

LP8728C-Q1

ZHCSDB1 - FEBRUARY 2015

LP8728C-Q1 四路输出降压 DC-DC 转换器

特性

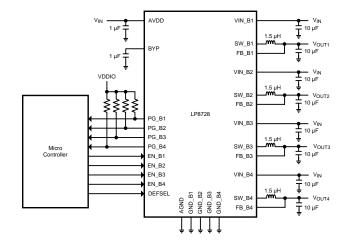
- LP8728C-Q1 是一款经 AECQ-100 1 级认证的汽车
- 四个高效降压 DC-DC 转换器:
 - 93% 峰值效率(V_{IN} = 5V, V_{OUT} = 3.3V)
 - 最大输出电流 1A
 - 强制脉宽调制 (PWM) 运行
 - 软启动控制
 - $V_{OUT1} = 3.3V$
 - $-V_{OUT2} = 1.2V$
 - V_{OUT3} = 1.8V 或 2.65V (可由引脚选择)
 - $V_{OUT4} = 1.8V$
- 针对每个转换器控制的独立输入使能
- 针对每个转换器的独立电源正常输出
- 输出过流和输入过压保护
- 过热保护
- 欠压闭锁 (UVLO)

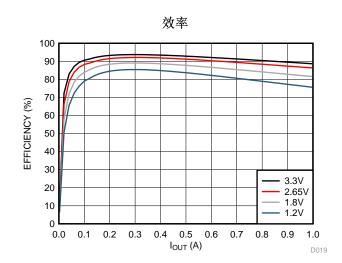
2 应用

- 现场可编程门阵列 (FPGA),数字信号处理器 (DSP) 内核电源
- 移动器件的处理器电源
- 外设 I/O 电源
- 汽车安全摄像头
- 车用信息娱乐

3 说明

LP8728C-Q1 是一款四路输出电源管理单元 (PMU), 针对面向汽车应用的低功耗现场可编程门阵列 (FPGA)、微处理器以及数字信号处理器 (DSP) 进行了 优化。 此器件在单一封装内集成了四个高效降压 DC-DC 转换器。 每个转换器都具有高电流驱动能力以及 独立控制,这使得器件能够灵活适应多类应用。 所有 转换器均以 3.2MHz 固定开关频率工作于 AM 波段之 上。 每个转换器的高侧开关导通时间会进行相移,以 最大程度减少输入电流尖峰。


保护特性包括输出短路保护、开关电流限制、输入过压 保护、输入欠压闭锁和热关断功能。 启动期间,此器 件会控制输出转换率以最大限度减少输出电压过冲和输 入浪涌电流。

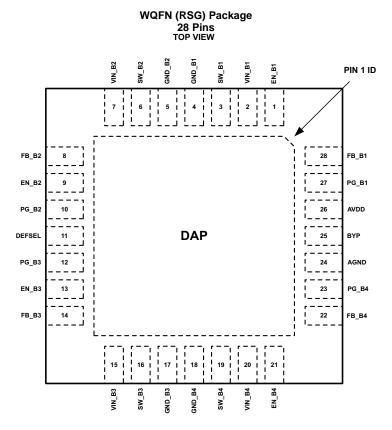

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
LP8728C-Q1	WQFN (28)	5.00mm x 5.00mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

简化电路原理图

目录


_	a to ta			
1	特性1		7.3 Feature Description	
2	应用1		7.4 Device Functional Modes	13
3	说明 1	8	Application and Implementation	15
4	修订历史记录 2		8.1 Application Information	15
5	Pin Configuration and Functions		8.2 Typical Application	15
6	Specifications5	9	Power Supply Recommendations	17
·	6.1 Absolute Maximum Ratings 5	10	Layout	18
	6.2 ESD Ratings		10.1 Layout Guidelines	18
	6.3 Recommended Operating Conditions		10.2 Layout Example	
	6.4 Thermal Information	11	器件和文档支持	19
	6.5 Electrical Characteristics		11.1 器件支持	
	6.6 System Characteristics 7		11.2 相关文档	
	6.7 Typical Characteristics 8		11.3 商标	19
7	Detailed Description		11.4 静电放电警告	19
	7.1 Overview 10		11.5 术语表	
	7.2 Functional Block Diagram	12	机械封装和可订购信息	19

