot L1- CS12 LSD	Dot L1- CS11 LSD	Dot L1- CS10 LSD	Dot L1- CS9 LSD	Dot L1- CS8 LSD	00h
Dot_lsd5	08Bh	R	Reserved				1		Dot L1- CS17 LSD	Dot L1- CS16 LSD	00h
Dot_lsd6	08Ch	R	Dot L2- CS7 LSD	Dot L2- CS6 LSD	Dot L2- CS5 LSD	Dot L2- CS4 LSD	Dot L2- CS3 LSD	Dot L2- CS2 LSD	Dot L2- CS1 LSD	Dot L2- CS0 LSD	00h
Dot_lsd7	08Dh	R	Dot L2- CS15 LSD	Dot L2- CS14 LSD	Dot L2- CS13 LSD	Dot L2- CS12 LSD	Dot L2- CS11 LSD	Dot L2- CS10 LSD	Dot L2- CS9 LSD	Dot L2- CS8 LSD	00h
Dot_lsd8	08Eh	R	Reserved	1	1	1	1	1	Dot L2- CS17 LSD	Dot L2- CS16 LSD	00h
Dot_lsd9	08Fh	R	Dot L3- CS7 LSD	Dot L3- CS6 LSD	Dot L3- CS5 LSD	Dot L3- CS4 LSD	Dot L3- CS3 LSD	Dot L3- CS2 LSD	Dot L3- CS1 LSD	Dot L3- CS0 LSD	00h
Dot_lsd10	090h	R	Dot L3- CS15 LSD	Dot L3- CS14 LSD	Dot L3- CS13 LSD	Dot L3- CS12 LSD	Dot L3- CS11 LSD	Dot L3- CS10 LSD	Dot L3- CS9 LSD	Dot L3- CS8 LSD	00h

www.ti.com.cn

Dot_ sd12	Dot_lsd11	091h	R	Reserved						Dot L3- CS17 LSD	Dot L3- CS16 LSD	00h
CS16	Dot_lsd12	092h	R					I .	1			00h
Dot Soft Dot L5	Dot_lsd13	093h	R	CS15	CS14	CS13	CS12	CS11	CS10			00h
CS7 LSD CS6 LSD CS6 LSD CS4 LSD CS4 LSD CS2 LSD CS1 LSD CS0 LSD	Dot_lsd14	094h	R	Reserved						CS17	CS16	00h
CS15	Dot_lsd15	095h	R									00h
CS17 CS16 LSD	Dot_lsd16	096h	R	CS15	CS14	CS13	CS12	CS11	CS10			00h
LSD_clear 0A8h W Reset LSD_Clear 00h Reset 0A9h W Reset 00h DC0 100h R/W LED dot current setting for Dot L0-CS0 80h DC1 101h R/W LED dot current setting for Dot L0-CS2 80h DC2 102h R/W LED dot current setting for Dot L0-CS3 80h DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC4 104h R/W LED dot current setting for Dot L0-CS5 80h DC5 105h R/W LED dot current setting for Dot L0-CS6 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS8 80h DC8 108h R/W LED dot current setting for Dot L0-CS10 80h DC9 109h R/W LED dot current setting for Dot L0-CS11 80h DC11 108h R/W LED dot current setting for Dot L0-CS12 80h <	Dot_lsd17	097h	R	Reserved						CS17	CS16	00h
Reset 0A9h W Reset 00h DC0 100h R/W LED dot current setting for Dot L0-CS0 80h DC1 101h R/W LED dot current setting for Dot L0-CS1 80h DC2 102h R/W LED dot current setting for Dot L0-CS2 80h DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC4 104h R/W LED dot current setting for Dot L0-CS4 80h DC5 105h R/W LED dot current setting for Dot L0-CS5 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS9 80h DC8 108h R/W LED dot current setting for Dot L0-CS9 80h DC9 109h R/W LED dot current setting for Dot L0-CS10 80h DC11 108h R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h	LOD_clear	0A7h	W	Reserved				LOD_Clea	r			00h
DC0 100h R/W LED dot current setting for Dot L0-CS0 80h DC1 101h R/W LED dot current setting for Dot L0-CS1 80h DC2 102h R/W LED dot current setting for Dot L0-CS2 80h DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC4 104h R/W LED dot current setting for Dot L0-CS3 80h DC5 105h R/W LED dot current setting for Dot L0-CS4 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS12 80h DC12 10Ch R/W LED dot current setting for Dot L0	LSD_clear	0A8h	W	Reserved				LSD_Clear	r			00h
DC1 101h RW LED dot current setting for Dot L0-CS1 80h DC2 102h RW LED dot current setting for Dot L0-CS2 80h DC3 103h RW LED dot current setting for Dot L0-CS3 80h DC4 104h RW LED dot current setting for Dot L0-CS4 80h DC5 105h RW LED dot current setting for Dot L0-CS5 80h DC6 106h RW LED dot current setting for Dot L0-CS6 80h DC7 107h RW LED dot current setting for Dot L0-CS7 80h DC8 108h RW LED dot current setting for Dot L0-CS8 80h DC9 109h RW LED dot current setting for Dot L0-CS9 80h DC10 10Ah RW LED dot current setting for Dot L0-CS10 80h DC11 10Bh RW LED dot current setting for Dot L0-CS11 80h DC12 10Ch RW LED dot current setting for Dot L0-CS12 80h DC13 10Dh RW LED dot current setting for Dot L0-CS13	Reset	0A9h	W	Reset								00h
DC2 102h R/W LED dot current setting for Dot L0-CS2 80h DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC4 104h R/W LED dot current setting for Dot L0-CS4 80h DC5 105h R/W LED dot current setting for Dot L0-CS5 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS11 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS12 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS13 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS14 80h DC14 10Eh R/W LED dot current setting for Do	DC0	100h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS0					80h
DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC4 104h R/W LED dot current setting for Dot L0-CS4 80h DC5 105h R/W LED dot current setting for Dot L0-CS5 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS15 80h DC15 10Fh R/W LED dot current setting for	DC1	101h	R/W	LED dot cu	rrent setting	g for Dot L0-	-CS1					80h
DC4 104h R/W LED dot current setting for Dot L0-CS4 80h DC5 105h R/W LED dot current setting for Dot L0-CS5 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting fo	DC2	102h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS2					80h
DC5 105h R/W LED dot current setting for Dot L0-CS5 80h DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L1-CS1 80h DC17 111h R/W LED dot current setting f	DC3	103h	R/W									80h
DC6 106h R/W LED dot current setting for Dot L0-CS6 80h DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS17 80h DC17 111h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting	DC4	104h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS4					80h
DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current settin	DC5	105h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS5					80h
DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS3 80h DC21 115h R/W LED dot current setti	DC6	106h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS6					80h
DC9 109h R/W LED dot current setting for Dot L0-CS9 80h DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L1-CS0 80h DC18 112h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current sett	DC7	107h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS7					80h
DC10 10Ah R/W LED dot current setting for Dot L0-CS10 80h DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L1-CS0 80h DC18 112h R/W LED dot current setting for Dot L1-CS1 80h DC29 114h R/W LED dot current setting for Dot L1-CS2 80h DC20 114h R/W LED dot current setting for Dot L1-CS3 80h DC21 115h R/W LED dot current setting for Dot L1-CS4 80h DC22 116h R/W LED dot current set	DC8	108h	R/W	LED dot cu	ırrent settinç	g for Dot L0	-CS8					80h
DC11 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L1-CS1 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current sett	DC9	109h	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS9					80h
DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L1-CS1 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS5 80h DC23 117h R/W LED dot current setting for Dot L1-CS6 80h DC24 118h R/W LED dot current setti	DC10	10Ah	R/W	LED dot cu	ırrent settinç	g for Dot L0-	-CS10					80h
DC13 10Dh R/W LED dot current setting for Dot L0-CS13 80h DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L0-CS17 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS5 80h DC23 117h R/W LED dot current setting for Dot L1-CS6 80h DC24 118h R/W LED dot current setting for Dot L1-CS7 80h DC25 119h R/W LED dot current setti	DC11	10Bh	R/W	LED dot cu	ırrent settinç	g for Dot L0	-CS11					80h
DC14 10Eh R/W LED dot current setting for Dot L0-CS14 80h DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L0-CS17 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS7 80h DC25 119h R/W LED dot current setting for Dot L1-CS8 80h	DC12	10Ch	R/W	LED dot cu	ırrent settinç	g for Dot L0	-CS12					80h
DC15 10Fh R/W LED dot current setting for Dot L0-CS15 80h DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L0-CS17 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS8 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC13	10Dh	R/W	LED dot cu	ırrent settin	g for Dot L0-	-CS13					80h
DC16 110h R/W LED dot current setting for Dot L0-CS16 80h DC17 111h R/W LED dot current setting for Dot L0-CS17 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS8 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC14	10Eh	R/W	LED dot cu	ırrent setting	g for Dot L0-	-CS14					80h
DC17 111h R/W LED dot current setting for Dot L0-CS17 80h DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS8 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC15	10Fh	R/W	LED dot cu	ırrent setting	g for Dot L0-	-CS15					80h
DC18 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS8 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC16	110h	R/W	LED dot cu	ırrent setting	g for Dot L0-	-CS16					80h
DC19 113h R/W LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC17	111h	R/W	LED dot cu	ırrent setting	g for Dot L0-	-CS17					80h
DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC18	112h	R/W	LED dot cu	ırrent setting	g for Dot L1	-CS0					80h
DC21 115h R/W LED dot current setting for Dot L1-CS3 80h DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC19	113h	R/W	LED dot cu	ırrent setting	g for Dot L1	-CS1					80h
DC22 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC20	114h	R/W	LED dot cu	ırrent setting	g for Dot L1	-CS2					80h
DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC21	115h	R/W	LED dot cu	ırrent setting	g for Dot L1	-CS3					80h
DC23 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC22	116h	R/W									80h
DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h		117h	R/W			_						80h
DC25 119h R/W LED dot current setting for Dot L1-CS7 80h DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h	DC24	118h	R/W									80h
DC26 11Ah R/W LED dot current setting for Dot L1-CS8 80h			R/W									80h
-		11Ah	R/W									80h
DC27 11Bh R/W LED dot current setting for Dot L1-CS9 80h	DC27	11Bh	R/W									80h

