

High-Slew-Rate, Single-Supply Operational Amplifier

1 Features

- Wide gain-bandwidth product: 4.5MHz
- Fast settling time 2µs to 0.1%
- Wide-range single-supply operation: 4V to 36V
- Wide input common-mode range includes ground
- Output short-circuit protection

2 Description

Quality, low-cost fabrication with remarkable design concepts is employed for the TL3472 operational amplifier. This device offers 4.5MHz of gain-bandwidth product, and fast settling time. Although the TL3472 can be operated from split supplies, device is particularly suited for single-supply operation because the common-mode input voltage range includes ground potential (V_{CC}-). This device exhibits high input resistance, low input offset voltage, and high gain. This low-cost amplifier is an alternative to the MC33072 and the MC34072 operational amplifiers.

Package Information

PART NUMBER(1)	PACKAGE ⁽¹⁾	PACKAGE SIZE			
TL3472	D (SOIC, 8)	4.9mm × 3.9mm			
1 L341 Z	P (PDIP, 8)	9.5mm x 6.35mm			

For all available packages, see the orderable addendum at the end of the data sheet

Table of Contents

1 Features	1 5 Device and Documentation Support7
2 Description	
3 Pin Configuration and Functions	
4 Specifications	. 4 5.3 Trademarks
4.1 Absolute Maximum Ratings	. 4 5.4 Electrostatic Discharge Caution
4.2 Recommended Operating Conditions	4 5.5 Glossary
4.3 Electrical Characteristics	
4.4 Operating Characteristics	. 6 7 Mechanical, Packaging, and Orderable Information 8

3 Pin Configuration and Functions

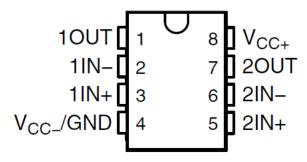


Figure 3-1. D or P Package Top View

Table 3-1. Pin Functions: TL3472

ı	PIN	TVDE	PERCENTION
NAME	NO.	TYPE	DESCRIPTION
1OUT	1	0	Output 1
1IN-	2	I	Inverting input
1IN+	3	I	Non inverting input
GND	4	_	Ground
2IN+	5	I	Non inverting input
2IN-	6	I	Inverting input
2OUT	7	0	Output 2
VCC+	8	_	Input voltage

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	Parameters	Test conditions	MIN	MAX	UNIT
	Supply voltage ⁽²⁾ Differential input voltage ⁽³⁾ Input voltage Input current Output current Total current into V _{CC+} Total current out of V _{CC-} Duration of short-circuit current at (or the Package thermal impedance ⁽⁵⁾ (6) Operating virtual junction temperature	V _{CC+}		18	V
		V _{CC} -		-18	v
V _{ID}	Differential input voltage ⁽³⁾		-36	36	V
VI	Input voltage	Any input	V _{CC} -	V _{CC+}	V
I _I	Input current	Each input	-1	1	mA
Io	Output current	-80	80	mA	
	Total current into V _{CC+}		80	mA	
	Total current out of V _{CC} -			80	mA
	Duration of short-circuit current at (or belo	w) 25°C ⁽⁴⁾		Unlimited	
0	Dealer at the small increase (5) (6)	D package		130.7	°C/M
θ_{JA}	Package thermal impedance (%)	P package		°C/W	
TJ	Operating virtual junction temperature		150	°C	
	Lead temperature 1.6mm (1/16inch) from		260	°C	
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Section 4.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.

- (2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
- (3) Differential voltages are at the non inverting input with respect to the inverting input. Excessive input current can flow when the input is less than V_{CC}-0.3V.
- (4) The output can be shorted to either supply. Temperature and/or supply voltages must be limited to the maximum dissipation rating is not exceeded.
- (5) Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
- (6) The package thermal impedance is calculated in accordance with JESD 51-7.

