

SN65LVDS314

ZHCS415A – AUGUST 2012 – REVISED SEPTEMBER 2012

可编程 27 位串行至并行接收器

查询样品: SN65LVDS314

特性

- 串行接口技术
- 与 Flatlink™3G 兼容,例如 SN65LVDS301 和 SN65LVDS311
- 支持在 1,2 或 3 条超低压 (subLVDS) 差分线路 上接收高达 24 位 RGB 数据和 3 个控制位的视频 接口
- **subLVDS** 差分电压电平
- 1.8V 至 3.3V 灵活的 RGB 信令电平
- 高达 1.755Gbps 数据吞吐量
- 三个运行模式以达到节能的目的
 - 有源模式四分之一 VGA (QVGA)-17mW
 - 典型关断模式 0.6µW
 - 典型待机模式-典型值 54µW
- 用于实现印刷电路板 (PCB) 布局布线灵活性的总线 交换
- 静电放电 (ESD) 额定值 > 4kV (人体模型 (HBM))
- 4MHz-65MHz 的像素时钟范围
- 全部 CMOS 输入上的故障安全特性
- 采用 8mm x 8mm 四方扁平无引线 (QFN) 封装, 焊球间距 0.4mm
- 极低的电磁干扰 (EMI),符合 SAE J1752/3 'Kh' 技 术规范

应用范围

- 图形控制器和 LCD 显示间的小型低辐射接口
- 相机、摄像机、嵌入式计算机
- 便携式多媒体播放器

说明

SN65LVDS314 接收器将与 FlatLink™3G 兼容的串行 输入数据解串行并成为 27 个并行数据输出。 SN65LVDS314 接收器包含一个移位寄存器,在检查 奇偶校验位之后,此寄存器从 1,2 或 3 个串行输入载 入 30 个位,并且锁存 24 个像素位和 3 个控制位输出 至并行 CMOS 输出。如果奇偶校验确认奇偶校验正 确,通道奇偶校验错误 (CPE) 输出保持低电平。如果 检测到奇偶校验错误, CPE 输出生成一个高脉冲,而 数据输出总线忽略刚刚接收到的像素。或者,最后一 个数据字在下一个时钟周期内被保持在输出总线上。 串行数据和时钟通过超低压差分信令 (subLVDS) 线路 接收。为了节能, SN65LVDS314 支持三个运行模 式(关断、待机和激活)。

当接收时,锁相环 (PLL) 锁定至下一个时钟 CLK 并且 在数据线路的线路速率上生成一个内部高速时钟。 使 用此内部高速时钟将数据串行载入到一个的移位寄存器 内。 在从内部高速时钟中重新创建像素时钟 PCLK 时,被并行化的数据出现在并行输出总线上。 如果没 有出现输入 CLK 信号,在 PCLK 和 DE 被保持在低电 平时,输出总线被保持在静止状态,而所有其它并行输 出被拉至高电平。

并行 (CMOS) 输出总线提供一个总线交换特性。 SAWP (交换) 控制位将输出像素数据的输出引脚顺序 控制为 R[7:0] G[7:0], B[7:0], VS, HS, DE 或 B[0:7], G[0:7], R[0:7], VS, HS, DE。这为 PCB 设计人员提供了适当的灵活性来更好将总线与 LCD 驱 动器输出引脚相匹配或者将接收器器件放置在 PCB 的 顶部或者底部。F/S 控制输入在一个针对最佳 EMI 的 慢速 CMOS 总线输出上升时间与功耗和针对增速或者 更高负载设计的快速 CMOS 输出间进行选择。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Flatlink is a trademark of Texas Instruments.

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

这些装置包含有限的内置 ESD 保护。

、存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

说明(继续)

两个链路选择线路 LSO 和 LS1 选择使用的 1,2 或 3 条串行链路。 RXEN 输入可被用于将 SN65LVDS314 置于一 个关断模式中。 如果 CLK 输入的共模电压被移位至 VDDLVDS(例如,发送器将 CLK 输出释放为高阻抗状 态),那么 SN65LVDS314 进入一个有源待机模式。 这在无需切换一个外部控制引脚的前提下可大大减少功耗。 SN65LVDS314 额定运行环境温度范围为 -40℃ 至 85℃。 所有 CMOS 和 subLVDS 信号在 V_{DD}=0V 时的耐压为 2V。这一特性可实现 V_{DD}稳定前的信号加电。

FUNCTIONAL BLOCK DIAGRAM

SN65LVDS314 ZHCS415A – AUGUST 2012– REVISED SEPTEMBER 2012

www.ti.com.cn

PINOUT – TOP VIEW

RGB output pin assignment based on SWAP pin setting: SWAP = 0 / SWAP = 1

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

SWAP PIN FUNCTIONALITY

The SWAP pin allows the pcb designer to reverse the RGB bus, minimizing potential signal crossovers due to signal routing. The two drawings beneath show the RGB signal pin assignment based on the SWAP-pin setting.

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

ZHCS415A – AUGUST 2012 – REVISED SEPTEMBER 2012

www.ti.com.cn

INSTRUMENTS

Texas

PN SWAP SIGNAL PN SWAP SIGNAL PN SWAP SIGNAL PN SWAP SIGNAL 1 L R5 22 - GND_LVDS A3 H R5 2 L R6 23 - VDD_LVDS A4 L B6 3 H B1 23 - VDD_LVDS A4 L B6 4 - LS0 25 - SWAP A4 - GND 5 - LS0 25 - SWAP A6 - GND 6 - LS1 27 - VDD_PLLA 48 - CPOLO 6 - LS1 27 - VDD_PLLA 48 - CPOLO 7 - VDD_LUDS 28 - RXEN 49 L 60 9 - VDD_LUDS 30 - CPE 1<	Table 1. Pin Description								
I I R5 22 - GND_LVDS A3 I B6 2 I R6 23 - VDD_LVDS A4 H R2 3 I R7 24 - VDD_LVDS A4 H R1 3 I R7 24 - SWAP A5 I B7 4 I.S0 25 I SWAP A6 I GND 5 I VDD 26 I GND_PLLA A7 I VDD_IO 6 I.S1 27 I VDD_PLLA A7 I VDD_IO 6 I.S1 27 I VDD_PLLA A7 I VDD_IO 6 I.S1 27 I VDD_PLA A7 I III IIII IIII IIII IIII IIII IIII IIII IIII	PIN	SWAP	SIGNAL	PIN	SWAP .	SIGNAL	PIN	SWAP	SIGNAL
H B2 22 - GND_LVDS 4.3 H R2 2 L R6 23 - VDD_LVDS 44 L B8 3 H B0 24 - VDD_LVDS 45 H R1 4 - LS0 25 - SWAP 46 - GND 5 VDD 26 - GWAP_LLA 47 - VDD_LO 6 - LS1 27 - VDD_PLLA 46 - GND 7 - VDD_PLD 28 - RXEN 49 L 60 7 - VDD_LVDS 30 - PE 1 G1 66 9 - VDD_LVDS 30 - CPE 51 L 63 10 - GND_LVDS 31 - PDE 53 H G3 11 - D2	4	L	R5	22			42	L	B5
Image: here in the image: here in	I	Н	B2	22	-	GND_LVDS	43	н	R2
1 H B1 23 - VDD_LVDS 44 H R1 3 L R7 24 - VDD_LVDS 45 L 87 4 - LS0 25 - SWAP 46 - GND 5 - VDD 26 - GND_PLLA 47 - VDD, 0 6 - LS1 27 - VDD_PLLA 48 - CPOL 6 - LS1 27 - VDD_PLA 48 - CPOL 7 - LS1 27 - VDD_PLA 48 - CPOL 7 - LS1 27 - VDD_PLA 48 - CPOL 7 - VDD_PLD 28 - RXEN 40 - 67 9 - VDD_LVDS 30 - CPE 51 H 63 <td< td=""><td>0</td><td>L</td><td>R6</td><td>22</td><td></td><td></td><td>44</td><td>L</td><td>B6</td></td<>	0	L	R6	22			44	L	B6
1 R7 24 - VDD_LVDS 45 L B7 4 KS 25 SWAP 46 GND 4 VDD 26 GND_PLLA 46 GND 6 VDD 26 GND_PLLA 46 GND 6 LS1 27 VDD_PLLA 48 CPOL 6 VDD_PLDD 28 VDD_PLA 48 CPOL 7 VDD_PLDD 28 VS 49 L GO 8 GND_PLDS 30 CPE FXEN H GE 9 GND_LVDS 31 CPE H GE GE 10 D2+ 32 HS 53 L GE 11 D2+ 33 DE H GE H GE 13 D2+ 33 F/S 56 H GE GE 14 <td>Z</td> <td>Н</td> <td>B1</td> <td>23</td> <td>-</td> <td>VDD_LVD3</td> <td>44</td> <td>Н</td> <td>R1</td>	Z	Н	B1	23	-	VDD_LVD3	44	Н	R1
H B0 24 - VDL_UOS 43 H R0 4 - LS0 25 - SWAP 46 - GND 5 - VDD 26 - GND_PLLA 47 - VDD_O 6 - LS1 27 - VDD_PLLA 48 - CPOL 7 - VDD_PLLD 28 - RXEN 49 L 60 7 - VDD_LVDS 29 - VS 50 H 66 9 - VD_LVDS 30 - CPE 61 H 62 10 - GND_LVDS 31 - CPE 61 H 63 11 - D2+ 32 - HS 53 L 63 12 - D2+ 33 - DE 56 L 66 14 -	0	L	R7	04			45	L	B7
4 LS0 25 SWAP 46 GND 5 VDD 26 GND_PLLA 47 VDD_D 6 LS1 27 VDD_PLLA 48 VDD_LCD 7 VDD_PLD 28 RXEN 48 CPCL 8 GND_PLD 28 RXEN 49 GO 9 GND_PLDS 28 CPE 1 GI GI 9 MD_LVDS 31 CPE 1 GI GI 10 GND_LVDS 31 MDE 53 I GI 11 D2 33 DE 55 I GI 12 GND_LVDS 37 GND GI	3	Н	B0	24	-	VDD_LVDS	45	Н	R0
5VDD26GND_PLLA477VDD_IO6LS127VDD_PLLA448CPCL7VDD_PLLD28RXEN449GO7RDP_PLLD28RXEN449GO8GO9<	4	-	LS0	25	-	SWAP	46	-	GND
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	-	VDD	26	-	GND_PLLA	47	-	VDD_IO
$ \begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	6	-	LS1	27	-	VDD_PLLA	48	-	CPOL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						10	L	G0
$ \begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	1	-	VDD_PLLD	28	-	RXEN	49	Н	G7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0			00			50	L	G1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	-	GND_PLLD	29	-	VS	50	Н	G6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.55		L	G2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	-	VDD_LVDS	30	-	CPE	51	Н	G5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								L	G3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	-	GND_LVDS	31	-	VDD	52	Н	G4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								L	G4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	-	D2+	32	-	HS	53	Н	G3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								L	G5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	-	D2-	33	-	DE	54	Н	G2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								L	G6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	-	GND_LVDS	34	-	VDD_IO	55	Н	G1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								L	G7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	-	D1+	35	-	F/S	56	Н	G0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	-	D1-	36	-	PCLK	57	-	GND
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	-	GND_LVDS	37	-	GND	58	-	VDD_IO
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				a -	L	B0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	-	CLK+	38	Н	R7	59	-	VDD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					L	B1		L	R0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	-	CLK-	39	Н	R6	60	Н	B7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	L	B2		L	R1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	-	GND_LVDS	40	Н	R5	61	н	B6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					L	B3		L	R2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	-	D0+	41	Н	R4	62	Н	B5
21 - D0- 42 H R3 63 H B4 64 L R4 H R3					L	B4		L	R3
64 L R4 H B3	21	-	D0-	42	Н	R3	63	Н	B4
64 H B3								L	R4
11 D0								Н	B3