DC28	11Ch	R/W	LED dot current setting for Dot L1-CS10	80h
DC29	11Dh	R/W	LED dot current setting for Dot L1-CS11	80h
DC30	11Eh	R/W	LED dot current setting for Dot L1-CS12	80h
DC31	11Fh	R/W	LED dot current setting for Dot L1-CS13	80h
DC32	120h	R/W	LED dot current setting for Dot L1-CS14	80h
DC33	121h	R/W	LED dot current setting for Dot L1-CS15	80h
DC34	122h	R/W	LED dot current setting for Dot L1-CS16	80h
DC35	123h	R/W	LED dot current setting for Dot L1-CS17	80h
DC36	124h	R/W	LED dot current setting for Dot L2-CS0	80h
DC37	125h	R/W	LED dot current setting for Dot L2-CS1	80h
DC38	126h	R/W	LED dot current setting for Dot L2-CS2	80h
DC39	127h	R/W	LED dot current setting for Dot L2-CS3	80h
DC40	128h	R/W	LED dot current setting for Dot L2-CS4	80h
DC41	129h	R/W	LED dot current setting for Dot L2-CS5	80h
DC42	12Ah	R/W	LED dot current setting for Dot L2-CS6	80h
DC43	12Bh	R/W	LED dot current setting for Dot L2-CS7	80h
DC44 DC45	12Ch	R/W	LED dot current setting for Dot L2-CS8	80h 80h
DC45 DC46	12Dh 12Eh	R/W R/W	LED dot current setting for Dot L2-CS9 LED dot current setting for Dot L2-CS10	80h
DC47	12Fh	R/W	LED dot current setting for Dot L2-CS10	80h
DC48	130h	R/W	LED dot current setting for Dot L2-CS12	80h
DC49	131h	R/W	LED dot current setting for Dot L2-CS13	80h
DC50	132h	R/W	LED dot current setting for Dot L2-CS14	80h
DC51	133h	R/W	LED dot current setting for Dot L2-CS15	80h
DC52	134h	R/W	LED dot current setting for Dot L2-CS16	80h
DC53	135h	R/W	LED dot current setting for Dot L2-CS17	80h
DC54	136h	R/W	LED dot current setting for Dot L3-CS0	80h
DC55	137h	R/W	LED dot current setting for Dot L3-CS1	80h
DC56	138h	R/W	LED dot current setting for Dot L3-CS2	80h
DC57	139h	R/W	LED dot current setting for Dot L3-CS3	80h
DC58	13Ah	R/W	LED dot current setting for Dot L3-CS4	80h
DC59	13Bh	R/W	LED dot current setting for Dot L3-CS5	80h
DC60	13Ch	R/W	LED dot current setting for Dot L3-CS6	80h
DC61	13Dh	R/W	LED dot current setting for Dot L3-CS7	80h
DC62	13Eh	R/W	LED dot current setting for Dot L3-CS8	80h
DC63	13Fh	R/W	LED dot current setting for Dot L3-CS9	80h
DC64	140h	R/W	LED dot current setting for Dot L3-CS10	80h
DC65 DC66	141h 142h	R/W R/W	LED dot current setting for Dot L3-CS11 LED dot current setting for Dot L3-CS12	80h 80h
DC66	14211 143h	R/W	LED dot current setting for Dot L3-CS12 LED dot current setting for Dot L3-CS13	80h
DC67	144h	R/W	LED dot current setting for Dot L3-CS13	80h
DC69	145h	R/W	LED dot current setting for Dot L3-CS14	80h
DC70	146h	R/W	LED dot current setting for Dot L3-CS16	80h
DC71	147h	R/W	LED dot current setting for Dot L3-CS17	80h
DC72	148h	R/W	LED dot current setting for Dot L4-CS0	80h
DC73	149h	R/W	LED dot current setting for Dot L4-CS1	80h
DC74	14Ah	R/W	LED dot current setting for Dot L4-CS2	80h
	1			