4.2 Recommended Operating Conditions

	Parameters	MIN	MAX	UNIT			
V _{CC±}	Supply voltage	Supply voltage					
M		V _{CC} = 5V	0	2.8			
V _{IC}	Common-mode input voltage	$V_{CC\pm} = \pm 15V$	-15	12.8	V		
т	Operating free air temperature	TL3472C	0	70	°C		
T _A	Operating free-air temperature	TL3472I	-40	105	- °C		

Product Folder Links: TL3472

4.3 Electrical Characteristics

at specified free-air temperature, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITIO	NS	T _A	MIN	TYP ⁽¹⁾	MAX	UNIT
			V _{CC} = 5V		25°C		1.5	10	
V_{IO}	Input offset voltage		V _{CC} = ±15 V		25°C		1.0	10	mV
					Full range ⁽²⁾			12	
a _{VIO}	Temperature coefficient of input offset voltage	$V_{IC} = 0,$ $V_{O} = 0,$	V _{CC} = ±15 V	,	Full range ⁽²⁾		10		μV/°C
	land the offers of a common to	$R_S = 50\Omega$	V = 145 V	,	25°C		0.01	75	^
I _{IO}	Input offset current		$V_{CC} = \pm 15 \text{ V}$		Full range ⁽²⁾			300	nA
	Input bigg gurrant		\/ - \14E \	,	25°C		0.01	500	- n A
I _{IB}	Input bias current		$V_{CC} = \pm 15 V$		Full range ⁽²⁾			700	nA
			1				-15		
					25°C		to		
	Common-mode input	D - 500					12.8		V
	voltage range	KS - 2012	$R_S = 50\Omega$				-15		V
					Full range ⁽²⁾		to		
							12.8		
		V _{CC+} = 5V	V _{CC} = 0,	$R_L = 2k\Omega$	25°C	3.7	4.8		
V_{OH}	High-level output voltage	$R_L = 10k\Omega$ $R_L = 2k\Omega$			25°C	13.6	14.8		V
					Full range ⁽²⁾	13.4			
		V _{CC+} = 5V	V _{CC} -= 0,	$R_L = 2k\Omega$	25°C		0.005	0.3	
V_{OL}	Low-level output voltage	$R_L = 10k\Omega$			25°C		-14.8	-14.3	V
		$R_L = 2k\Omega$			Full range ⁽²⁾			-13.5	
^	Large-signal differential	V = 140 V		D = 01:0	25°C	25	100		\ //==\ /
A_{VD}	voltage amplification	$V_0 = \pm 10 \text{ V},$		$R_L = 2k\Omega$	Full range ⁽²⁾	20			V/mV
	Object singuity output	Source: V _{ID} =	1V,	V _O = 0	0500	-10	-75		^
los	Short-circuit output current	Sink: V _{ID} =-1\	/ ,	V _O = 0	25°C	20	75		mA
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}(min),$		$R_S = 50\Omega$	25°C	65	97		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	V _{CC±} = ±13.5 V to ±16.5 V,		R _S = 100Ω	25°C	70	97		dB
		\/ - 0		No local	25°C		0.56	4.5	
I_{CC}	Supply current (per channel)	$v_0 = 0$	$V_{O} = 0$, No load		Full range ⁽²⁾		,	5.5	mA
	(por orialinor)	$V_{CC+} = 5V, V_{CC}$	= 2.5V, V _{CC} =	= 0, No load	25°C			4.5	

All typical values are at T_A = 25°C. Full range is 0°C to 70°C for the TL3472C device and -40°C to 105°C for the TL3472I device.