4 修订历史记录

日期	修订版本	注释
2015 年 2 月	*	最初发布。

5 Pin Configuration and Functions

Pin Functions

	PIN	TYPE ⁽¹⁾	DECODIDETION
NUMBER	NAME	TYPE	DESCRIPTION
1	EN_B1	D/I	Enable Buck 1
2	VIN_B1	Р	Positive power supply input for Buck 1
3	SW_B1	Р	Switch node for Buck 1
4	GND_B1	G	Power ground for Buck 1
5	GND_B2	G	Power ground for Buck 2
6	SW_B2	Р	Switch node for Buck 2
7	VIN_B2	Р	Positive power supply input for Buck 2
8	FB_B2	Α	Feedback pin for Buck 2. Referenced against AGND.
9	EN_B2	D/I	Enable Buck 2
10	PG_B2	D/O	Open-drain Power Good output for Buck 2
11	DEFSEL	D/I	Buck 3 output voltage selection pin
12	PG_B3	D/O	Open-drain Power Good output for Buck 3
13	EN_B3	D/I	Enable Buck 3
14	FB_B3	Α	Feedback pin for Buck 3. Referenced against AGND.
15	VIN_B3	Р	Positive power supply input for Buck 3
16	SW_B3	Р	Switch node for Buck 3
17	GND_B3	G	Power ground for Buck 3
18	GND_B4	G	Power ground for Buck 4
19	SW_B4	Р	Switch node for Buck 4

(1) A: Analog Pin, G: Ground Pin, P: Power Pin, O: Output Pin, D/I: Digital Input, D/O: Digital Output.

www.ti.com.cn

Pin Functions (continued)

	PIN	TYPE ⁽¹⁾	DESCRIPTION
NUMBER	NAME	ITPE	DESCRIPTION
20	VIN_B4	Р	Positive power supply input for Buck 4
21	EN_B4	D/I	Enable Buck 4
22	FB_B4	Α	Feedback pin for Buck 4. Referenced against AGND.
23 PG_B4 D/O Open-drain Power Good output for Buck 4		Open-drain Power Good output for Buck 4	
24	AGND	G	Analog ground
25	ВҮР	A	Internal 1.8-V supply voltage capacitor pin. A ceramic low-ESR 1-µF capacitor should be connected from this pin to AGND. The BYP voltage is generated internally, do not supply or load this pin externally.
26	AVDD	Р	Analog positive power supply pin (V _{IN} level)
27	PG_B1	D/O	Open-drain Power Good output for Buck 1
28	FB_B1	Α	Feedback pin for Buck 1. Referenced against AGND.
DAP	Die Attachment Pad		Exposed die attachment pad should to be connected to GND plane with thermal vias to improve the thermal performance of the system.

6 Specifications

www.ti.com.cn

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{IN}	Voltage on power pins (AVDD, VIN_Bx)	-0.3	6	V
V _{FB}	Voltage on feedback pins (FB_Bx)	-0.3	6	V
V _{SW}	Voltage on buck converter switch pins (SW_Bx)	(GND_Bx - 0.2 V) to (VIN_Bx -	+ 0.2 V) with 6 V max	V
V_{DIG}	Voltage on digital pins (PG_Bx, EN_Bx, DEFSEL)	(AGND - 0.2V) to (AVDD + 0.2 V) with 6 V max		V
V _{BYP}	Voltage on BYP pin	-0.3	2	V
T _{J(MAX)}	Maximum operating junction temperature ⁽²⁾		150	°C
	Maximum lead temperature (Soldering)	See ⁽³⁾		
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD)		Charged-device model (CDM), per AEC Q100-011	±750	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	NOM	MAX	UNIT
V _{IN}	Input voltage on AVDD, VIN_B1, VIN_B2, VIN_B3 and VIN_B4 pins	4.5	5	5.5	V
T _A	Operating ambient temperature (2)	-40		125	°C
C _{OUT}	Effective output capacitance during operation. Min value over T _A –40°C to 125°C.	5	10	12	μF
C _{IN}	Effective input capacitance during operation. 4.5 V \leq V _{IN_Bx} \leq 5.5 V. Min value over T _A -40° C to 125°C.	2.5	10		μF
L	Effective inductance during operation Min value over T _A –40°C to 125°C.	0.47	1.5	2	μF

⁽¹⁾ All voltage values are with respect to network ground terminal.

⁽²⁾ Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at T_J = 150°C (typical) and disengages at T_J = 130°C (typical).

⁽³⁾ For detailed soldering specifications and information, please refer to Texas Instruments Application Note Leadless Leadframe Package (LLP) SNOA401.

⁽²⁾ In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A(max)}) is dependent on the maximum operating junction temperature (T_{J(max)}), the maximum power dissipation of the device in the application (P_{D(max)}), and the junction-to-ambient thermal resistance of the part/package in the application (R_{0JA}), as given by the following equation: T_{A(max)} = T_{J(max)} - (R_{0JA} × P_{D(max)})

TEXAS INSTRUMENTS

6.4 Thermal Information

		LP8728-Q1	
	THERMAL METRIC ⁽¹⁾		UNIT
		28 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	37.7	
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	24.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	10.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	C/VV
Ψ_{JB}	Junction-to-board characterization parameter	10.8	
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	2.7	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics (1)(2)