SN65LVDS314

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

TERMINAL FUNCTIONS

NAME	I/O	DESCRIPTION
D0+, D0-		SubLVDS Data Link (active during normal operation)
D1+, D1–	SubLVDS in	SubLVDS Data Link (active during normal operation when $LS0 = high and LS1 = low, or LS0 = low and LS1=high; high impedance if LS0 = LS1 = low); input can be left open if unused$
D2+, D2–		SubLVDS Data Link (active during normal operation when LS0 = low and LS1 = high, high-impedance when LS1 = low); input can be left open if unused
CLK+, CLK-		SubLVDS Input Pixel Clock; Polarity is fixed.
R0–R7		Red Pixel Data (8); pin assignment depends on SWAP pin setting
G0–G7		Green Pixel Data (8); pin assignment depends on SWAP pin setting
B0–B7		Blue Pixel Data (8); pin assignment depends on SWAP pin setting
HS	CMOS out	Horizontal Sync
VS		Vertical Sync
DE		Data Enable
PCLK		Output Pixel Clock; rising or falling clock polarity is selected by control input CPOL
LS0, LS1		Link Select (Determines active SubLVDS Data Links and PLL Range) See Table 2
		Disables the CMOS Drivers and Turns Off the PLL, putting device in shutdown mode
		1 – Reciver enabled 0 – Receiver disabled (Shutdown)
RXEN		Note: RXEN input incorporates glitch suppression logic to avoid unwanted switching. The input must be pulled low for longer than 10µs continuously to force the receiver to enter Shutdown. The input must be pulled high for at least 10µs continuously to activate the receiver. An input pulse shorter than 5us will be interpreted as glitch and becomes ignored. At power up, the receiver is enabled immediately if RXEN=H and disabled if RXEN=L
	CMOS in	Output Clock Polarity Selection
CPOL		0 – rising edge clocking 1 – falling edge clocking
014/4 D		Bus Swap swaps the bus pins to allow device placement on top or bottom of PCB. See pinout drawing for pin assignments.
SWAP		0 – data output from R7B0 1 – data output from B0R7
		CMOS bus rise time select
F/S		1 – fast output rise time 0 – slow output rise time
CPE	CMOS out	Channel Parity Error This output indicates the detection of a parity error by generating an output high-pulse for half of a PCLK clock cycle; this allows counting parity errors with a simple counter. 0 – no error
		high-pulse – bit error detected
V _{DD}		Supply Voltage
V _{DD_IO}		RGB interface supply voltage
GND	Power Supply	Supply Ground
V _{DDLVDS}		SubLVDS I/O supply Voltage
GND _{LVDS}		SubLVDS Ground
V _{DDPLLA}		PLL analog supply Voltage
GND _{PLLA}		PLL analog GND
V _{DDPLLD}		PLL digital supply Voltage
GND _{PLLD}		PLL digital GND

FUNCTIONAL DESCRIPTION

Deserialization Modes

The SN65LVDS314 receiver has three modes of operation controlled by link-select pins LS0 and LS1. Table 2 shows the deserializer modes of operation.

LS1	LS0		Mode of Operation	Data Links Status
0	0	1ChM	1-channel mode (30-bit serialization rate)	D0 active; D1, D2 disabled
0	1	2ChM	2-channel mode (15-bit serialization rate)	D0, D1 active; D2 disabled
1	0	3ChM	3-channel mode (10-bit serialization rate)	D0, D1, D2 active
1	1		Reserved	Reserved

Table 2. Logic Table: Link Select Operating Modes

1-Channel Mode

While LS0 and LS1 are held low, the SN65LVDS314 receives payload data over a single SubLVDS data pair, D0. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 30. The internal high speed clock is used to shift in the data payload on D0 and to deserialize 30 bits of data. Figure 3 illustrates the timing and the mapping of the data payload into the 30-bit frame. The internal high speed clock is divided by a factor of 30 to recreate the pixel clock and the data payload with the pixel clock is presented on the output bus. The reserved bits and parity bit are not output. While in this mode, the PLL can lock to a clock that is in the range of 4 MHz through 15 MHz. This mode is intended for smaller video display formats that do not need the full bandwidth capabilities of the SN65LVDS314.

Figure 3. Data and Clock Input in 1-ChM (LS0 and LS1 = low)

2-Channel Mode

While LS0 is held high and LS1 is held low, the SN65LVDS314 receives payload data over two SubLVDS data pairs, D0 and D1. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 15. The internal high speed clock is used to shift in the data payload on D0 and D1 and to deserialize 15 bits of data from each pair. Figure 4 illustrates the timing and the mapping of the data payload into the 30-bit frame. The internal high speed clock is divided by a factor of 15 to recreate the pixel clock, and the data payload with pixel clock is presented on the output bus. The reserved bits and parity bit are not output. While in this mode the PLL can lock to a clock that is in the range of 8 MHz through 30 MHz.

Figure 4. Data and Clock Input in 2-ChM (LS0 = high; LS1 = low)

3-Channel Mode

www.ti.com.cn

While LS0 is held low and LS1 is held high the SN65LVDS314 receives payload data over three SubLVDS data pairs: D0, D1, and D2. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 10. The internal high speed clock is used to shift in the data payload on D0, D1, and D2, and to deserialize 10 bits of data from each pair. Figure 5 illustrates the timing and the mapping of the data payload into the 30-bit frame. While in this mode the PLL can lock to a clock that is in the range of 20 MHz through 65 MHz.

Figure 5. Data and Clock Input in 3-ChM (LS0 = low; LS1 = high)

POWERDOWN MODES

The SN65LVDS314 Receiver has two powerdown modes to facilitate efficient power management.