www.ti.com.cn

DC75	14Bh	R/W	LED dot current setting for Dot L4-CS3	80h
DC76	14Ch	R/W	LED dot current setting for Dot L4-CS4	80h
DC77	14Dh	R/W	LED dot current setting for Dot L4-CS5	80h
DC78	14Eh	R/W	LED dot current setting for Dot L4-CS6	80h
DC79	14Fh	R/W	LED dot current setting for Dot L4-CS7	80h
DC80	150h	R/W	LED dot current setting for Dot L4-CS8	80h
DC81	151h	R/W	LED dot current setting for Dot L4-CS9	80h
DC82	152h	R/W	LED dot current setting for Dot L4-CS10	80h
DC83	153h	R/W	LED dot current setting for Dot L4-CS11	80h
DC84	154h	R/W	LED dot current setting for Dot L4-CS12	80h
DC85	155h	R/W	LED dot current setting for Dot L4-CS13	80h
DC86	156h	R/W	LED dot current setting for Dot L4-CS14	80h
DC87	157h	R/W	LED dot current setting for Dot L4-CS15	80h
DC88	158h	R/W	LED dot current setting for Dot L4-CS16	80h
DC89	159h	R/W	LED dot current setting for Dot L4-CS17	80h
DC90	15Ah	R/W	LED dot current setting for Dot L5-CS0	80h
DC91	15Bh	R/W	LED dot current setting for Dot L5-CS1	80h
DC92	15Ch	R/W	LED dot current setting for Dot L5-CS2	80h
DC93	15Dh	R/W	LED dot current setting for Dot L5-CS3	80h
DC94	15Eh	R/W	LED dot current setting for Dot L5-CS4	80h
DC95	15Fh	R/W	LED dot current setting for Dot L5-CS5	80h
DC96	160h	R/W	LED dot current setting for Dot L5-CS6	80h
DC97	161h	R/W	LED dot current setting for Dot L5-CS7	80h
DC98	162h	R/W	LED dot current setting for Dot L5-CS8	80h
DC99	163h	R/W	LED dot current setting for Dot L5-CS9	80h
DC100	164h	R/W	LED dot current setting for Dot L5-CS10	80h
DC101	165h	R/W	LED dot current setting for Dot L5-CS11	80h
DC102	166h	R/W	LED dot current setting for Dot L5-CS12	80h
DC103	167h	R/W	LED dot current setting for Dot L5-CS13	80h
DC104	168h	R/W	LED dot current setting for Dot L5-CS14	80h
DC105	169h	R/W	LED dot current setting for Dot L5-CS15	80h
DC106	16Ah	R/W	LED dot current setting for Dot L5-CS16	80h
DC107	16Bh	R/W	LED dot current setting for Dot L5-CS17	80h
pwm_bri0	200h	R/W	8-bits PWM for Dot L0-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS0	00h
pwm_bri1	201h	R/W	8-bits PWM for Dot L0-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS0	00h
pwm_bri2	202h	R/W	8-bits PWM for Dot L0-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS1	00h
pwm_bri3	203h	R/W	8-bits PWM for Dot L0-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS1	00h
pwm_bri4	204h	R/W	8-bits PWM for Dot L0-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS2	00h
pwm_bri5	205h	R/W	8-bits PWM for Dot L0-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS2	00h
pwm_bri6	206h	R/W	8-bits PWM for Dot L0-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS3	00h
pwm_bri7	207h	R/W	8-bits PWM for Dot L0-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS3	00h
pwm_bri8	208h	R/W	8-bits PWM for Dot L0-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS4	00h
pwm_bri9	209h	R/W	8-bits PWM for Dot L0-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS4	00h
pwm_bri10	20Ah	R/W	8-bits PWM for Dot L0-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS5	00h
pwm_bri11	20Bh	R/W	8-bits PWM for Dot L0-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS5	00h
pwm_bri12	20Ch	R/W	8-bits PWM for Dot L0-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS6	00h
pwm_bri13	20Dh	R/W	8-bits PWM for Dot L0-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS6	00h