Unless otherwise noted, V_{IN} = 5 V, typical values apply for T_A = 25°C, and minimum/maximum limits apply over junction temperature range, T_J = -40°C to 125°C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SHDN}	Shutdown supply current into power connections	EN_Bx = 0 V		1	6	μΑ
I _{OP}	Operating current	All buck-converters active, I _{OUT} = 0 mA		20		mA
LOGIC IN	NPUTS (EN_Bx, DEFSEL)					
V _{IL}	Input low level				0.4	V
V _{IH}	Input high level		1.6			V
R _{PD_DI}	EN_Bx and DEFSEL internal pulldown resistance		300	520	820	kΩ
T _{H_MIN}	Minimum EN_Bx high time			1		ms
T _{L_MIN}	Minimum EN_Bx low time			10		μs
LOGIC O	OUTPUTS (PG_Bx)				<u> </u>	
V _{OL}	Output low level	I _{SINK} = 3 mA			0.4	V
R _{PU}	Recommended pullup resistor			10		kΩ
BUCK C	ONVERTERS					
V _{OUT1}	Output voltage for Buck 1	Fixed voltage		3.3		V
V _{OUT2}	Output voltage for Buck 2	Fixed voltage		1.2		V
		DEFSEL = 1		2.65		
V _{OUT3}	Output voltage for Buck 3	DEFSEL = 0		1.8		V
V _{OUT4}	Output voltage for Buck 4	Fixed voltage		1.8		V
V _{FB_Bx}	Output voltage accuracy		-3%		3%	
	Line regulation	4.5 V ≤ V _{IN_Bx} ≤ 5.5 V, I _{LOAD} = 10 mA		3		mV
ΔV_{OUT}	Load regulation	V _{IN} = 5 V, 100 mA ≤ I _{LOAD} ≤ 900 mA		3		mV
I _{OUT}	Output current	DC load T _A = 25°C			1000	mA
f_{SW}	Switching frequency		3.03	3.2	3.37	MHz
GBW	Gain bandwidth			300		kHz
I _{LIMITP}	High-side switch current limit		1200	1500	1800	mA
I _{LIMITN}	Low-side switch current limit	Reverse current		500		mA
R _{DSONP}	Pin-pin resistance for PFET	I _{OUT} = 200 mA		210	300	mΩ
R _{DSONN}	Pin-pin resistance for NFET	I _{OUT} = 200 mA		140	240	mΩ
I _{LK_SW}	Switch pin leakage current	V _{OUT} = 1.8V			1	μΑ

(1) All voltage values are with respect to network ground terminal.

⁽²⁾ Calculated using 4-layer standard JEDEC thermal test board with 5 thermal vias between the die attach pad in the first copper layer and second copper layer.

⁽²⁾ Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but do represent the most likely norm. Unless otherwise specified, conditions for Typ specifications are: V_{IN} = 5 V and T_J = 25°C.

www.ti.com.cn

Electrical Characteristics(1)(2) (continued)

Unless otherwise noted, V_{IN} = 5 V, typical values apply for T_A = 25°C, and minimum/maximum limits apply over junction temperature range, T_J = -40°C to 125°C.

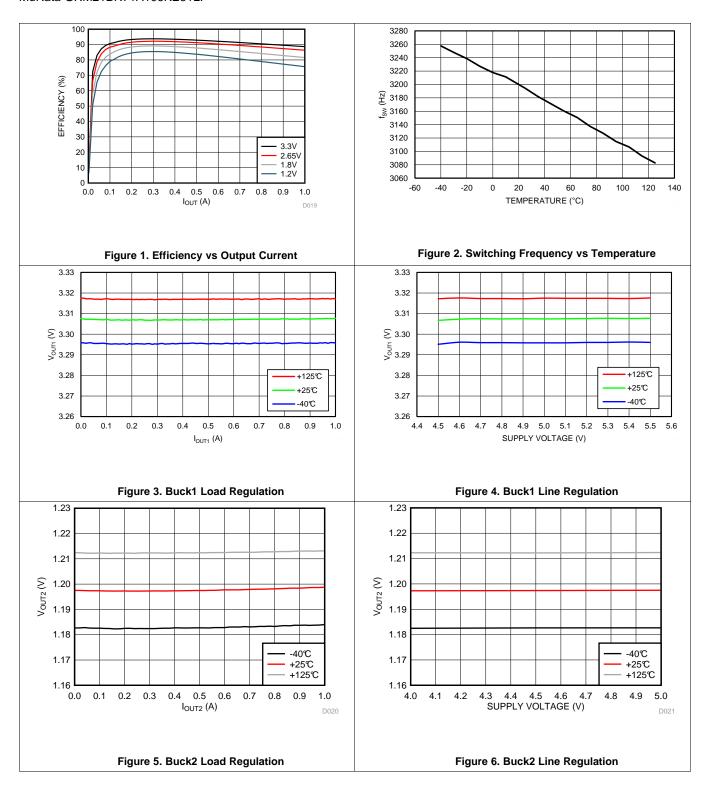
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PD_FB}	Pulldown resistor from FB_Bx pin to GND	Only active when converter disabled. All limits apply for T _A = 25°C	40	70	100	Ω
K_{RAMP}	Slew rate control	DEFSEL from 0 to 1		10		mV/μs
T _{START}	Start-up time	Time from first EN_Bx high to start of switching		420		μs
K _{START}	Soft-start VOUT slew rate			18		mV/μs
VOLTAG	E MONITORING					
\/	Power good threshold voltage	Power good threshold for voltage rising	93.5%	96%	98%	
V_{PG}		Power good threshold for voltage falling	91%	93%	95%	
V _{OVP}	Input overvoltage protection trigger	Voltage monitored on AVDD Pin, voltage rising	5.5	5.7	5.9	V
011	point	Hysteresis		80		mV
V _{UVLO}	Input undervoltage lockout (UVLO)	Voltage monitored on AVDD Pin, voltage falling		2.7		V
0.20	threshold.	Hysteresis		80		mV
THERMA	AL SHUTDOWN AND MONITORING					
TOD	The arread about decome	Threshold, temperature rising		150		00
TSD	Thermal shutdown	Hysteresis		20		°C