SHUTDOWN MODE

A low input signal on the RXEN pin puts the SN65LVDS314 into Shutdown mode. This turns off most of the receiver circuitry including the SubLVDS receivers, PLL, and deserializers. The subLVDS differential-input resistance remains 100 Ω , while any input signal is ignored. All outputs will hold a static output pattern:

R[0:7]=G[0:7]=B[0:7]=VS=HS=high; DE=PCLK=low.

The current draw in Shutdown mode will be nearly zero if the subLVDS inputs are left open or pulled high.

STANDBY MODE

The SN65LVDS314 will enter the Standby mode when the SN65LVDS314 is not in Shutdown mode but the SubLVDS clock-input common-mode voltage is above $0.9 \times V_{DDLVDS}$. The CLK input incorporates a pull-up circuit to shift the SubLVDS clock-input common-mode voltage to V_{DDLVDS} in the absence of an input signal. All circuitry except the SubLVDS clock-input Standby monitor is shut down. The SN65LVDS314 will also enter Standby mode when the input clock frequency on the CLK input is less than 500 kHz. The SubLVDS input resistance remains 100 Ω while any input signal on the data inputs D0, D1, and D2 becomes ignored. All outputs will hold a static output pattern:

R[0:7]=G[0:7]=B[0:7]=VS=HS=high; DE=PCLK=low.

The current drawn in Standby mode will be very low.

ACTIVE MODES

A high input signal on RXEN combined with a CLK input signal switching faster than 3 MHz and V_{ICM} smaller than 1.3 V force the SN65LVDS314 into Active mode. Current consumption in active mode depends on operating frequency and the number of data transitions in the data payload. CLK-input frequencies between 3 MHz and 4 MHz activate the device but proper PLL functionality is not secured. It is not recommended to operate the SN65LVDS314 in active mode at CLK frequencies below 4 MHz.

ACQUIRE MODE (PLL Approaches Lock)

When the SN65LVDS314 is enabled and a SubLVDS clock input present, the PLL will pursue lock to the input clock. While the PLL pursues lock the output data bus will hold a static output pattern:

R[0:7]=G[0:7]=B[0:7]=VS=HS=high; DE=PCLK=low.

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

www.ti.com.cn

For proper device operation, the pixel clock frequency must fall within the valid f_{PCLK} range specified under recommended operating conditions. If the pixel clock frequency is larger than 3 MHz but smaller than $f_{PCLK(min)}$, the SN65LVDS314 PLL is enabled. Under such conditions, it is possible for the PLL to lock temporarily to the pixel clock, causing the PLL monitor to release the device into active receive mode. If this happens, the PLL may or may not be properly locked to the pixel clock input, potentially causing data errors, frequency oscillation, and PLL deadlock (loss of VCO oscillation).

RECEIVE MODE

After the PLL achieves lock the device enters the normal receive mode. The output data bus presents the deserialized data. The PCLK output pin outputs the recovered pixel clock.

PARITY ERROR DETECTION AND HANDLING

The SN65LVDS314 receiver performs error checking on the basis of a parity bit that is transmitted across the subLVDS interface from the transmitting device. Once the SN65LVDS314 detects the presence of the clock and the PLL has locked onto PCLK, then the parity is checked. Parity-error detection ensures detection of all single bit errors in one pixel and 50% of all multi-bit errors.

The parity bit covers the 27 bit data payload consisting of 24 bits of pixel data plus VS, HS, and DE. Odd Parity bit signalling is used. The parity error is output on the CPE pin. If the sum of the 27 data bits and the parity bit result in an odd number, the receive data are assumed to be valid. The CPE output will be held low. If the sum equals an even number, parity error is declared. The CPE output will indicate high for half a PCLK period. The CPE output will be set with the data bit transition and cleared after 1/2 the data bit time. This allows counting every detected parity error with a simple counter connected to CPE.

Also if there is a parity error detected then the data on that PCLK cycle is not output. Instead, the last valid data from a previous PCLK cycle is repeated on the output bus. This is to prevent any bit error that may occur on the LVDS link from causing perturbations in VS, HS, or DE that may be visually disruptive to a display.

The reserved bits are not covered in the parity calculations.

STATUS DETECT AND OPERATING MODES FLOW DIAGRAM

The SN65LVDS314 switches between the power saving and active modes in the following way:

Table 3. Status Detect and Operating Modes Descriptions

Mode	Characteristics	Conditions
Shutdown Mode	Least amount of power consumption (most circuitry turned off); All outputs held static: R[0:7]=G[0:7]=B[0:7]=VS=HS=high DE=PCLK=low;	RXEN is set low for longer than 10 μ s ⁽¹⁾ ⁽²⁾
Standby Mode	Low power consumption (Standby monitor circuit active; PLL is shutdown to conserve power); All outputs held static: R[0:7]=G[0:7]=B[0:7]=VS=HS=high DE=PCLK=low;	RXEN is high for longer than 10 $\mu s,$ and both CLK input common-mode $V_{ICM(CLK)}$ above $0.9 \times V_{DDLVDS},$ or CLK input floating $^{(2)}$
Acquire Mode	PLL pursues lock; All outputs held static: R[0:7]=G[0:7]=B[0:7]=VS=HS=high DE=PCLK=low;	RXEN is high; CLK input monitor detected clock input common mode and woke up receiver out of Standby mode
Receive Mode	Data transfer (normal operation); receiver deserializes data and provides data on parallel output	RXEN is high and PLL is locked to incoming clock

(1) In Shutdown Mode, all SN65LVDS314 internal switching circuits (e.g., PLL, serializer, etc.) are turned off to minimize power consumption. The input stage of any input pin remains active.

(2) Leaving CMOS control inputs unconnected can cause random noise to toggle the input stage and potentially harm the device. All CMOS inputs must be tied to a valid logic level V_{IL} or V_{IH} during Shutdown or Standby Mode. Exceptions are the subLVDS inputs CLK and Dx, which can be left unconnected while not in use.

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

Copyright © 2012, Texas Instruments Incorporated

MODE TRANSITION	USE CASE	TRANSITION SPECIFICS					
Shutdown \rightarrow Standby	Drive RXEN high to enable	1. RXEN high > 10 μs					
	receiver	2. Receiver enters standby mode					
		a. R[0:7]=G[0:7]=B[0:7]=VS=HS remain high and DE=PCLK low					
		b. Receiver activates clock input monitor					
Standby \rightarrow Acquire	Transmitter activity	1. CLK input monitor detects clock input activity					
	detected	2. Outputs remain static					
		3. PLL circuit is enabled					
Acquire \rightarrow Receive	Link is ready to receive data	1. PLL is active and approaches lock					
		2. PLL achieves lock within twakeup					
		3. D1, D2, and/or D3 become active depending on LS0 and LS1 selection					
		4. First Data word was recovered					
		Parallel output bus turns on switching from static output pattern to output first valid data word					
Receive \rightarrow Standby	Transmitter requested to	1. Receiver disables outputs within t _{standby}					
	enter Standby mode by	2. RX Input monitor detects V_{ICM} > 0.9 VDD _{LVDS} within t _{standby}					
	voltage $V_{ICM} > 0.9 V_{DDLVDS}$ (e.g. transmitter output	 R[0:7]=G[0:7]=B[0:7]=VS=HS transition to high and DE=PCLK to low on next falling PLL clock edge 					
	clock stops or enters high- impedance state)	4. PLL shuts down. Clock activity input monitor remains active					
Receive/Standby →	Turn off Receiver	1. RXEN pulled low for > t _{pwrdn}					
Shutdown		 R[0:7]=G[0:7]=B[0:7]=VS=HS remain static high or transition to static high and DE=PCLK remain or transition to static low 					
		3. Most IC circuitry is shut down for least power consumption					

RGB Signaling Level

The signaling level of the R[0:7], G[0:7], B[0:7], HS, VS, DE, and PCLK outputs of the SN65LVDS314 can be configured to be between 1.8 V and 3.3 V (nominal), depending on the voltage applied to the VDD_IO terminals. This provides compatibility with LCD drivers with interface voltages between 1.8 V and 3.3 V without the need for external level shifters.

www.ti.com.cn

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

		VALUE	UNIT	
Supply voltage range, V_{DD}	⁽²⁾ , V _{DDPLLA} , V _{DDPLLD} , V _{DDLVDS}	-0.3 to 2.175	V	
Supply voltage range, V _{DD_IO}		–0.3 to 3.6	V	
Voltage range at any input	When VDDx > 0 V	-0.5 to 2.175	V	
or output terminal	When VDDx ≤ 0 V	–0.5 to V _{DD} + 2.175	v	
Electrostatic discharge	Human Body Model ⁽³⁾ (all Pins)	±4	kV	
Electrostatic discharge	Charged-Device Mode ⁽⁴⁾ (all Pins)	±1000	V	
	Machine Model ⁽⁵⁾ (all pins)	±200	v	
Continuous power dissipation	n	See Dissipation Rating	g Table	
Ouput current, I _O		±5	mA	
Storage temperature, T _{STG}		-65 to 150	°C	
Maximum junction temperat	ure, T _J	125	°C	