pwm_bri14	20Eh	R/W	8-bits PWM for Dot L0-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS7	00h
pwm_bri15	20Fh	R/W	8-bits PWM for Dot L0-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS7	00h
pwm_bri16	210h	R/W	8-bits PWM for Dot L0-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS8	00h
pwm_bri17	211h	R/W	8-bits PWM for Dot L0-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS8	00h
pwm_bri18	212h	R/W	8-bits PWM for Dot L1-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS9	00h
pwm_bri19	213h	R/W	8-bits PWM for Dot L1-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS9	00h
pwm_bri20	214h	R/W	8-bits PWM for Dot L1-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS10	00h
pwm_bri21	215h	R/W	8-bits PWM for Dot L1-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS10	00h
pwm_bri22	216h	R/W	8-bits PWM for Dot L1-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS11	00h
pwm_bri23	217h	R/W	8-bits PWM for Dot L1-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS11	00h
pwm_bri24	218h	R/W	8-bits PWM for Dot L1-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS12	00h
pwm_bri25	219h	R/W	8-bits PWM for Dot L1-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS12	00h
pwm_bri26	21Ah	R/W	8-bits PWM for Dot L1-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS13	00h
pwm_bri27	21Bh	R/W	8-bits PWM for Dot L1-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS13	00h
pwm_bri28	21Ch	R/W	8-bits PWM for Dot L1-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS14	00h
pwm_bri29	21Dh	R/W	8-bits PWM for Dot L1-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS14	00h
pwm_bri30	21Eh	R/W	8-bits PWM for Dot L1-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS15	00h
pwm_bri31	21Fh	R/W	8-bits PWM for Dot L1-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS15	00h
pwm_bri32	220h	R/W	8-bits PWM for Dot L1-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS16	00h
pwm_bri33	221h	R/W	8-bits PWM for Dot L1-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS16	00h
pwm_bri34	222h	R/W	8-bits PWM for Dot L1-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS17	00h
pwm_bri35	223h	R/W	8-bits PWM for Dot L1-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS17	00h
pwm_bri36	224h	R/W	8-bits PWM for Dot L2-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS0	00h
pwm_bri37	225h	R/W	8-bits PWM for Dot L2-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS0	00h
pwm_bri38	226h	R/W	8-bits PWM for Dot L2-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS1	00h
pwm_bri39	227h	R/W	8-bits PWM for Dot L2-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS1	00h
pwm_bri40	228h	R/W	8-bits PWM for Dot L2-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS2	00h
pwm_bri41	229h	R/W	8-bits PWM for Dot L2-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS2	00h
pwm_bri42	22Ah	R/W	8-bits PWM for Dot L2-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS3	00h
pwm_bri43	22Bh	R/W	8-bits PWM for Dot L2-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS3	00h
pwm_bri44	22Ch	R/W	8-bits PWM for Dot L2-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS4	00h
pwm_bri45	22Dh	R/W	8-bits PWM for Dot L2-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS4	00h
pwm_bri46	22Eh	R/W	8-bits PWM for Dot L2-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS5	00h
pwm_bri47	22Fh	R/W	8-bits PWM for Dot L2-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS5	00h
pwm_bri48	230h 231h	R/W R/W	8-bits PWM for Dot L2-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS6 8-bits PWM for Dot L2-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS6	00h 00h
pwm_bri49	231h	R/W	8-bits PWM for Dot L2-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS7	00h
pwm_bri50 pwm_bri51	232h	R/W	8-bits PWM for Dot L2-CS14 OR 16-bits PWM ligher 8 bits [15:8] for Dot L1-CS7	00h
pwm_bri52	234h	R/W	8-bits PWM for Dot L2-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS8	00h
pwm_bri53	235h	R/W	8-bits PWM for Dot L2-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS8	00h
pwm_bri54	236h	R/W	8-bits PWM for Dot L3-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS9	00h
pwm_bri55	237h	R/W	8-bits PWM for Dot L3-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS9	00h
pwm_bri56	238h	R/W	8-bits PWM for Dot L3-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS10	00h
pwm_bri57	239h	R/W	8-bits PWM for Dot L3-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS10	00h
pwm_bri58	23Ah	R/W	8-bits PWM for Dot L3-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS11	00h
pwm_bri59	23Bh	R/W	8-bits PWM for Dot L3-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS11	00h
pwm_bri60	23Ch	R/W	8-bits PWM for Dot L3-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS12	00h
		1		1

R/W pwm_bri61 23Dh 8-bits PWM for Dot L3-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS12 00hpwm_bri62 23Eh R/W 8-bits PWM for Dot L3-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS13 00h 23Fh pwm bri63 R/W 8-bits PWM for Dot L3-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS13 00hpwm_bri64 240h R/W 8-bits PWM for Dot L3-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS14 00h R/W pwm bri65 241h 8-bits PWM for Dot L3-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS14 00h pwm bri66 242h R/W 8-bits PWM for Dot L3-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS15 00h 243h R/W 8-bits PWM for Dot L3-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS15 00h pwm_bri67 pwm_bri68 244h R/W 8-bits PWM for Dot L3-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS16 00h pwm bri69 245h R/W 8-bits PWM for Dot L3-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS16 00h 246h R/W 8-bits PWM for Dot L3-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS17 00h pwm bri70 R/W 8-bits PWM for Dot L3-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS17 pwm bri71 247h 00h pwm_bri72 248h R/W 8-bits PWM for Dot L4-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS0 00h pwm bri73 249h R/W 8-bits PWM for Dot L4-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS0 00h pwm_bri74 24Ah R/W 8-bits PWM for Dot L4-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS1 00h pwm_bri75 24Bh R/W 8-bits PWM for Dot L4-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS1 00h pwm bri76 24Ch R/W 8-bits PWM for Dot L4-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS2 00h pwm bri77 24Dh R/W 8-bits PWM for Dot L4-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS2 00h R/W 00h pwm bri78 24Eh 8-bits PWM for Dot L4-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS3 R/W pwm_bri79 24Fh 8-bits PWM for Dot L4-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS3 00h pwm bri80 250h R/W 8-bits PWM for Dot L4-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS4 00h 251h R/W 8-bits PWM for Dot L4-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS4 00h pwm_bri81 R/W 8-bits PWM for Dot L4-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS5 00h pwm_bri82 252h R/W 00h pwm bri83 253h 8-bits PWM for Dot L4-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS5 R/W pwm bri84 254h 8-bits PWM for Dot L4-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS6 00h 255h R/W 8-bits PWM for Dot L4-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS6 00h pwm_bri85 pwm bri86 256h R/W 8-bits PWM for Dot L4-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS7 00h pwm_bri87 257h R/W 8-bits PWM for Dot L4-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS7 00h pwm bri88 258h R/W 8-bits PWM for Dot L4-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS8 00h 259h R/W 00h pwm_bri89 8-bits PWM for Dot L4-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS8 pwm bri90 25Ah R/W 8-bits PWM for Dot L5-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS9 00h 8-bits PWM for Dot L5-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS9 pwm bri91 25Bh R/W 00h R/W pwm_bri92 25Ch 8-bits PWM for Dot L5-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS10 00h 25Dh R/W 8-bits PWM for Dot L5-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS10 pwm bri93 00h pwm_bri94 25Eh R/W 8-bits PWM for Dot L5-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS11 00h pwm bri95 25Fh R/W 8-bits PWM for Dot L5-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS11 00h R/W 8-bits PWM for Dot L5-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS12 pwm_bri96 260h 00h pwm bri97 261h R/W 8-bits PWM for Dot L5-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS12 00h 8-bits PWM for Dot L5-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS13 262h R/W pwm_bri98 00h263h R/W 8-bits PWM for Dot L5-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS13 00h pwm_bri99 pwm_bri100 264h R/W 8-bits PWM for Dot L5-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS14 00h pwm bri101 265h R/W 8-bits PWM for Dot L5-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS14 00h pwm_bri102 266h R/W 8-bits PWM for Dot L5-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS15 00h pwm_bri103 267h R/W 8-bits PWM for Dot L5-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS15 00h pwm_bri104 268h R/W 8-bits PWM for Dot L5-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS16 00h pwm bri105 269h R/W 8-bits PWM for Dot L5-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS16 00h 00h R/W pwm bri106 26Ah 8-bits PWM for Dot L5-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS17