4.4 Operating Characteristics

Differential input resistance

 $V_{CC\pm}$ = ±15 V, T_A = 25°C

	PARAMETER	TEST CON	IDITIONS	MIN	TYP	MAX	UNIT
SR+	Positive slew rate	V _I =-10V to 10V,	A _V = 1	8	10		V/µs
SR-	Negative slew rate	$R_L = 2k\Omega, C_L = 300pF$	A _V = -1		13		V/µs
	Cattling at time a	A = 4.40\/ stan	To 0.1%		2		
t _s	Settling time	$A_{VD} = -1$, 10V step	To 0.01%		2.5		μs
V _n	Equivalent input noise voltage	f = 1kHz,	$R_S = 100\Omega$		10.8		nV/√Hz
In	Equivalent input noise current	f = 1kHz	<u>'</u>		2		fA/√Hz
GBW	Gain-bandwidth product	f =100 kHz			4.5		MHz
BW	Power bandwidth	$V_{O(PP)}$ = 20V, R_L = 2k Ω , A_{VD}		85		kHz	
-		D - 01-0	C _L = 0		70	dea dea	
Φm	Phase margin	$R_L = 2k\Omega$	C _L = 300pF		50		
	Coin morain	D = 21/0	C _L = 0		12		dB
	Gain margin	$R_L = 2k\Omega$	C _L = 300pF		4		αв
r _i	Differential input resistance	V _{IC} = 0	V _{IC} = 0		540		GΩ
Ci	Input capacitance	V _{IC} = 0			10		pF
	Channel separation	f = 10kHz		101		dB	
Z _o	Open-loop output impedance	f = 1MHz,	A _V = 1		525		Ω

5 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

5.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

5.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

5.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

•	hanges from Revision G (September 2003) to Revision H (December 2025)	Page
•	Deleted High slew-rate	1
•	Deleted Low harmonic distortion	
•	Deleted Large capacitance drive capability	1
•	Changed Wide bandwidth product from 4MHz to 4.5MHz	
•	Changed Fast setting time from 1.1µs to 2µs	1
•	Updated Gain-bandwidth product from 4MHz to 4.5MHz	1
•	Deleted Ordering information table	1
•	Deleted Schematic Information	
•	Updated Thermal impedance D package value from 97°C/W to 130.7°C/W	4
•	Updated Input offset current from 6nA to 0.01nA	
•	Updated Input bias current from 100nA to 0.01nA	5
•	Updated Low-level Output voltage at 10kΩ from -14.7V to -14.8V	5
•	Updated High-level Output voltage from 4V to 4.8V	5
•	Updated High-level Output voltage at 10kΩ from 14V to 14.8V	<mark>5</mark>
•	Updated Low-level Output voltage from 0.1V to 5mV	5
•	Updated Short circuit output current for source from −34mA to −75mA	<mark>5</mark>
•	Updated Low-level Input voltage for sink from 27mA to 75mA	<mark>5</mark>
•	Updated Supply current from 3.5mA to 0.56mA	
•	Updated Settling time from 1.1µs to 2µs for 0.1% and 2.2µs to 2.5µs for 0.01%	6

Copyright © 2025 Texas Instruments Incorporated

•	Updated Equivalent input noise voltage from 49nV/√Hz to 10.8nV/√Hz	6
	Updated Equivalent input noise current from 0.22pA/√Hz to 2fA/√Hz	
	Updated Gain bandwidth product from 4MHz to 4.5MHz	
	Deleted Gain bandwidth product minimum value	
	Updated Power bandwidth value from 160kHz to 85KHz	
•	Updated Differential input resistance from 150MΩ to 540GΩ	6
	Updated Input capacitance from 2.5pF to 10pF	
	Updated Open-loop output impedance from 20Ω to 525Ω	

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

www.ti.com

9-Dec-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TL3472CDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3472C
TL3472CDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3472C
TL3472CP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	TL3472CP
TL3472CP.A	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	TL3472CP
TL3472IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	Z3472
TL3472IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	Z3472
TL3472IP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 105	TL3472IP
TL3472IP.A	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 105	TL3472IP

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

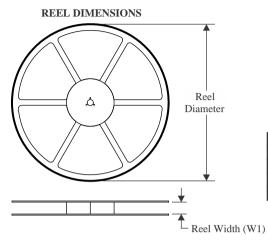
PACKAGE OPTION ADDENDUM

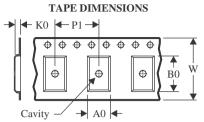
www.ti.com 9-Dec-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL3472:

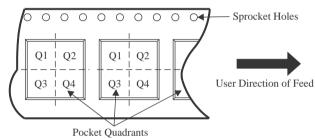
Automotive : TL3472-Q1


NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

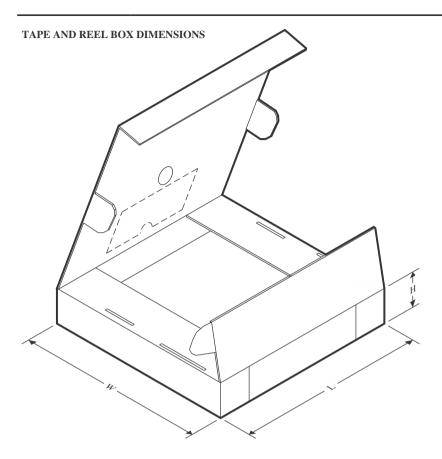
PACKAGE MATERIALS INFORMATION

www.ti.com 9-Dec-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

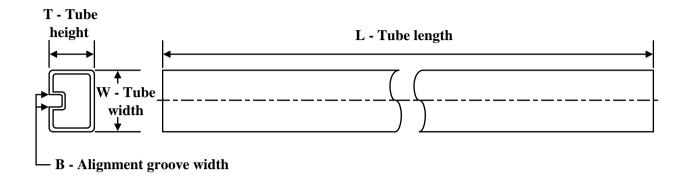


*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL3472CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3472IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Dec-2025

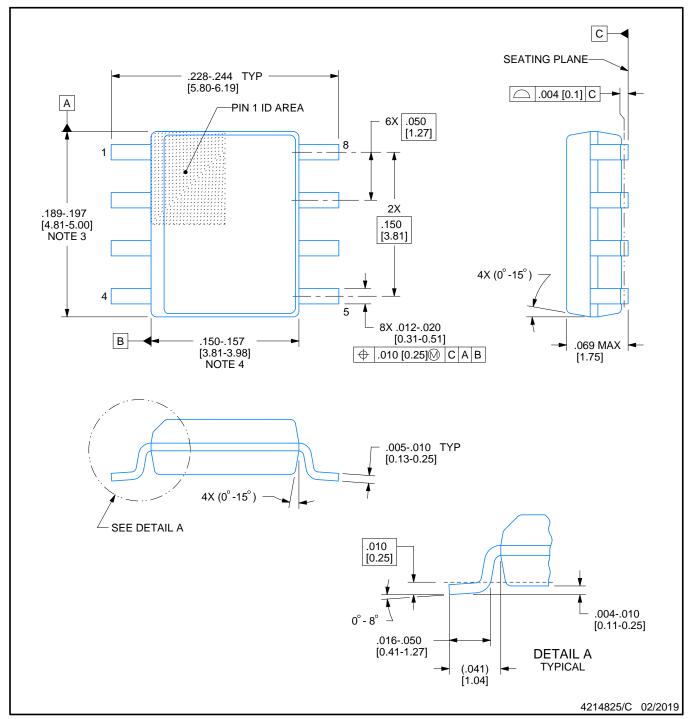

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL3472CDR	SOIC	D	8	2500	353.0	353.0	32.0
TL3472IDR	SOIC	D	8	2500	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Dec-2025

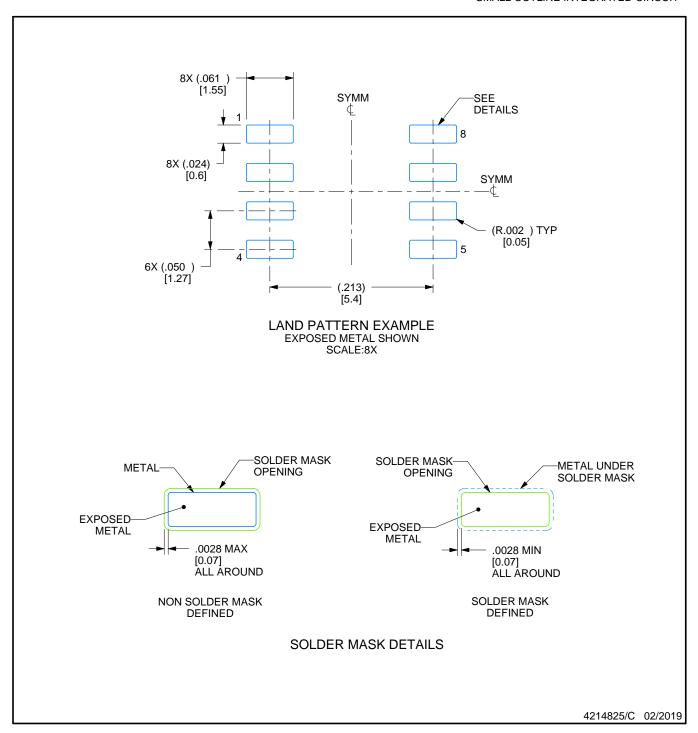
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TL3472CP	Р	PDIP	8	50	506	13.97	11230	4.32
TL3472CP.A	Р	PDIP	8	50	506	13.97	11230	4.32
TL3472IP	Р	PDIP	8	50	506	13.97	11230	4.32
TL3472IP.A	Р	PDIP	8	50	506	13.97	11230	4.32