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to the GND terminals (2)

In accordance with JEDEC Standard 22, Test Method A114-B In accordance with JEDEC Standard 22, Test Method C101 (3)

(4)

In accordance with JEDEC Standard 22, Test Method A115-A (5)

THERMAL INFORMATION

THERMAL METRIC ⁽¹⁾		SN65LVDS314 RSK	UNITS
		64 PINS	••••••
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	31.7	
θ _{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	20	
θ_{JB}	Junction-to-board thermal resistance ⁽⁴⁾	9.9	°C 111
Ψ _{JT}	Junction-to-top characterization parameter ⁽⁵⁾	0.3	C/VV
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	9.9	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	2.4	

(1) 有关传统和新的热度量的更多信息,请参阅*IC 封装热度量*应用报告, SPRA953。

- 在 JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环 (2) 境热阻。
- 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30-(3) 88 中能找到内容接近的说明。
- 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。 (4)
- 结至顶部特征参数, ψ_{JT},估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参 (5) 数以便获得 θ_{JA}。
- ·结至电路板特征参数, ψ_{JB},估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该 (6) 参数以便获得 θ_{JA} 。 通过在外露(电源)焊盘上进行冷板测试仿真来获得 结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准 测试,但可在 ANSI SEMI
- (7)标准 G30-88 中能找到内容接近的说明。

DEVICE POWER DISSIPATION

	PARAMETER TEST CONDITIONS		TYP	MAX	UNIT	
		1/1 1 0 $1/1$ 25% of events terminated with 10 pc	f _{CLK} at 4 MHz	12.8		
_	Device Power	$v_{DDx} = 1.8 \text{ v}, T_A = 25 \text{ C}, all outputs terminated with to pr$	f _{CLK} at 65 MHz	59.2		mvv
PD	Dissipation	$V_{DD} = V_{DDPLLA} = V_{DDPLD} = V_{DD} V_{DS} = 1.95 V, V_{DD} = 3.6 V,$	f _{CLK} at 65 MHz 59.2 f _{CLK} at 4 MHz 41			
		all outputs terminated with 10 pF	f _{CLK} at 65 MHz		261.9	mvv

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

www.ti.com.cn

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	TYP MAX	UNIT
V _{DD} V _{DDPLLA} V _{DDPLLD} V _{DDLVDS}	Supply voltages		1.65	1.8 1.95	V
V _{DD_IO}	Supply voltage for CMOS outputs		1.65	3.6	V
		Test set-up see Figure 7			
V	Supply voltage noise magnitude	$f_{CLK} \le 50MHz$; f(noise) = 1Hz to 2 GHz		100	m\/
VDDn(PP)	50MHz (all supplies)	f_{CLK} > 50MHz; f(noise) = 1Hz to 1MHz		100	IIIV
		$f_{CLK} > 50 \text{ MHz}; \text{ f(noise)} > 1 \text{MHz}$		40	
T _A	Operating free-air temperature		-40	85	°C
T _C	Case temperature			93.1	°C
CLK+ and	CLK-				
		1-Channel receive mode, see Figure 3	4	15	
f	Input Pixel clock frequency	2-Channel receive mode, see Figure 4	8	30	MHz
'CLK±	input i kei clock nequency	3-Channel receive mode, see Figure 5	20	65	
		Standby mode ⁽²⁾ , See Figure 16		500	kHz
t _{DUTCLK}	CLK Input Duty Cycle		35	65	%
D0+, D0–, C	01+, D1–, D2+, D2-, CLK+, and CLK–		1		
V _{ID}	Magnitude of differential input voltage	$\label{eq:VD0+} $$ V_{D0+} V_{D0+}, V_{D1+} V_{D1-} , V_{D2+} V_{D2-} , V_{CLK+} V_{CLK+} during normal operation $$$	70	200	mV
VICM	Input Voltage Common Mode Range	Receive or Acquire mode	0.6	1.2	V
		Stand-by mode	$0.9 \times V_{DDLVDS}$		
ΔV_{ICM}	Input Voltage Common Mode Variation between all SubLVDS inputs	$V_{ICM(n)}-V_{ICM(m)}$ with n=D0, D1, D2, or CLK and m=D0, D1, D2, or CLK	-100	100	mV
ΔV_{ID}	Differential Input Voltage Amplitude Variation between all SubLVDS inputs	$V_{ID(n)}-V_{ID(m)}$ with n=D0, D1, D2, or CLK and m=D0, D1, D2, or CLK	-10	10	%
t _{R/F}	Input Rise and Fall Time	RXEN at VDD; see figure 10		800	ps
Δ t _{R/F}	Input Rise or Fall Time mismatch between all SubLVDS inputs	$t_{R(n)}-t_{R(m)}$ and $t_{F(n)}-t_{F(m)}$ with n=D0, D1, D2, or CLK and m=D0, D1, D2, or CLK	-100	100	ps
LS0, LS1, C	POL, SWAP, RXEN, F/S				
VICMOSH	High-level input voltage		$0.7 \times V_{DD}$	V _{DD}	V
VICMOSL	Low-level input voltage		0	0.3×V _{DD}	V
t _{inRXEN}	RXEN input pulse duration		10		μs
R[7:0], G[7	0], B[7:0], VS, HS, DE, PCLK, CPE				1
CL	Output load capacitance			10	pF

(1) (2)

Unused single-ended inputs must be held high or low to prevent them from floating. PCLK input frequencies lower than 500 kHz force the SN65LVDS314 into standby mode. Input frequencies between 500 kHz and 3 MHz may or may not activate the SN65LVDS314. Input frequencies beyond 3 MHz activate the SN65LVDS314. Input frequencies between 500 kHz and 4 MHz are not recommended, and can cause PLL malfunction.