26Bh

pwm_bri107

R/W

00h

8-bits PWM for Dot L5-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS17

pwm_bri108	26Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS0	00h
pwm_bri109	26Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS0	00h
pwm_bri110	26Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS1	00h
pwm_bri111	26Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS1	00h
pwm_bri112	270h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS2	00h
pwm_bri113 271h R/W 1		R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS2	00h
pwm_bri114	272h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS3	00h
pwm_bri115	273h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS3	00h
pwm_bri116	274h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS4	00h
pwm_bri117	275h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS4	00h
pwm_bri118	276h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS5	00h
pwm_bri119	277h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS5	00h
pwm_bri120	278h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS6	00h
pwm_bri121	279h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS6	00h
pwm_bri122	27Ah	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS7	00h
pwm_bri123	27Bh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS7	00h
pwm_bri124	27Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS8	00h
pwm_bri125	27Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS8	00h
pwm_bri126	27Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS9	00h
pwm_bri127	27Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS9	00h
pwm_bri128	280h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS10	00h
pwm_bri129	281h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS10	00h
pwm_bri130	282h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS11	00h
pwm_bri131	283h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS11	00h
pwm_bri132	284h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS12	00h
pwm_bri133	285h 286h	R/W R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS12	00h 00h
pwm_bri134 pwm_bri135	287h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS13 16-bits PWM higher 8 bits [15:8] for Dot L3-CS13	00h
pwm_bri136	288h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS14	00h
pwm_bri137	289h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS14	00h
pwm_bri138	28Ah	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS15	00h
pwm_bri139	28Bh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS15	00h
pwm_bri140	28Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS16	00h
pwm bri141	28Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS16	00h
pwm_bri142	28Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS17	00h
pwm_bri143	28Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS17	00h
pwm_bri144	290h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS0	00h
pwm_bri145	291h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS0	00h
pwm_bri146	292h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS1	00h
pwm_bri147	293h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS1	00h
pwm_bri148	294h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS2	00h
pwm_bri149	295h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS2	00h
pwm_bri150	296h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS3	00h
pwm_bri151	297h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS3	00h
pwm_bri152	298h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS4	00h
pwm_bri153	299h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS4	00h
pwm_bri154	29Ah	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS5	00h

Product Folder Links: LP5866

www.ti.com.cn

pwm_bri155	29Bh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS5	00h
pwm_bri156	29Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS6	00h
pwm_bri157	29Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS6	00h
pwm_bri158	29Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS7	00h
pwm_bri159	29Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS7	00h
pwm_bri160	2A0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS8	00h
pwm_bri161	2A1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS8	00h
pwm_bri162	2A2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS9	00h
pwm_bri163	2A3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS9	00h
pwm_bri164	2A4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS10	00h
pwm_bri165	2A5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS10	00h
pwm_bri166	2A6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS11	00h
pwm_bri167	2A7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS11	00h
pwm_bri168	2A8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS12	00h
pwm_bri169	2A9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS12	00h
pwm_bri170	2AAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS13	00h
pwm_bri171	2ABh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS13	00h
pwm_bri172	2ACh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS14	00h
pwm_bri173	2ADh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS14	00h
pwm_bri174	2AEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS15	00h
pwm_bri175	2AFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS15	00h
pwm_bri176	2B0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS16	00h
pwm_bri177	2B1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS16	00h
pwm_bri178	2B2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS17	00h
pwm_bri179	2B3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS17	00h
pwm_bri180	2B4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS0	00h
pwm_bri181	2B5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS0	00h
pwm_bri182	2B6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS1	00h
pwm_bri183	2B7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS1	00h
pwm_bri184	2B8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS2	00h
pwm_bri185	2B9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS2	00h
pwm_bri186	2BAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS3	00h
pwm_bri187	2BBh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS3	00h
pwm_bri188	2BCh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS4	00h
pwm_bri189 pwm bri190	2BDh 2BEh	R/W R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS4 16-bits PWM lower 8 bits [7:0] for Dot L5-CS5	00h 00h
pwm_bri191	2BEn 2BFh	R/W	16-bits PWM higher 8 bits [7:0] for Dot L5-CS5	00h
pwm_bri192	2C0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS6	00h
pwm_bri193	2C1h	R/W	16-bits PWM higher 8 bits [7.0] for Dot L5-CS6	00h
pwm_bri194	2C2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS7	00h
pwm_bri195	2C3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS7	00h
pwm_bri196	2C4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS8	00h
pwm_bri197	2C5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS8	00h
pwm_bri198	2C6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS9	00h
pwm_bri199	2C7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS9	00h
pwm bri200	2C8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS10	00h
pwm_bri201	2C9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS10	00h
• .	1-20	1		1-3

39

pwm_bri202 2CAh R/W		R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS11	00h		
pwm_bri203 2CBh R/W		R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS11	00h		
pwm_bri204 2CCh R/W		R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS12	00h		
pwm_bri205 2CDh R/W		R/W	6-bits PWM higher 8 bits [15:8] for Dot L5-CS12			
pwm_bri206	2CEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS13	00h		
pwm_bri207	2CFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS13	00h		
pwm_bri208	2D0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS14	00h		
pwm_bri209	2D1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS14	00h		
pwm_bri210	2D2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS15	00h		
pwm_bri211	2D3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS15	00h		
pwm_bri212	2D4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS16	00h		
pwm_bri213	2D5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS16	00h		
pwm_bri214	2D6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS17	00h		
pwm_bri215	2D7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS17	00h		

Product Folder Links: LP5866

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The LP5866 integrates 18 constant current sinks with 6 switching FETs and one LP5866 can drive up to 108 LED dots or 36 RGB pixels and achieve great dimming effect. In smart home, gaming keyboards, and other human-machine interaction applications, the device can greatly improve user experience with a small amount of components.

8.2 Typical Application

8.2.1 Application

🛚 8-1 shows an example of typical application, which uses one LP5866 to drive 36 common-anode RGB LEDs through I²C communication.

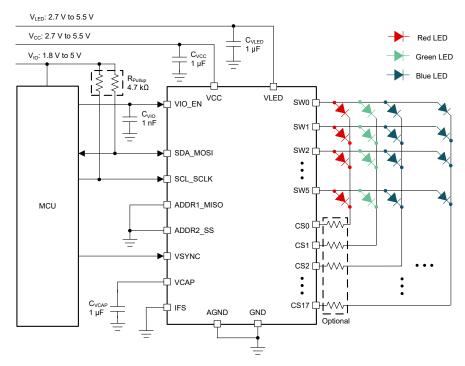


图 8-1. Typical Application - LP5866 Driving 36 RGB LEDs (108 LED Dots)

Product Folder Links: LP5866

41

8.2.2 Design Requirements

表 8-1. Design Parameters

PARAMETER	VALUE
VCC / VIO	3.3V
VLED	5V
RGB LED count	36
Scan number	6
Interface	I ² C
LED maximum average current (red, green, blue)	4mA, 3mA, 2mA
LED maximum peak current (red, green, blue)	24mA, 18mA, 12mA

8.2.3 Detailed Design Procedure

LP5866 requires an external capacitor C_{VCAP} , whose value is 1 μ F connected from V_{CAP} to GND for proper operation of internal LDO. The capacitor must be placed as close to the device as possible.