6.6 System Characteristics (1)(2)(3)

Typical values apply for $T_A = 25$ °C. Unless otherwise noted, $V_{IN} = 5$ V.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I_{OUT} 10% max load \rightarrow 90% max load, 1- μ s load step		70		mV
ΔV_{OUT}	Load transient response	I_{OUT} 90% max load \rightarrow 10% max load, 1- μs load step		70		mV
	Line transient response	V_{IN_Bx} stepping 4.5 V \leftrightarrow 5.5 V, t_{RISE} = t_{FALL} = 10 μ s, t_{OUT} = 400 mA		20		mV
V_{RIPPLE}	Output voltage ripple	C_{OUT} ESR = 10 m Ω , I_{OUT} = 200 mA		10		mV_PP
		$V_{OUT} = 3.3 \text{ V}, I_{OUT} = 300 \text{ mA}$		94%		
_	[#isionay	V _{OUT} = 2.65 V, I _{OUT} = 300 mA		92%		
11	Efficiency	V _{OUT} = 1.8 V, I _{OUT} = 300 mA		89%		
		V _{OUT} = 1.2 V, I _{OUT} = 300 mA		85%		

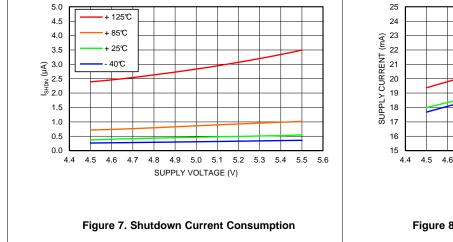
⁽¹⁾ All voltage values are with respect to network ground terminal.


⁽²⁾ Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but do represent the most likely norm. Unless otherwise specified, conditions for Typ specifications are: $V_{IN} = 5 \text{ V}$ and $T_{J} = 25^{\circ}\text{C}$. System Characteristics are highly dependent on external components and PCB layout. System Characteristics are verified using

inductor type: TOKO MDT2520-CN1R5M, input and output capacitor type: MuRata GRM21BR71A106KE51L.

6.7 Typical Characteristics

Unless otherwise noted, V_{IN} = 5 V, T_A = 25°C, inductor type: TOKO MDT2520-CN1R5M, input and output capacitor type: MuRata GRM21BR71A106KE51L.



www.ti.com.cn

Typical Characteristics (continued)

Unless otherwise noted, V_{IN} = 5 V, T_A = 25°C, inductor type: TOKO MDT2520-CN1R5M, input and output capacitor type: MuRata GRM21BR71A106KE51L.

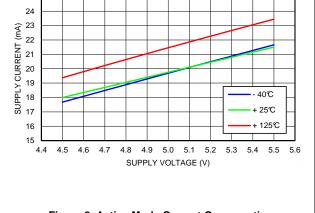
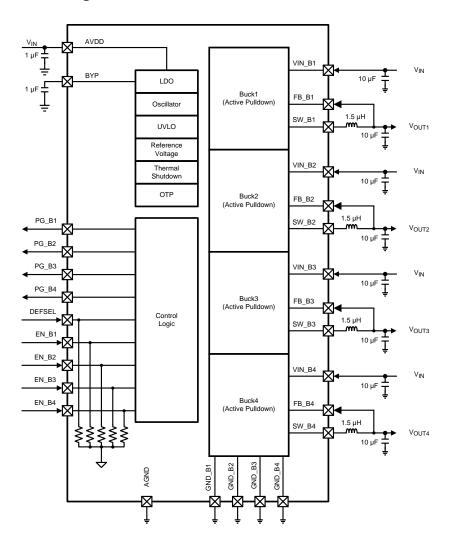


Figure 8. Active Mode Current Consumption (All Bucks Active)


7 Detailed Description

7.1 Overview

The LP8728C-Q1 has four integrated high-efficiency buck converters. Each buck converter has individual enable input and power good output pins. When the first enable pin is pulled high there is a 420-µs start-up delay when the device wakes up from the shutdown mode and all internal reference blocks are started up. Once reference blocks have settled, the corresponding buck converter turns on. Buck cores utilize the soft-start feature to limit the inrush current during start-up. Once a buck output reaches 96% (typical) of the desired output voltage, the power-good pin is pulled high (see Figure 9). When at least one buck core is active, the remaining buck converters will start up without any start-up delay.