DEVICE ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PA	RAMETER		TEST CONDITIO	NS		MIN TYP ⁽¹⁾	MAX ⁽²⁾	UNIT
					V _{DD_IO} = 1.8 V	7.1		
			Typical power test pattern (see Table 6);	$f_{PCLK} = 4 MHz$	$V_{DD_{IO}} = 2.5 V$	8.2		mA
			All CMOS outputs terminated with 10 pF;		V _{DD_IO} = 3.3 V	10.3		
			F/S at GND and RXEN at V _{DD} ;		V _{DD_IO} = 1.8 V	15.3		
			$V_{IH} = V_{DD}, V_{IL} = 0 V,$ $V_{DD} = V_{DDPLLA} = V_{DDPLLD} = V_{DDLVDS}$	f _{PCLK} = 15 MHz	V _{DD_IO} = 2.5 V	17.4		mA
		1064			V _{DD_IO} = 3.3 V	21		
		TCHIM			V _{DD_IO} = 1.8 V	8.9	12.3	
			Alternating 1010 Test pattern (see Table 0):	$f_{PCLK} = 4 MHz$	$V_{DD_{IO}} = 2.5 V$	10.7	12.8	mA
			All CMOS outputs terminated with 10 pF;		$V_{DD_{IO}} = 3.3 V$	13.5	16	
			F/S and RXEN at V_{DD} ; $V_{IH} = V_{DD}$, $V_{IL} = 0$ V;		$V_{DD_{IO}} = 1.8 V$	19.3	25	
			$v_{DD} = v_{DDPLLA} = v_{DDPLLD} = v_{DDLVDS}$	f _{PCLK} = 15 MHz	$V_{DD_{IO}} = 2.5 V$	23.3	28.6	mA
					$V_{DD_{IO}} = 3.3 V$	28.4	35.2	
					$V_{DD_{IO}} = 1.8 V$	9.7		
			Typical power test pattern (see Table 7); $V_{ID} = 70 \text{ mV}$, All CMOS outputs terminated with 10 pF; F/S at GND and RXEN at V_{DD} ; $V_{IH} = V_{DD}$, $V_{IL} = 0 \text{ V}$; $V_{DD} = V_{DDPLLA} = V_{DDPLLD} = V_{DDLVDS}$	$f_{PCLK} = 8 MHz$	$V_{DD_{IO}} = 2.5 V$	11.3		mA
		2ChM			$V_{DD_{IO}} = 3.3 V$	14		
				f _{PCLK} = 30 MHz	$V_{DD_{IO}} = 1.8 V$	20.4		mA
Tot Ave I _{DD} Suj	Total				$V_{DD_{IO}} = 2.5 V$	24.3		
	Average				$V_{DD_{IO}} = 3.3 V$	29.1		
	Supply			f _{PCLK} = 8 MHz	$V_{DD_{IO}} = 1.8 V$	12.9	17.3	mA
	ounon		Alternating 1010 Test pattern (see Table 9); All CMOS outputs terminated with 10 pF; F/S and RXEN at V_{DD} ; $V_{IH} = V_{DD}$, $V_{IL} = 0$ V; $V_{DD} = V_{DD}$, $V_{IL} = V_{DD}$, $V_{IL} = 0$ V;		$V_{DD_{IO}} = 2.5 V$	15.6	19.3	
					$V_{DD_{IO}} = 3.3 V$	20.3	26.9	
				f _{PCLK} = 30 MHz	$V_{DD_{IO}} = 1.8 V$	30.4	40.4	
			VDD - VDDPLLA - VDDPLLD - VDDLVDS		$V_{DD_{IO}} = 2.5 V$	37.2	48.3	
					$V_{DD_{IO}} = 3.3 V$	45.9	61.7	
				f _{PCLK} = 20 MHz	V _{DD_IO} = 1.8 V	15.5		
			Typical power test pattern (see Table 8); $V_{re} = 70 \text{ mV}$		$V_{DD_{IO}} = 2.5 V$	19		mA
			All CMOS outputs terminated with 10 pF;		$V_{DD_{IO}} = 3.3 V$	23.5		
			F/S at GND and RXEN at V_{DD} ;		$V_{DD_{IO}} = 1.8 V$	32.9		
			$V_{DD} = V_{DDPLLA} = V_{DDPLLD} = V_{DDLVDS}$	$f_{PCLK} = 65 \text{ MHz}$	$V_{DD_{IO}} = 2.5 V$	39.9		mA
		3ChM			$V_{DD_{IO}} = 3.3 V$	48.7		
		0011101			$V_{DD_{IO}} = 1.8 V$	21.4	29.7	
			Alternating 1010 Test pattern (see Table 9):	$f_{PCLK} = 20 \text{ MHz}$	$V_{DD_{IO}} = 2.5 V$	26.4	33.7	mA
			All CMOS outputs terminated with 10 pF;		$V_{DD_{IO}} = 3.3 V$	33.1	41.3	
			F/S and RXEN at V_{DD} ; $V_{IH} = V_{DD}$, $V_{IL} = 0$ V;		$V_{DD_{IO}} = 1.8 V$	49.9	66.9	
			VDD - VDDPLLA - VDDPLLD - VDDLVDS	$f_{PCLK} = 65 \text{ MHz}$	$V_{DD_{IO}} = 2.5 V$	62.5	80.3	mA
					$V_{DD_{IO}} = 3.3 V$	77.9	102.3	
		CLK and	I D[0:2] inputs are left open;	Standby mode; RX	XEN = V _{IH}	30	80	μA
		All CMO $V_{IH} = V_{DI}$	S outputs terminated with 10 pF; $D_{IL} = 0V; V_{DD} = V_{DDPLLA} = V_{DDPLLD} = V_{DDLVDS}$	Shutdown mode; RXEN = V _{IL}		0.3	6	μA

All typical values are at 25°C with V_{DD} = V_{DDPLLA} = V_{DDPLLD} = V_{DDLVDS} = 1.8 V.
 All max values are at the worst-case process corner, voltage, and temperature. The V_{DD_IO} voltage is the described voltage + 10%.

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

EXAS ISTRUMENTS

www.ti.com.cn

INPUT ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
D0+, D	0–, D1+, D1–, D2+, D2–, CLK+, and CLK–					
V _{thstby}	Input voltage common mode threshold to switch between receive/acquire mode and standby mode	RXEN at V _{DD}	1.3		0.9×V _{DDLVDS}	V
V _{THL}	Low-level differential input voltage threshold	V _{D0+} -V _{D0-} , V _{D1+} -V _{D1-} , V _{D2+} -V _{D2-} , V _{CLK+} -V _{CLK-}	-40			mV
V _{THH}	High-level differential input voltage threshold				40	mV
I _{I+} , I _{I-}	Input leakage current	V_{DD} =1.95 V; $V_{I+} = V_{I-}$; V _I = 0.4 V and V _I = 1.5 V			75	μA
I _{IOFF}	Power-off input current	V_{DD} =GND; V_{I} = 1.5V			-75	μA
R _{ID}	Differential input termination resistor value		78	100	122	Ω
C _{IN}	Input capacitance	Measured between input terminal and GND		1		pF
ΔC_{IN}	Input capacitance variation	Within one signal pair			0.2	- 5
		Between all signals			1	рн
R _{BBDC}	Pull-up resistor for standby detection		21	30	39	kΩ
LS0, L	S1, CPOL, SWAP, RXEN, F/S					
V _{IK}	Input clamp voltage	I_{I} = -18 mA, V_{DD} = V_{DD} (min)			-1.2	V
I _{ICMOS}	Input current ⁽²⁾	0 V \leq V _{DD} \leq 1.95 V; V _I =GND or V _I =1.95 V			100	nA
CIN	Input capacitance			2		pF
I _{IH}	High-level input current	$V_{IN} = 0.7 \times V_{DD}$	-200		200	~^
IIL	Low-level input current	$V_{IN} = 0.3 \times V_{DD}$	-200		200	ПА
V _{IH}	High-level input voltage		0.7×V _{DD}		V _{DD}	V
VIL	Low-level input voltage		0		$0.3 \times V_{DD}$	v

 All typical values are at 25°C and with 1.8 V supply unless otherwise noted.
 Do not leave any CMOS Input unconnected or floating to minimize leakage currents. Every input must be connected to a valid logic level VIH or VOL while power is supplied to VDD.

SN65LVDS314 ZHCS415A – AUGUST 2012–REVISED SEPTEMBER 2012

www.ti.com.cn

OUTPUT ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MA	١X	UNIT
R[0:	7], G[0:7], B[0:7], VS, HS, DE, PCLK, CPE					
		1-ChM, F/S=L, I _{OH} = -250 μA				
V		2-or 3-ChM, F/S=L, I _{OH} = -500 μA	0.0.1/	Ň		N/
∨он	V _{OH} High-level output voltage	1-ChM, F/S=H, Ι _{OH} = –500 μA	0.8×V _{DD_IO}	V _{DD}	_10	v
	2- or 3-ChM, F/S=H, I _{OH} = -1.33 mA					
		1-ChM, F/S=L, I _{OL} = 250 μA				
V		2- or 3-ChM, F/S=L, I _{OL} = 500 µA				N/
VOL	Low-level output voltage	1-ChM, F/S=H, I _{OL} = 500 μA	0	0.5	0.5	v
		2- or 3-ChM, F/S=H, I _{OL} = 1.33 mA				
		1-ChM, F/S=L	-250			
I _{OH}	High-level output current	2- or 3-ChM, F/S=L; 1-ChM, F/S=H	-500			
		2- or 3-ChM, F/S=H	-1333			
		1-ChM, F/S=L		2	250	μΑ
I _{OL}	DL Low-level output current	2- or 3-ChM, F/S=L; 1-ChM, F/S=H		5	00	
		2- or 3-ChM, F/S=H		13	33	