TI recommends $1 \mu F$ capacitors be placed between VCC / VLED with GND, and a 1nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible.

Pull-up resistors $R_{pull-up}$ are a requirement for SCL and SDA when using I²C as communication method. In typical applications, TI recommends 1.8k Ω to 4.7k Ω resistors.

To decrease thermal dissipation from device to ambient, resistors R_{CS} can optionally be placed in serial with the LED. Voltage drop on these resistors must left enough margins for VSAT to ensure the device works normally.

8.2.3.1 Program Procedure

When selecting data refresh Mode 1, outputs are refreshed instantly after data is received.

When selecting data refresh Mode 2/3, VSYNC signal is required for synchronized display. Programming flow is shown as \boxtimes 8-2. To display full pixel of last frame, VSYNC pulse must be sent to the device after the end of last PWM. Time between two pulses t_{SYNC} must be larger than the whole PWM time of all Dots t_{frame} . Common selection like 60Hz, 90Hz, 120Hz or even higher refresh frequency can be supported. High pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame, and data must not be write to PWM registers during high pulse width.

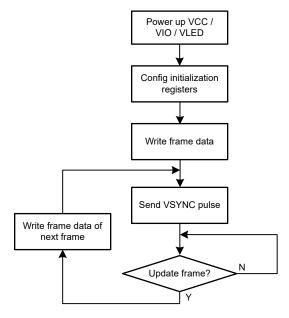


图 8-2. Program Procedure

Copyright © 2024 Texas Instruments Incorporated

8.2.4 Application Performance Plots

The following figures show the application performance plots.

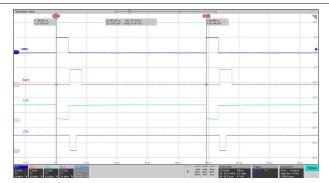
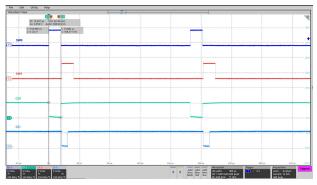
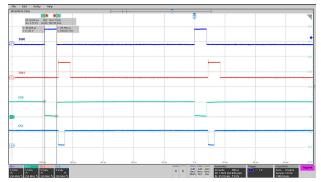




图 8-3. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1

PWM frequency = 62.5kHz

图 8-4. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1

PWM frequency = 125kHz

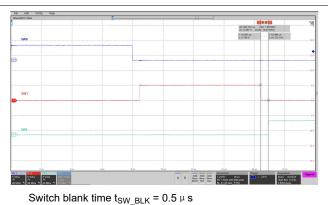
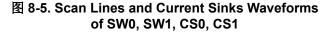
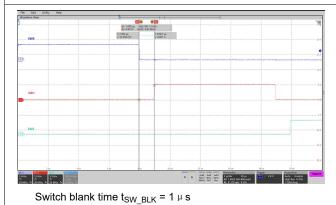
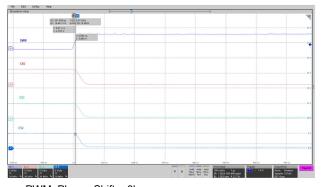
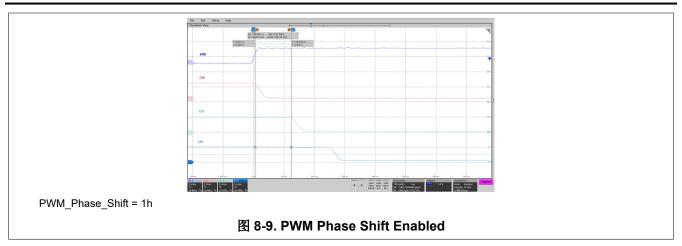



图 8-6. Scan Lines Switching Waveforms of SW0,

SW1, SW2


图 8-7. Scan Lines Switching Waveforms of SW0, SW1, SW2

PWM_Phase_Shift = 0h

图 8-8. PWM Phase Shift Disabled

8.3 Power Supply Recommendations

8.3.1 Power Supply Recommendations

VDD Input Supply Recommendations

LP5866 is designed to operate from a 2.7V to 5.5V VDD voltage supply. This input supply must be well regulated and can provide the peak current required by the LED matrix. The resistance of the VDD supply rail must be low enough such that the input current transient does not cause the LP5866 VDD supply voltage to drop below the maximum POR voltage.

8.3.2 Power Supply Recommendations

VIO Input Supply Recommendations

LP5866 is designed to operate with a 1.65V to 5.5V VIO_EN voltage supply. The VIO_EN supply must be well regulated and can provide the peak current required by the LED configuration without voltage drop under load transients like start-up or rapid brightness change.

8.3.3 Power Supply Recommendations

VLED Input Supply Recommendations

LP5866 is designed to operate with a 2.7V to 5.5V VLED voltage supply. The VLED supply must be well regulated and can provide the peak current required by the LED configuration without voltage drop, under load transients like start-up or rapid brightness change. The resistance of the input supply rail must be low enough so that the input current transient does not cause the VLED supply voltage to drop below LED V_f + VSAT voltage.

8.4 Layout

8.4.1 Layout Guidelines

the below guidelines for layout design can help to get a better on-board performance.

- The decoupling capacitors C_{VCC} and C_{VLED} for power supply must be close to the chip to have minimized the
 impact of high-frequency noise and ripple from power. C_{VCAP} for internal LDO must be put as close to chip as
 possible. GND plane connections to C_{VLED} and GND pins must be on TOP layer copper with multiple vias
 connecting to system ground plane. C_{VIO} for internal enable block also must be put as close to chip as
 possible.
- The exposed thermal pad must be well soldered to the board, which can have better mechanical reliability.
 The action can optimize heat transfer so that increasing thermal performance. AGND pin must be connected to thermal pad and system ground.

Copyright © 2024 Texas Instruments Incorporated

- The major heat flow path from the package to the ambient is through copper on the PCB. Several methods can help thermal performance. Below exposed thermal pad of IC, putting much vias through the PCB to other ground layer can dissipate more heat. Maximizing the copper coverage on the PCB can increase the thermal conductivity of the board.
- Low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of VLED SWx must be short and wide and avoid parallel wiring and narrow trace. Transient current in SWx pins is much larger than CSy pins, so that trace for SWx must be wider than CSy.