If the output voltage drops below 93% (typical) of desired voltage due to, for example, an overload condition, the corresponding power-good pin is pulled low. The power-good signal is always held low for at least 50 ms. When the enable pin is pulled low, the corresponding buck converter's power good signals are set low, and the buck converter is instantly shut down. An output capacitor is then discharged through an internal $70-\Omega$ (typical) pulldown resistor. The pulldown resistor is connected between buck feedback pin and ground and is only active when the enable pin is set low. When all enable signals are pulled low, the LP8728C-Q1 enters a low current shutdown mode.

7.2 Functional Block Diagram

ZHCSDB1 - FEBRUARY 2015 www.ti.com.cn

7.3 Feature Description

7.3.1 Buck Information

The buck converters are operated in a forced PWM mode. Even with light load a minimum switching pulse is generated with every switching cycle. Each buck converter's high-side switch turn-on time is phase shifted to minimize the input current ripple (see Figure 20).

7.3.1.1 Features

The following features are supported for all converters:

- Synchronous rectification
- Current mode feedback loop with PI compensator
- Forced PWM operation
- Soft start
- Power-good output
- Overvoltage comparator

In addition to the aforementioned features, Buck3 output voltage can be selected with the DEFSEL pin. If the DEFSEL pin is pulled low, V_{OUT3} is set to 1.8 V. If DEFSEL is pulled high, V_{OUT3} is set to 2.65 V.

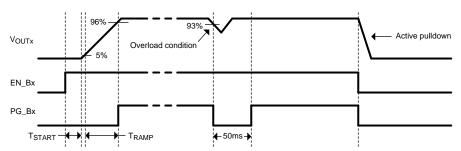


Figure 9. Buck Converter Start-up And Shutdown

7.3.2 Thermal Shutdown (TSD)

Thermal shutdown function shuts down all buck regulators if the device's junction temperature T_J rises above 150°C (typ.). All power-good signals are pulled low 5 ms before the buck regulators are shut down. Once T₁ falls below 130°C (typical), the LP8728 will automatically start up the buck regulators. There is a 2-second safety delay included in the restart function. Buck regulators are not restarted until 2 seconds have elapsed after T_J falls below 130°C (typical). To minimize the inrush current during restarting, regulators are started in a Buck1 → Buck2 → Buck3 → Buck4 sequence. A 500-µs delay is included between each buck start-up.

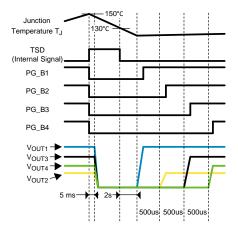


Figure 10. TSD Timing Diagram

Feature Description (continued)

7.3.3 Undervoltage Lockout (UVLO)

If input voltage drops below 2.7 V (typ.) the PG_Bx pins are pulled low and the buck converters are shut down. (Figure 11). The PG_Bx pins are always held low for at least 50 ms. The buck converters are restarted once the input voltage rises above UVLO level.

If a UVLO condition has lasted less than 50 ms, the PG_Bx pins are released high once 50 ms has elapsed and corresponding output voltage has settled. If an overvoltage condition has lasted more than 50 ms, the PG_Bx pins are released high once corresponding output voltage has settled.

Regulators are always restarted in a Buck1 \rightarrow Buck2 \rightarrow Buck4 sequence. A 500- μ s delay is included between each buck start- μ .

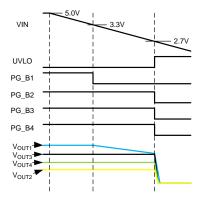


Figure 11. UVLO Operation

7.3.4 Overvoltage Protection (OVP)

Overvoltage protection protects the device in case of an overvoltage condition. If input voltage exceeds 5.7 V (typical), all PG_Bx pins are pulled low. the PG_Bx pins are always held low for at least 50 ms. Once the PG_Bx pins are pulled low, the system has 5 ms time to power down. After an overvoltage condition has lasted for 5 ms, all buck converters are shut down. The buck converters are restarted once input voltage falls below 5.62 V (typical). The buck converters are started in a Buck1 \rightarrow Buck2 \rightarrow Buck4 sequence. A 500- μ s delay is included between each buck start-up.

If an overvoltage condition lasted more than 5 ms, but less than 50 ms, the PG_Bx pins are released high once 50 ms has elapsed and the corresponding output voltage has settled (Figure 12).

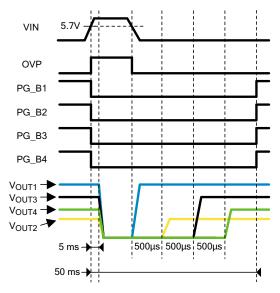


Figure 12. OVP Duration Less Than 50 ms

ZHCSDB1 - FEBRUARY 2015 www.ti.com.cn

Feature Description (continued)

If an overvoltage condition has lasted more than 50 ms, the power-good signals are released high once the corresponding output voltage has settled. Regulators are started in a buck1 → buck2 → buck3 → buck4 sequence. A 500-us delay is included between each buck start-up (Figure 13). If an overvoltage condition has lasted less than 5 ms, the buck converters are not shut down. Even in this case the PG Bx pins are held low for 50 ms.