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

TEXAS INSTRUMENTS

www.ti.com.cn

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
D0+, D0-,	, D1+, D1–, D2+, D2–, CLK+, and	CLK-					
t _{R/F}	Input rise and fall time	RXEN at V _{DD} ; see figure 6-2				800	ps
$\Delta t_{R/F}$	Input rise or fall time mismatch between all SubLVDS inputs	$t_R(n)$ $t_R(m)$ and $t_F(n)$ $t_F(m)$ and m=D0, D1, D2, or CLK	vith n=D0, D1, D2, or CLK	-100		100	ps
R[7:0], G[[7:0], B[7:0], VS, HS, DE, PCLK,	CPE					
			1-channel mode, F/S=L	8		16	
			2-channel mode, F/S=L	4		8	
	Rise and fall time 20%-	$C_1 = 10 \text{ pF}^{(3)}$	3-channel mode, F/S=L	4		8	
^L R/F	80% of V_{DD_IO} $^{(2)}$	see Figure 9	1-channel mode, F/S=H	4		8	ns
			2-channel mode, F/S=H	1.3		3	
			3-channel mode, F/S=H	1.3		3	
		1-channel and 3-channel mo	de	45%	50%	55%	
t _{OUTP}	PCLK output duty cycle	CPOL=VIL, 2-channel mode		48%	53%	59%	
		CPOL=V _{IH} , 2-channel mode		41%	47%	52%	
			1-channel mode, F/S=L	-2		2	
t _{OSK}	Output skew between PCLK and R[0:7], G[0:7], B0:7],	see Figure 9	1-channel mode, F/S=H or 2-channel mode, F/S=L or 3-channel mode, F/S=L	-1		1	ns
	10, V0, and DE		2-channel mode, F/S=H or 3-channel mode, F/S=H	-0.5		0.5	
INPUT TO	OUTPUT RESPONSE TIME						
t _{PD(L)}	Propagation delay time from CLK+ input to PCLK output	RXEN at V_{DD} , $V_{IH}=V_{DD}$, $V_{IL}=0$ See Figure 14	GND, C _L =10 pF,	1.4/f _{PCLK}	1.9/f _{PCLK}	2.5/f _{PCLK}	s
t _{GS}	RXEN glitch to suppress pulse width ⁽⁴⁾	V _{IH} =V _{DD} , V _{IL} =GND, RXEN to See Figure 15 and Figure 16	ggles between V_{IL} and V_{IH} ;			3.8	μs
t _{pwrup}	Enable time from power down (↑RXEN)	Time from RXEN pulled high outputs valid data; See Figur	to data outputs enabled and e 16			2	ms
t _{pwrdn}	Disable time from active mode (↓RXEN)	RXEN is pulled low during re measurement until all output: R[0:7]=G[0:7]=B[0:7]=VS=HS PLL is Shutdown; See Figure	ceive mode; time s held static: S=high, DE=PCLK=low and e 16			11	μs
t _{wakeup}	Enable time from Standby (↑↓CLK)	RXEN at V _{DD} ; device is in sta from CLK input starts switchi enabled and outputting valid	andby; time measurement ng to PCLK and data outputs data; See Figure 17			2	ms
t _{standby}	Disable time from active mode (CLK transitions to high-impedance)	$\label{eq:response} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	iving data; time t signal stops (input open or xceeds threshold voltage static: S=high, hutdown;			3	μs
f _{BW}	PLL bandwidth ⁽⁵⁾	Tested from CLK input to PCLK output	2-ChM; f _{PCLK} =22MHz 3-ChM: f _{PCLK} =65MHz	0.087×f _{PCLK} 0.075×f _{PCLK}			MHz

(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.

(2) t_{R/F} depends on the F/S setting and the capacitive load connected to each output. Some application information of how to calculate t_{R/F} based on the output load and how to estimate the timing budget to interconnect to an LCD driver are provided in the application section near the end of this data sheet.

(3) The output rise and fall time is optimized for an output load of 10 pF. This model does not take into account trace or connector loading, so the actual rise and fall times in different systems will vary.

(4) The RXEN input incorporates a glitch-suppression logic to disregard short input pulses. t_{GS} is the duration of either a high-to-low or low-to-high transition that is suppressed.

(5) When using the SN65LVDS314 receiver in conjunction with the SN65LVDS301 transmitter in one link, the PLL bandwidth of the SN65LVDS314 receiver always exceed the bandwidth of the SN65LVDS301 transmit PLL. This ensures stable PLL tracking under all operating conditions and maximizes the receiver skew margin.

Figure 6. SN65LVDS314 PLL Bandwidth (also showing the SN65LVDS301 PLL bandwidth)

	PARAMETER	TEST CONDI	TIONS	MIN	MAX	UNIT
		1ChM: x=029, f _{PCLK} =15 MHz;	f _{CLK} =15 MHz ⁽⁴⁾	630		
		RXEN at V_{DD} , $V_{IH}=V_{DD}$, $V_{IL}=GND$, $R_L=100 \Omega$, test setup as in Figure 8, test pattern as in Table 11	f_{CLK} =4 MHz to 15 MHz ⁽⁵⁾	$\frac{1}{2 \bullet 30 \bullet f_{CLK}} - 480 ps$		
		teceiver input skew hargin; see ⁽³⁾ and igure 21 2ChM: x = 014, f _{PCLK} =30 MHz RXEN at V _{DD} , V _{IH} =V _{DD} , V _{IL} =GND, R _L =100 Ω , test setup as in Figure 8, test pattern as in Table 12 3ChM: RXEN at V _{DD} , V _{IH} =V _{DD} , V _{IH} =V _{DD} , V _{IL} =GND, RL=100 Ω , test setup as in Figure 8, test pattern as in Table 12 3ChM: RXEN at V _{DD} , V _{IH} =V _{DD} , V _{IH} =V _{DD} , V _{IL} =GND, test setup as in Figure 8, test pattern as in Table 13 4CLK=8 MHz to 30 MHz ⁽⁴⁾ 4CLK=8 MHz to 30 MHz ⁽⁵⁾ 4CLK=65 MHz ⁽⁴⁾ 4CLK=65 MHz ⁽⁴⁾ 4CLK=20 MHz to 65 MHz ⁽⁴⁾ 4CLK=	630			
t _{RSKMx} (1) (2)	Receiver input skew margin; see ⁽³⁾ and Figure 21		f_{CLK} =8 MHz to 30 MHz ⁽⁵⁾	$\frac{1}{2 \bullet 15 \bullet f_{CLK}} - 480\text{ps}$		ps
			360			
			f_{CLK} = 20 MHz to 65 MHz ⁽⁵⁾	$\frac{1}{2 \bullet 10 \bullet f_{CLK}} - 410 \text{ps}$		

TIMING CHARACTERISTICS

- (1) Receiver Input Skew Margin (t_{RSKM}) is the timing margin available for transmitter output pulse position (t_{PPOS}), interconnect skew, and interconnect inter-symbol interference. tRSKM represents the reminder of the serial bit time not taken up by the receiver strobe uncertainty;. The t_{RSKM} assumes a bit error rate better than 10⁻¹².
- (2) t_{RSKM} is indirectly proportional to the internal set-up and hold time uncertainty, ISI and duty cycle distortion from the front end receiver, the skew missmatch between CLK and data D0, D1, and D2, as well as the PLL cycle-to-cycle jitter.
- (3) This includes the receiver internal set-up and hold time uncertainty, all PLL related high-frequency random and deterministic jitter components that impact the jitter budget, ISI and duty cycle distortion from the front end receiver, and the skew between CLK and data D0, D1, and D2; The pulse position min/max variation is given with a bit error rate target of 10⁻¹²; Measurements of the total jitter are taken over a sample amount of > 10⁻¹² samples.
- (4) The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temp ranges.
- (5) These Minimum and Maximum Limits are simulated only.

TEXAS INSTRUMENTS

www.ti.com.cn

PARAMETER MEASUREMENT INFORMATION

Figure 8. Jitter Budget

Figure 9. Output Rise/Fall, Setup/Hold Time

Figure 10. SubLVDS Differential Input Rise and Fall Time Defintion

Figure 11. Equivalent Input Circuit Design

INSTRUMENTS

Texas

www.ti.com.cn

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 12. I/O Voltage and Current Definition

Figure 13. CMOS Output Test Circuit, Signal and Timing Definition

R6_(n-3)

R6

www.ti.com.cn

SN65LVDS314 ZHCS415A – AUGUST 2012– REVISED SEPTEMBER 2012

R6_(n-1)

PARAMETER MEASUREMENT INFORMATION (continued)

3 μs ▶ 🗲 <20 ns **∢**−2 μs Glitch shorter than tGSwill be less than 20ns ignored Spike will be Glitch shorter rejected than tGS will be ignored RXEN tpwrup tpwrdn · PCLK tGS ICC tGS RX RX disabled turns (OFF) Receiver disabled Receiver enabled Receiver aquires lock turns (OFF) (ON) Figure 16. Receiver Enable/Disable Glitch Suppression Time CLK ^tstandby→ wakeup PCLK R[7:0], G[7:0], B[7:0], VS, HS, RX **RX** enabled RX enabled; Receiver disabled Receiver aquires lock, disabled output data valid output data (OFF) outputs still disabled invalid (OFF)

Figure 17. Standby Detection

POWER CONSUMPTION TESTS

Table 5 shows an example test pattern word.

Table 5. Example Test Pattern Word

Word	R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x7C3E1E7

		7			(C			:	3			E	Ξ				1			I	Ξ			7	7	
R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0	0	VS	HS	DE
0	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	1	1	1

PARAMETER MEASUREMENT INFORMATION (continued)

www.ti.com.cn

TYPICAL IC POWER CONSUMPTION TEST PATTERN

Typical power-consumption test patterns consist of sixteen 30-bit receive words in 1-channel mode, eight 30-bit receive words in 2-channel mode and five 30-bit receive words in 3-channel mode. The pattern repeats itself throughout the entire measurement. It is assumed that every possible code on the RGB outputs has the same probability to occur during typical device operation.