8.4.2 Layout Example

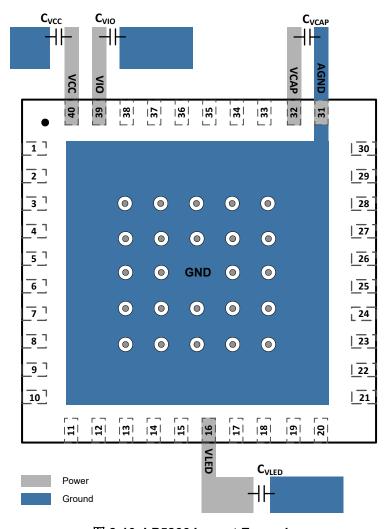


图 8-10. LP5866 Layout Example

45

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.2 支持资源

TI E2E[™] 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.4 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 Revision History

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision * (December 2021) to Revision A (September 2024)	Page
Updated DBT package information	
Updated thermal information of DBT package	7
Updated I ² C Timing Requirements	
Added I ² C Standard Mode Timing Requirements	7
Added timing parameters diagrams	
Updated application design parameters	

Product Folder Links: LP5866

Copyright © 2024 Texas Instruments Incorporated

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: LP5866

47

English Data Sheet: SNVSC36

www.ti.com 8-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
LP5866DBTR	Active	Production	TSSOP (DBT) 38	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LP5866DBT
LP5866DBTR.A	Active	Production	TSSOP (DBT) 38	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LP5866DBT
LP5866MDBTR	Active	Production	TSSOP (DBT) 38	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	5866MDBT
LP5866MDBTR.A	Active	Production	TSSOP (DBT) 38	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	5866MDBT
LP5866RKPR	Active	Production	VQFN (RKP) 40	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LP5866
LP5866RKPR.A	Active	Production	VQFN (RKP) 40	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LP5866

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

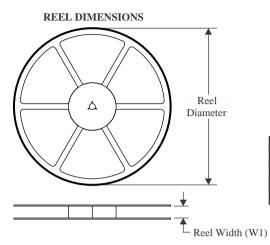
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

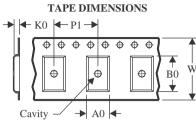
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

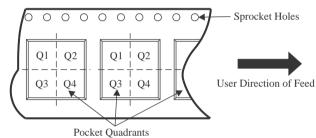
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM


www.ti.com 8-Nov-2025

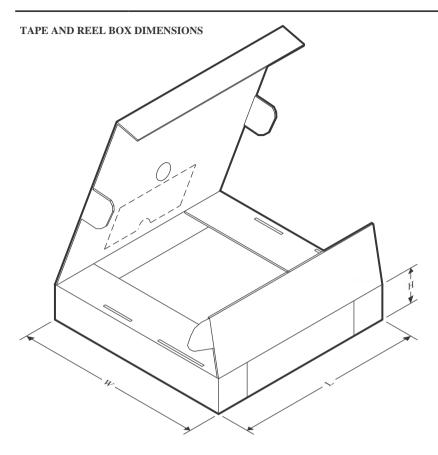
PACKAGE MATERIALS INFORMATION

www.ti.com 15-Sep-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

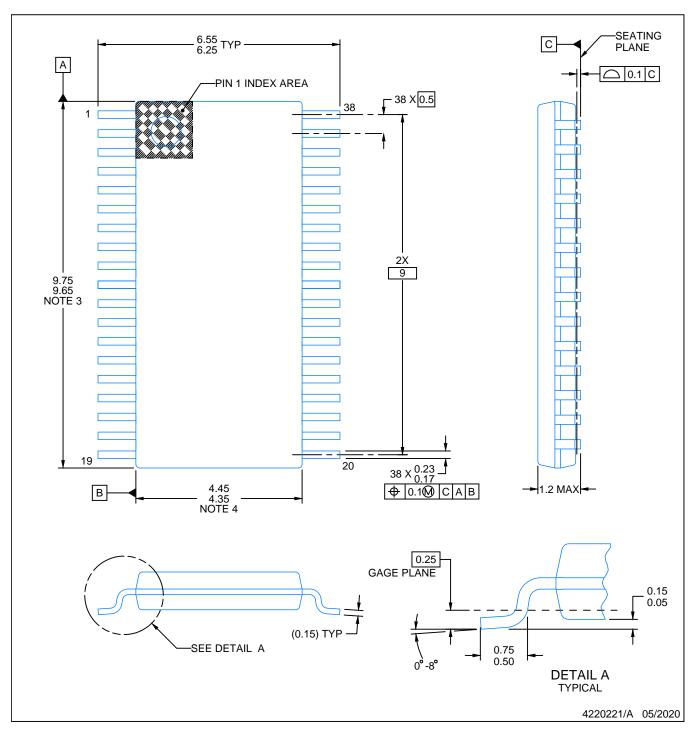
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP5866RKPR	VQFN	RKP	40	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

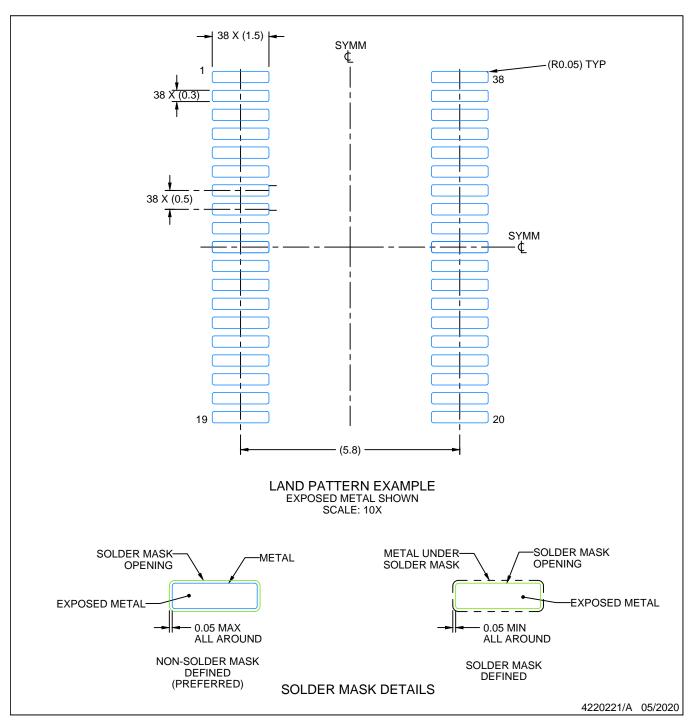
PACKAGE MATERIALS INFORMATION


www.ti.com 15-Sep-2025

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	LP5866RKPR	VQFN	RKP	40	3000	367.0	367.0	35.0