NOTE

Since the regulators are allowed to operate for 5 ms during overvoltage condition it is the system designer's responsibility to verify that input voltage doesn't exceed limits stated in Absolute Maximum Ratings. Exceeding these limits may cause permanent damage to the device.

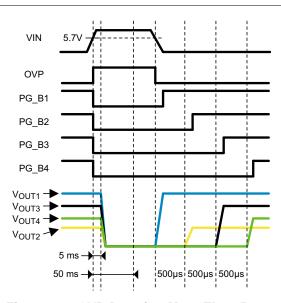


Figure 13. OVP Duration More Than 50 ms

7.4 Device Functional Modes

7.4.1 Shutdown Mode

When all EN Bx inputs are low, the device is in a Shutdown mode. This is a low-power mode when all buckregulators and all internal blocks are disabled.

7.4.2 Active Mode

When the first enable pin is pulled high there is a 420-us start-up delay when the device wakes up from the Shutdown; mode and all internal reference blocks are started up. Once the reference blocks have settled, the corresponding buck converter turns on. Buck cores utilize the soft-start feature to limit the inrush current during start-up. Once a buck output reaches 96% (typical) of the desired output voltage, the power-good pin is pulled high. When at least one buck converter is active device is in a Active mode. When device is in Active mode, the remaining buck converters will start up without any start-up delay when EN_Bx pin is pulled high. When EN_Bx pin is set low the corresponding buck converter will shut down. When all EN_Bx pins are set low the device shuts down all internal reference blocks and enters Shutdown mode.

If output voltage of a buck regulator falls below 93% (typical) of desired voltage due to, for example, an overload condition, the corresponding power good pin is pulled low. Once the output voltage rises back above 96% (typical) of desired voltage power good pin is set back high. Power good signal is held low for at least 50 ms.

Device Functional Modes (continued)

If OVP, or TSD fault occurs during normal operation, all power good pins are pulled low. Once fault condition has lasted for 5 ms all buck converters are shut down. In case of UVLO fault buck regulators are instantly shut down. Once fault condition has ended buck converters are restarted in a Buck1 \rightarrow Buck2 \rightarrow Buck3 \rightarrow Buck4 power-up sequence. A 500- μ s delay is included between each buck start-up. In case of TSD fault there is a 2-second safety delay before power-up sequence.

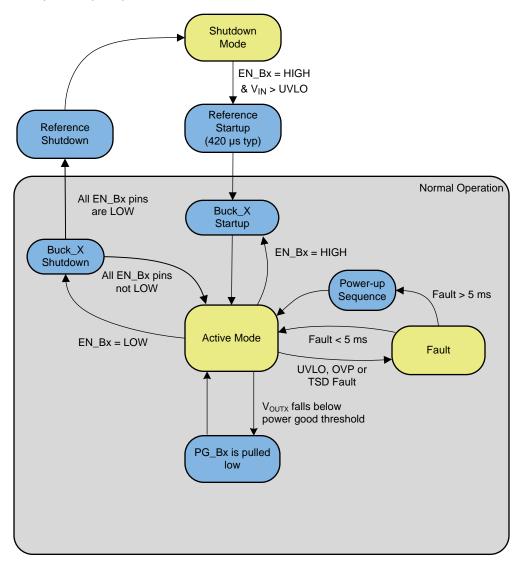


Figure 14. Device Functional Modes

www.ti.com.cn ZHCSDB1 – FEBRUARY 2015

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LP8728C-Q1 is a quad-output Power Management Unit (PMU), optimized for low-power FPGAs, microprocessors, and DSPs.

8.2 Typical Application

Figure 15 shows an example of a typical application. A microcontroller controls each buck converter with separate enable signals. All four power good signals are connected to a microcontroller with dedicated pullup resistors. If only one master power good signal is required all power good signals can be connected in parallel and pulled up with a single pullup resistor. V_{OUT3} output voltage can be selected with a DEFSEL input. If V_{OUT3} output voltage control is not required during operation, output voltage can be selected by connecting DEFSEL pin to VDDIO or to GND.