Table 6. Typical IC Power Consumption Test Pattern,1-Channel Mode

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x000007
2	0xFFF0007
3	0x01FFF47
4	0xF0E07F7
5	0x7C3E1E7
6	0xE707C37
7	0xE1CE6C7
8	0xF1B9237
9	0x91BB347
10	0xD4CCC67
11	0xAD53377
12	0xACB2207
13	0xAAB2697
14	0x5556957
15	0xAAAAB3
16	0xAAAAAA5

Table 7. Typical IC Power Consumption Test Pattern,2-Channel Mode

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x000001
2	0x03F03F1
3	0xBFFBFF1
4	0x1D71D71
5	0x4C74C71
6	0xC45C451
7	0xA3aA3A5
8	0x5555553

Table 8. Typical IC Power Consumption Test Pattern,
3-Channel Mode

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0xFFFFF1
2	0x000001
3	0xF0F0F01
4	0xCCCCCC1
5	0xAAAAA7

TEXAS INSTRUMENTS

www.ti.com.cn

SN65LVDS314

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

MAXIMUM POWER CONSUMPTION TEST PATTERN

The maximum (or worst-case) power consumption of the SN65LVDS314 is tested using the two different test pattern shown in table. Test patterns consist of sixteen 30-bit receive words in 1-channel mode, eight 30-bit receive words in 2-channel mode, and five 30-bit receive words in 3-channel mode. The pattern repeats itself throughout the entire measurement. It is assumed that every possible code on RGB outputs has the same probability to occur during typical device operation.

Table 9. Worst-Case Power Consumption Test Pattern

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0xAAAAAA5
2	0x5555555

Table 10. Worst-Case Power Consumption Test Pattern

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x000000
2	0xFFFFF7

OUTPUT SKEW PULSE POSITION and JITTER PERFORMANCE

The following test patterns are used to measure the output skew pulse position and the jitter performance of the SN65LVDS314. The jitter test pattern stresses the interconnect, particularly to test for ISI, using very long runlengths of consecutive bits, and incorporating very high and low data rates, maximizing switching noise. Each pattern is self-repeating for the duration of the test.

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x000001
2	0x0000031
3	0x00000F1
4	0x00003F1
5	0x0000FF1
6	0x0003FF1
7	0x000FFF1
8	0x0F0F0F1
9	0x0C30C31
10	0x0842111
11	0x1C71C71
12	0x18C6311
13	0x1111111
14	0x3333331
15	0x2452413
16	0x22A2A25
17	0x5555553
18	0xDB6DB65
19	0xCCCCCC1
20	0xEEEEE1
21	0xE739CE1
22	0xE38E381
23	0xF7BDEE1

Table 11. Receive Jitter Test Pattern, 1-Channel Mode

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
24	0xF3CF3C1
25	0xF0F0F01
26	0xFFF0001
27	0xFFFC001
28	0xFFFF001
29	0xFFFFC01
30	0xFFFF01
31	0xFFFFFC1
32	0xFFFFF1

Table 11. Receive Jitter Test Pattern, 1-ChannelMode (continued)

Table 12. Receive Jitter Test Pattern, 2-Channel Mode

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x000001
2	0x000FFF3
3	0x8008001
4	0x0030037
5	0xE00E001
6	0x00FF001
7	0x007E001
8	0x003C001
9	0x0018001
10	0x1C7E381
11	0x3333331
12	0x555AAA5
13	0x6DBDB61
14	0x777771
15	0x555AAA3
16	0xAAAAA5
17	0x5555553
18	0xAAA5555
19	0x8888881
20	0x9242491
21	0xAAA5571
22	0xCCCCCC1
23	0xE3E1C71
24	0xFFE7FF1
25	0xFFC3FF1
26	0xFF81FF1
27	0xFE00FF1
28	0x1FF1FF1
29	0xFFCFFC3
30	0x7FF7FF1
31	0xFFF0007
32	0xFFFFF1

	41	
www.	ti.co	m.cn

Word	Test Pattern: R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE
1	0x0000001
2	0x0000001
3	0x0000003
4	0x0101013
5	0x0303033
6	0x0707073
7	0x1818183
8	0xE7E7E71
9	0x3535351
10	0x0202021
11	0x5454543
12	0xA5A5A51
13	0xADADAD1
14	0x5555551
15	0xA6A2AA3
16	0xA6A2AA5
17	0x5555553
18	0x5555555
19	0xAAAAAA1
20	0x5252521
21	0x5A5A5A1
22	0xABABAB1
23	0xFDFCFD1
24	0xCAAACA1
25	0x1818181
26	0xE7E7E71
27	0xF8F8F81
28	0xFCFCFC1
29	0xFEFEFE1
30	0xFFFFF1
31	0xFFFFF5
32	0xFFFFF5

Table 13. Receive Jitter Test Pattern, 3-Channel Mode

TYPICAL CHARACTERISTIC CURVES

The SN65LVDS314 device has very similar parametric curves as the SN65LVDS302. Please refer to this section in the SN65LVDS302 datasheet (SLLS733) for a general understanding of SN65LVDS314 characteristics.

APPLICATION INFORMATION

Preventing Increased Leakage Currents in Control Inputs

A floating (left open) CMOS input allows leakage currents to flow from V_{DD} to GND. Do not leave any CMOS input unconnected or floating. Every input must be connected to a valid logic level V_{IH} or V_{OL} while power is supplied to V_{DD} . This also minimizes the power consumption of standby and power down mode.

Power Supply Design Recommendation

For a multilayer PCB, it is recommended to keep one common GND layer underneath the device and connect all ground terminals directly to this plane.

SN65LVDS314 DECOUPLING RECOMMENDATION

The SN65LVDS314 was designed to operate reliably in a constricted environment with other digital switching ICs. In many designs, the SN65LVDS314 often shares a power supply with various other ICs. The SN65LVDS314 can operate with power supply noise as specified in Recommend Device Operating Conditions. To minimize the power supply noise floor, provide good decoupling near the SN65LVDS314 power pins. The use of four ceramic capacitors (two 0.01 μ F and two 0.1 μ F) provides good performance. At the very least, it is recommended to install one 0.1 μ F and one 0.01 μ F capacitor near the SN65LVDS314. To avoid large current loops and trace inductance, the trace length between decoupling capacitor and IC power inputs pins must be minimized. Placing the capacitor underneath the SN65LVDS314 on the bottom of the PCB is often a good choice.

VGA APPLICATION

Figure 18 shows a possible implementation of a standard 640x480 VGA display. The LVDS301 interfaces to the SN65LVDS314, which is the corresponding receiver device to deserialize the data and drive the display driver. The pixel clock rate of 22 MHz assumes ~10% blanking overhead and 60 Hz display refresh rate. The application assumes 24-bit color resolution. Also shown is how the application processor provides a powerdown (reset) signal for both serializer and the display driver. The signal count over the Flexible Printed Circuit board (FPC) could be further decreased by using the standby option on the SN65LVDS314 and pulling RXEN high with a 30 k Ω resistor to V_{DD}.

Figure 18. Typical VGA Display Application

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

www.ti.com.cn

DUAL LCD-DISPLAY APPLICATION

The example in Figure 19 shows a possible application setup driving two video-mode displays from one application processor. The data rate of 330 Mbps at a pixel clock rate of 5.5 MHz corresponds to a 320x240 QVGA resolution at 60 Hz refresh rate and 10% blanking overhead.

Figure 19. Example Dual-QVGA Display Application

TYPICAL APPLICATION FREQUENCIES

The SN65LVDS314 supports pixel clock frequencies from 4 MHz to 65 MHz over 1, 2, or 3 data lanes. Table 14 provides a few typical display resolution examples and shows the number of data lanes necessary to connect the SN65LVDS314 with the display. The blanking overhead is assumed to be 20%. Often, blanking overhead is smaller, resulting in a lower data rate. Furthermore, the examples in the table assumes a display frame refresh rate of 60-Hz. The actual refresh rate may differ depending on the application-processor clock implementation.