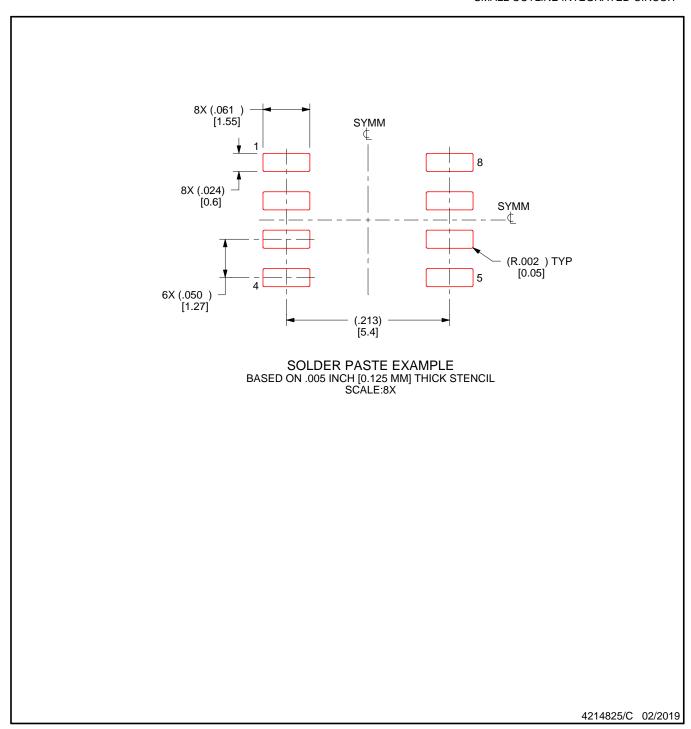
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

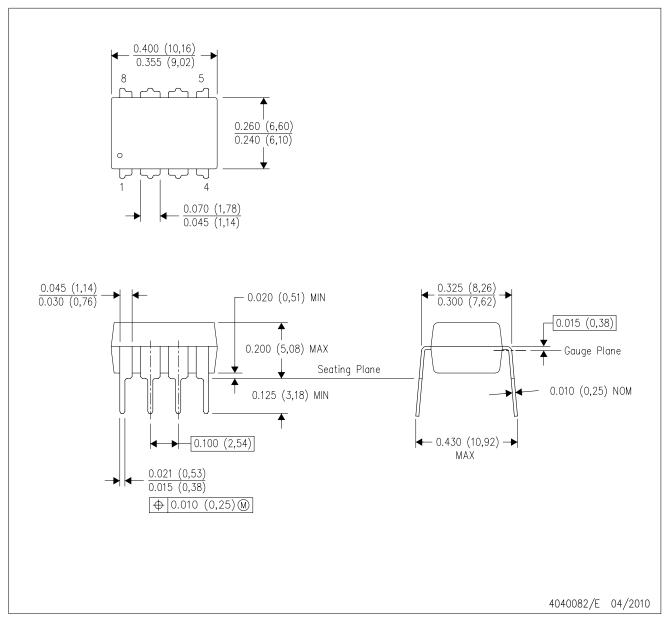
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025