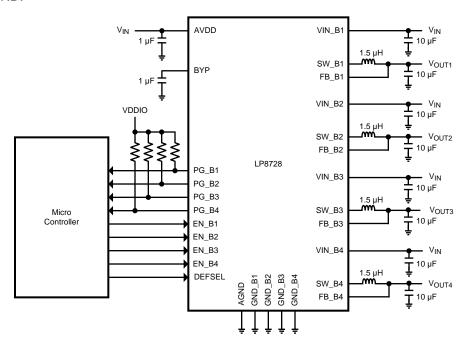


Figure 15. LP8728C-Q1 Typical Application Schematic

Typical Application (continued)

8.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE			
Input voltage range (V _{IN})	4.5 V to 5.5 V			
Buck converter output current	1 A maximum			
Buck converter input capacitance	10 μF, 6.3 V			
Buck converter output capacitance	10 μF, 6.3 V			
Buck converter inductor	1.5 μH, 1.5 A			
AVDD pin bypass capacitor	1 μF, 6.3 V			
BYP pin bypass capacitor	1 μF, 6.3 V			

8.2.2 Detailed Design Procedure

8.2.2.1 Inductor

The four converters operate with 1.5-µH inductors. The inductor has to be selected based on the DC resistance and saturation current. The DC resistance of the inductor directly effects the efficiency of the converter. Therefore, an inductor with the lowest possible DC resistance should be selected for good efficiency. The inductor should have a saturation current rating equal or higher than the high-side switch current limit (1500 mA). To minimize radiated noise shielded inductor should be used. The inductor should be placed as close to the LP8728C-Q1 as possible, and the trace from the inductor to the buck converter switch pin needs to be wide enough to withstand the high switching currents.

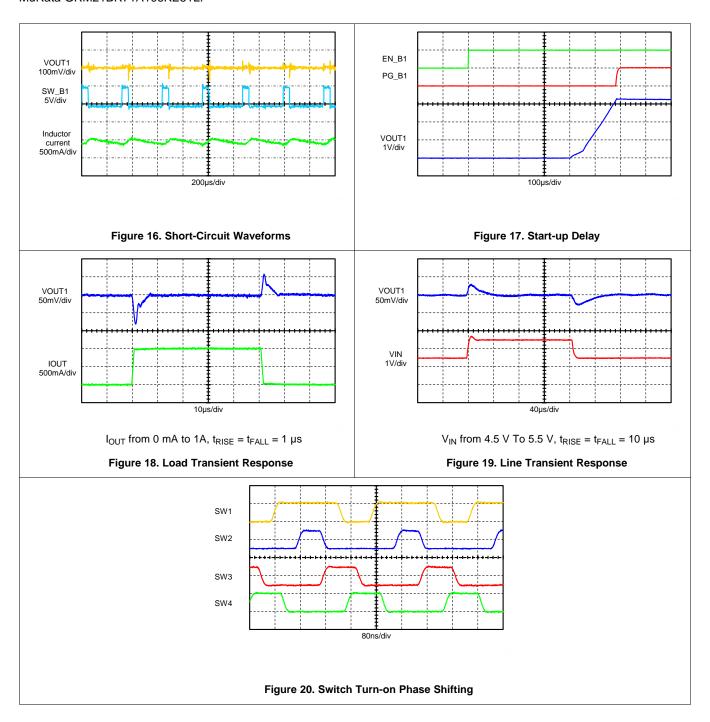
8.2.2.2 Input and Output Capacitors

Because buck converters have a discontinuous input current, a low equivalent series resistance (ESR) input capacitor is required for the best input-voltage filtering and to minimize interference with other circuits caused by high input voltage spikes. Each DC-DC converter requires a 10-µF ceramic input capacitor on its input pin VIN_Bx. The input capacitor capacitance can be increased without any limit for better input voltage filtering. Voltage rating of the capacitors should be at least 10V. A small 100-nF capacitor can be used in parallel to minimize high-frequency interferences. Input capacitors should be placed as close to the VIN_Bx pins as possible. Routing from input capacitor to VIN_Bx pins should be done on top layer without using any vias.

An output capacitor with a typical value of 10 μ F is recommended for each converter. Ceramic capacitors with low ESR value have lowest output voltage ripple and are recommended.

Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction with the increased applied DC voltage (DC bias effect). The capacitance value can fall below half of the nominal capacitance. This needs to be taken into consideration and, if necessary, use a capacitor with higher value or higher voltage rating.

Table 1. Recommended External Components


COMPONENT	DESCRIPTION	VALUE	TYPE	EXAMPLE	
C _{IN_B1,2,3,4}	Buck regulator input capacitor	10 μF	Ceramic, 10 V, X7R	MuRata, GRM21BR71A106KE51L	
C _{OUT_B1,2,3,4}	Buck regulator output capacitor	or output capacitor 10 μF Ceramic, 10 V, X7R		MuRata, GRM21BR71A106KE51L	
C _{AVDD}	AVDD pin input capacitor	1 μF	Ceramic, 10 V, X7R	MuRata, GRM188R71A105KA61D	
C _{BYP}	Internal LDO bypass capacitor	1 μF	Ceramic, 10 V, X7R	MuRata, GRM188R71A105KA61D	
L _{SW1,2,3 4}	Buck regulator inductor	1.5 µH	I_{SAT} >1.5 A, DCR < 100 m Ω	TOKO MDT2520-CN1R5M	

www.ti.com.cn

8.2.3 Application Performance Plots

Unless otherwise noted, V_{IN} = 5 V, T_A = 25°C, inductor type: TOKO MDT2520-CN1R5M, input and output capacitor type: MuRata GRM21BR71A106KE51L.