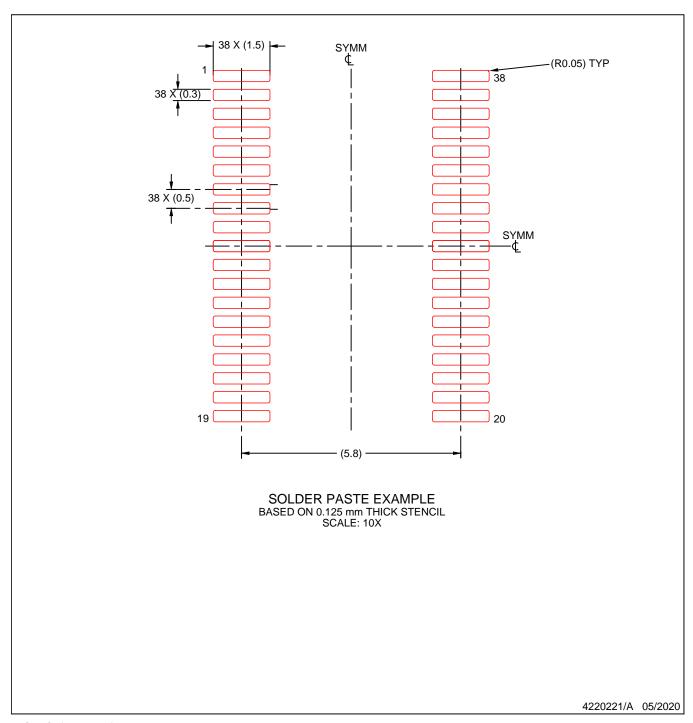
SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

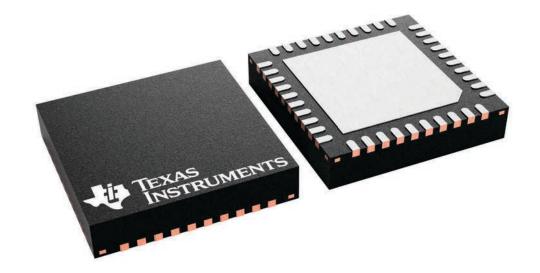

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

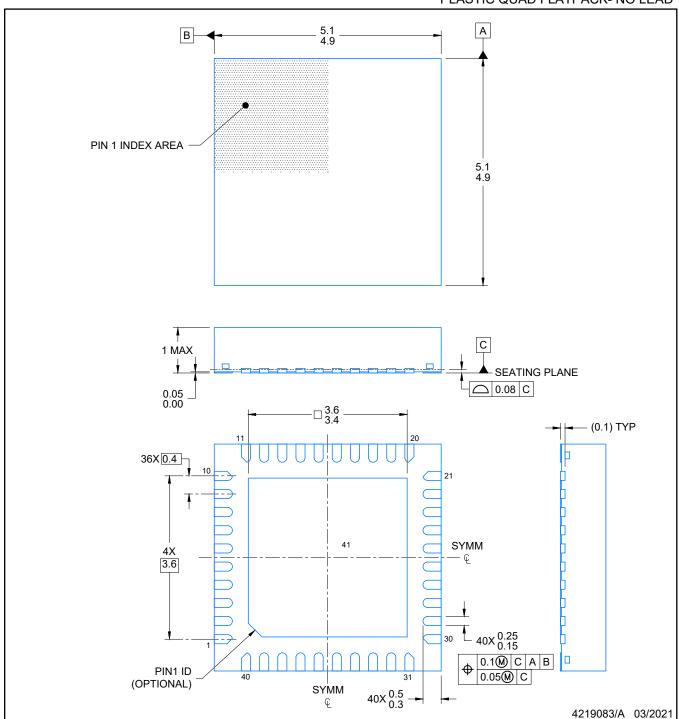
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

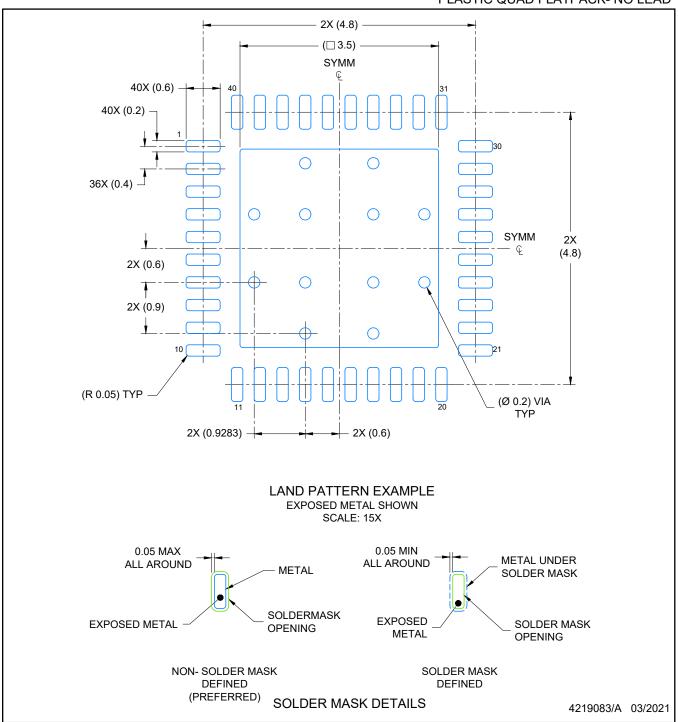
5 x 5, 0.4 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

Instruments www.ti.com

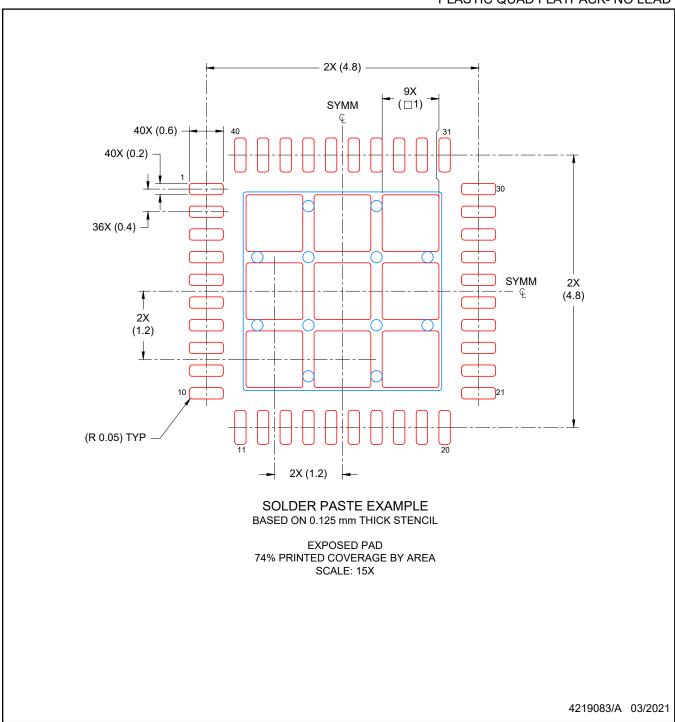
PLASTIC QUAD FLATPACK- NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK- NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月