Display Screen	Visible	Blanking	Display	Pixel Clock Frequency	Serial Data Rate Per Lane				
Resolution	Pixel Count	Overhead	Refresh Rate	[MHz]	1-ChM	2-ChM	3-ChM		
176x220 (QCIF+)	38,720	20%	90 Hz	4.2 MHz	125 Mbps				
240x320 (QVGA)	76,800	20%	60 Hz	5.5 MHz	166 Mbps				
640x200	128,000	20%	60 Hz	9.2 MHz	276 Mbps	138 Mbps			
352x416 (CIF+)	146,432	20%	60 Hz	10.5 MHz	316 Mbps	158 Mbps			
352x440	154,880	20%	60 Hz	11.2 MHz	335 Mbps	167 Mbps			
320x480 (HVGA)	153,600	20%	60 Hz	11.1 MHz	332 Mbps	166 Mbps			
800x250	200,000	20%	60 Hz	14.4 MHz	432 Mbps	216 Mbps			
640x320	204,800	20%	60 Hz	14.7 MHz	442 Mbps	221 Mbps			
640x480 (VGA)	307,200	20%	60 Hz	22.1 MHz		332 Mbps	221 Mbps		
1024x320	327,680	20%	60 Hz	23.6 MHz		354 Mbps	236 Mbps		
854x480 (WVGA)	409,920	20%	60 Hz	29.5 MHz		443 Mbps	295 Mbps		
800x600 (SVGA)	480,000	20%	60 Hz	34.6 MHz			346 Mbps		
1024x768 (XGA)	786,432	20%	60 Hz	56.6 MHz			566 Mbps		

Table 14. Typical Application Data Rates and Serial Lane Usage

CALCULATION EXAMPLE: HVGA DISPLAY

The following calculation shows an example for a Half-VGA display with the following parameters:

Display Resolution:	480 x 320	Hsj	ync =5	НВР	Visible area = 480 Columns HFP=20
Frame Refresh Rate:	58.4 Hz				
Horizontal Visible Pixel:	480 columns	Vsync =5			
Horizontal Front Porch:	20 columns	VBP=3			
Horizontal Sync:	5 columns			ł	
Horizontal Back Porch:	3 columns	Visible area =320 lines			Visjióle area
Vertical Visible Pixel:	320 lines			ľ	
Vertical Front Porch:	10 lines				
Vertical Sync:	5 lines	Î			
Vertical Back Porch:	3 lines	VFP=10			

Figure 20. HVGA Display

Calculation of the total number of pixel and blanking overhead:								
Visible Area Pixel Count:	480 × 320 = 153600 pixel							
Total Frame Pixel Count:	(480+20+5+3) × (320+10+5+3) = 171704 pixel							
Blanking Overhead:	(171704-153600) ÷ 153600 = 11.8 %							

The application requires the following serial-link parameters:

Pixel Clk Frequency:	171704 × 58.4 Hz = 10.0 MHz
Serial Data Rate:	1-channel mode: 10.0 MHz × 30 bit/channel = 300 Mbps
	2-channel mode: 10.0 MHz × 15 bit/channel = 150 Mbps

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

How To Determine Interconnect Skew and Jitter Budget

Designing a reliable data link requires examining the interconnect skew and jitter budget. The sum of all transmitter, PCB, connector, FPC, and receiver uncertainties must be smaller than the available serial bit time. The highest pixel clock frequency defines the available serial bit time. The transmitter timing uncertainty is defined by t_{PPOS} in the transmitter data sheet. For a bit-error-rate target of \leq 10-12, the measurement duration for tPPOS is \geq 1012. The SN65LVDS314 receiver can tolerate a maximum timing uncertainty defined by t_{RSKM} . The interconnect budget is calculated by:

 $t_{int\,erconnect} = t_{RSKM} - t_{PPOS}$

Example:

f_{PCLK}(max) = 23 MHz (VGA display resolution, 60 Hz)

Transmission mode: 2-ChM; t_{PPOS}(SN65LVDS301) = 330 ps

Target bit error rate: 10⁻¹²

 $t_{RSKM}(SN65LVDS314) = 1/(2*15*f_{PCLK}) - 480 \text{ ps} = 969 \text{ ps}$

The interconnect budget for cable skew and ISI needs to be smaller than:

 $t_{int\,erconnect} = t_{RSKM} - t_{PPOS} = 639 ps$

Figure 21. Jitter Budget

www.ti.com.cn

(1)

INSTRUMENTS

EXAS

F/S-PIN SETTING AND CONNECTING THE SN65LVDS314 TO AN LCD DRIVER

NOTE

Receiver PLL tracking: To maximize the design margin for the interconnect, good RX PLL tracking of the TX PLL is important. FlatLink3G requires the RX PLL to have a bandwidth higher than the bandwidth of the TX PLL. The SN65LVDS314 PLL design is optimized to track the SN65LVDS0301 PLL particularly well, thus providing a very large receiver skew margin. A FlatLink3G-compliant link must provide at least ±225 ppm of receiver skew margin for the interconnect.

It is important to understand the tradeoff between power consumption, EMI, and maximum speed when selecting the F/S signal. It is beneficial to choose the slowest rise time possible to minimize EMI and power consumption. Unfortunately a slower rise time also reduces the timing margin left for the LCD driver. Hence it is necessary to calculate the timing margin to select the correct F/S pin setting.

The output rise time depends on the output driver strength and the output load. An LCD driver typical capacitive load is assumed with ~10pF. The higher the capacitive load, the slower will be the rise time. Rise time of the SN65LVDS314 is measured as the time duration it takes the output voltage to rise from 20% of V_{DD} and 80% of V_{DD} and fall time is defined as the time for the output voltage to transition from 80% of V_{DD} down to 20%.

Within one mode of operation and one F/S pin setting, the rise time of the output stage is fixed and does not adjust to the pixel frequency. Due to the short bit time at very fast pixel clock speeds and the real capacitive load of the display driver, the output amplitude might not reach V_{DD} and GND saturation fully. To ensure sufficient signal swing and verify the design margin, it becomes necessary to determine that the output amplitude under any circumstance reaches the display driver's input stage logic threshold (usually 30% and 70% of V_{DD}).

Figure 22 shows a worst-case rise time simulation assuming a LCD driver load of 16pF at VGA display resolution and a $V_{DD_{-}IO}$ of 1.8 V. PCLK is the fastest switching output. With F/S set to GND (Figure 22-a), the PCLK output voltage amplitude is significantly reduced. The voltage amplitude of the output data RGB[7:0], VS, HS, and DE shows less amplitude attenuation because these outputs carry random data pattern and toggle equal or less than half of the PCLK frequency. It is necessary to determine the timing margin between the LVDS314 output and LCD driver input.

Figure 22. Output Amplitude as a Function of Output Toggling Frequency, Capacitive Load and F/S Setting

ZHCS415A - AUGUST 2012 - REVISED SEPTEMBER 2012

HOW TO DETERMINE THE LCD DRIVER TIMING MARGIN

To determine the timing margin, it is necessary to specify the frequency of operation, identify the set-up and hold time of the LCD driver, and specify the output load of the SN65LVDS314 as a combination of the LCD driver input parasitics plus any capacitance caused by the connecting PCB trace. Furthermore, the setting of pin F/S and the SN65LVDS314 output skew impact the margin. The total remaining design margin calculates as following:

$$t_{DM} = \frac{1}{2 \times f_{PCLK}} - t_{DUTP(max_error)} - \frac{t_{rise(max)} \times C_{LOAD}}{10 \text{ pF}} - |t_{OSK}|$$

where:

 $\begin{array}{l} t_{\text{DM}} - \text{Design margin} \\ f_{\text{PCLK}} - \text{Pixel clock frequency} \\ t_{\text{DUTP(max_error)}} - \text{maximum duty cycle error} \\ t_{\text{rise(max)}} - \text{maximum rise or fall time; see } t_{\text{R/F}} \text{ under switching characteristics} \\ C_{\text{L}} - \text{parasitic capacitance (sum of LCD driver input parasitics + connecting PCB trace)} \\ t_{\text{skew}} - \text{clock to data output skew SN65LVDS314} \end{array}$

Example:

At a pixel clock frequeny of 5.5MHz (QVGA), and an assumed LCD driver load of 15 pF, the remaining timing margin is:

 $t_{\text{DUTP(max_error)}} = \frac{\left|t_{\text{DUTP}}(\text{max}) - 50\right|}{100\%} \times t_{\text{PCLK}} = \frac{5\%}{100\%} \times \frac{1}{5.5\text{MHz}} = 9.1\text{ns}$ $t_{\text{DM}} = \frac{1}{2 \times 5.5\text{MHz}} - 9\text{ns} - \frac{16\text{ns}(\text{F/S} = \text{GND}) \times 15\text{pF}}{10\text{pF}} - 500\text{ps} = 57.3\text{ns}$

As long as the set-up and hold time of the LCD driver are each less than 57 ns, the timing budget is met sufficiently.

TEXAS INSTRUMENTS

www.ti.com.cn

(3)

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN65LVDS314RSKR	ACTIVE	VQFN	RSK	64	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	LVDS314	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

1	*All dimensions are nominal												
	Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN65LVDS314RSKR	VQFN	RSK	64	2000	330.0	16.4	8.3	8.3	1.1	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jun-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDS314RSKR	VQFN	RSK	64	2000	367.0	367.0	38.0

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994. A.

- This drawing is subject to change without notice. Β.
- C.
- QFN (Quad Flatpack No-Lead) Package configuration. The package thermal pad must be soldered to the board for thermal and mechanical performance. D.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RSK (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

NOTES:

A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.

E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for any larger diameter vias placed in the thermal pad.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司