9 Power Supply Recommendations

The LP8728C-Q1 is designed to operate from an input voltage supply range between 4.5 V and 5.5 V. This input supply must be well regulated and capable to supply the required input current. If the input supply is located far from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

TEXAS INSTRUMENTS

10 Layout

10.1 Layout Guidelines

- AVDD and BYP pins must be bypassed to ground. 1-μF ceramic capacitor is recommended. Place the capacitors close to the AVDD, BYP, and AGND pins.
- AGND pin must be tied to the PCB ground plane. Use multiple vias to minimize the inductance.
- AVDD pin must be connected to PCB VIN plane. Use multiple vias to minimize the inductance.
- Place the buck converter input capacitors as close to the buck input voltage and buck ground pins as possible.
- Place the buck converter output capacitors and inductors so that the buck converter switching loops can be
 routed on top layer. Try to minimize the area of the switching loops.
- Keep the trace width from switch pin to inductor wide enough to withstand the switching currents. Avoid any excess copper on the switch node to minimize parasitic switch node capacitance.
- Connect the exposed thermal pad to ground plane with multiple thermal vias.
- Avoid routing digital signals directly under the switching loops to avoid interferences.

10.2 Layout Example

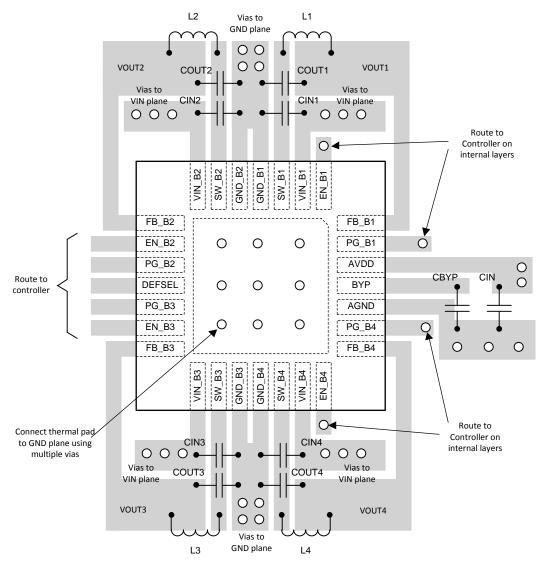


Figure 21. LP8728C-Q1 Layout Example

11 器件和文档支持

11.1 器件支持

www.ti.com.cn

11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.2 相关文档

相关文档如下:

德州仪器 (TI) 应用手册 1187《无引线框架封装 (LLP)》(文献编号: SNOA401)。

有关 LP8728 评估模块的更多信息,请参见《使用 LP8728EVM 评估模块》(文献编号: SNVU231)。

11.3 商标

All trademarks are the property of their respective owners.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.5 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

12 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

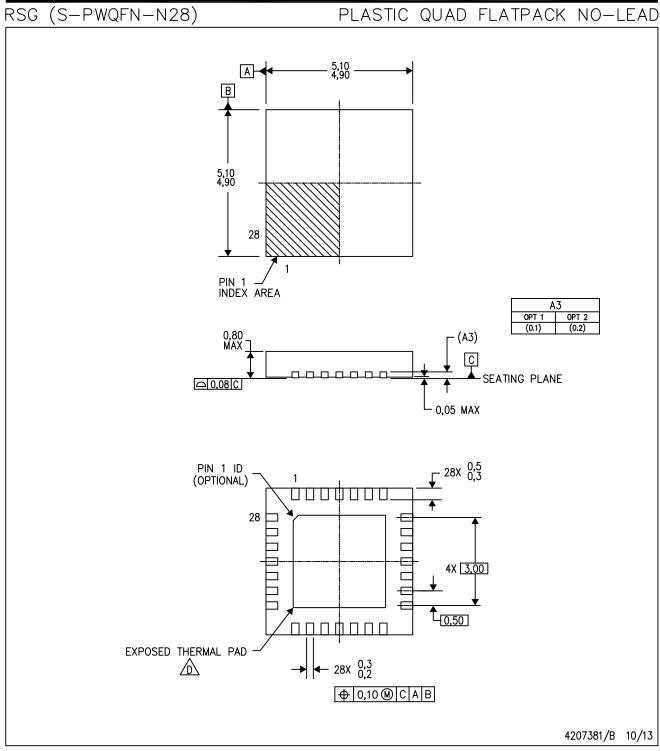
Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LP8728QSQX-C/NOPB	Active	Production	WQFN (RSG) 28	4500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	8728Q-C
LP8728QSQX-C/NOPB.A	Active	Production	WQFN (RSG) 28	4500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	8728Q-C
LP8728QSQX-C/NOPB.B	Active	Production	WQFN (RSG) 28	4500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	8728Q-C

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. Falls within JEDEC MO-220.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月