SLLS044D - NOVEMBER 1988 - REVISED DECEMBER 1999

 μv_{cc}

GND

7 **|**] B

6 🛮 A

D OR P PACKAGE (TOP VIEW)

RE

DE [] 3

D

- Bidirectional Transceiver
- Meets or Exceeds the Requirements of TIA/EIA-422-B, TIA/EIA-485-A, and ITU Recommendation V.11
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Skew . . . 6 ns Max
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply-Current Requirements . . .
 30 mA Max
- Wide Positive and Negative Input/Output Bus-Voltage Ranges
- Driver Output Capacity . . . ±60 mA
- Thermal-Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedances . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 120 mV Typ
- Fail Safe . . . High Receiver Output With Inputs Open
- Operates From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection
- Interchangeable With National DS3695 and DS3695A

description

The TL3695 differential bus transceiver is designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets TIA/EIA-422-B, TIA/EIA-485-A, and ITU Recommendation V.11.

The TL3695 combines a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a directional control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus when the driver is disabled or $V_{\rm CC} = 0$. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party line applications.

The TL3695 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

	PACKAGED DEVICES				
TA	SMALL OUTLINE	PLASTIC DIP			
	(D)	(P)			
0°C to 70°C	TL3695D	TL3695P			

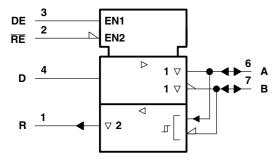
The D package is available taped and reeled. Add the suffix R to device type (e.g., TL3695DR).

Function Tables

DRIVER

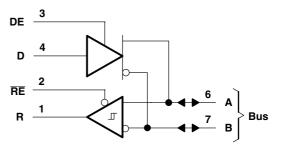
INPUT	ENABLE	OUTPUTS			
D	DE	Α	В		
Н	Н	Н	L		
L	Н	L	Н		
X	L	Z	Z		

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

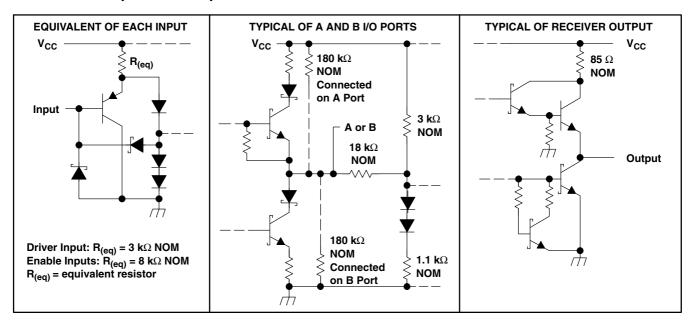

RECEIVER

DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
$V_{ID} \ge 0.2 \text{ V}$	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
X	Н	Z
Inputs open	L	Н

H = high level, L = low level, ? = indeterminate, X = irrelevant,


Z = high impedance (off)

logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematic of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	–10 V to 15 V
Enable input voltage, V _I	5.5 V
Operating free-air temperature range, T _A	0°C to 70°C
Package thermal impedance, θ _{JA} (see Note 2): D package	97°C/W
PW package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

TL3695 DIFFERENTIAL BUS TRANSCEIVER

SLLS044D - NOVEMBER 1988 - REVISED DECEMBER 1999

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
				12	.,
Voltage at any bus terminal (separately or common mode), V _I or V _{IC}				-7	V
High-level Input voltage, V _{IH}	D, DE, and RE	2			V
Low-level Input voltage, V _{IL}	D, DE, and RE			8.0	V
Differential input voltage, V _{ID} (see Note 3)				±12	V
High lavel autout august 1	Driver			- 60	mA
High-level output current, I _{OH}	Receiver			- 400	μΑ
	Driver			60	
Low-level output current, I _{OL}	Receiver			8	mA
Operating free-air temperature, T _A		0		70	°C

NOTE 3: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		MIN	TYP‡	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = –18 mA				-1.5	V
Vo	Output voltage	I _O = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5		5	V
V _{OD2}	Differential output voltage	$R_L = 100 \Omega$	See Figure 1	1/2 V _{OD1} or 2§			٧
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	$V_{\text{test}} = -7 \text{ V to } 12 \text{ V},$	See Figure 2	1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage¶					±0.2	V
V _{OC}	Common-mode output voltage	$R_L = 54 \Omega$,	See Figure 1			3	V
Δ V _{OC}	Change in magnitude of common-mode output voltage¶					±0.2	V
Io	Output current	Output disabled, See Note 4	$V_O = 12 \text{ V}$ $V_O = -7 \text{ V}$			1 -0.8	mA
I _{IH}	High-level input current	V _I = 2.4 V				20	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				-200	μΑ
		$V_0 = -6 \text{ V}$				-250	
١.	Chart singuit autout august#	V _O = 0				-150	A
los	Short-circuit output current#	$V_O = V_{CC}$				250	mA
		V _O = 8 V			•	250	
	Cumply ourrent	No load	Outputs enabled		23	50	mA
I _{CC}	Supply current	140 1080	Outputs disabled		19	35	IIIA

[†] The power-off measurement in TIA/EIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.

NOTE 4: This applies for power on and power off. Refer to TIA/EIA-485-A for exact conditions. The TIA/EIA-422-B limit does not apply for a combined driver and receiver terminal.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TEST CONDITIONS				TYP‡	MAX	UNIT
t _{d(OD)}	Differential-output delay time					8	22	ns
	Skew ($ t_{d(ODH)} - t_{d(ODL)} $)	$C_{L1} = C_{L2} = 100 \text{ pF},$	$R_L = 60 \Omega$,	See Figure 3		1	8	ns
t _{t(OD)}	Differential output transition time					8	18	ns
t _{PZH}	Output enable time to high level	C _L = 100 pF,	$R_L = 500 \Omega$,	See Figure 4			50	ns
t _{PZL}	Output enable time to low level	C _L = 100 pF,	$R_L = 500 \Omega$,	See Figure 5			50	ns
t _{PHZ}	Output disable time from high level	C _L = 15 pF,	$R_L = 500 \Omega$,	See Figure 4		8	30	ns
t_{PLZ}	Output disable time from low level	C _L = 15 pF,	$R_L = 500 \Omega$,	See Figure 5		8	30	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

 $[\]S$ The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

 $[\]P \Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level

[#] Duration of the short circuit should not exceed one second for this test.

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A
V _O	V _{oa} , V _{ob}	V _{oa} , V _{ob}
V _{OD1}	V _o	V _o
V _{OD2}	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
V _{OD3}		V _t (test termination measurement 2)
V _{test}		V _{tst}
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
V _{OC}	V _{os}	V _{os}
Δ V _{OC}	V _{os} − \overline{V} _{os}	V _{os} − ∇ _{os}
I _{OS}	I _{sa} , I _{sb}	
I _O	I _{xa} ,	I _{ia} , I _{ib}

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST C	TEST CONDITIONS			MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 V$,	$I_0 = -0.4 \text{ mA}$			0.2	V
V_{IT-}	Negative-going input threshold voltage	$V_O = 0.5 V$,	$I_O = 8 \text{ mA}$	-0.2 [‡]			V
V_{hys}	Hysteresis voltage (V _{IT+} -V _{IT-})	V _{OC} = 0			70		mV
V _{IK}	Enable-input clamp voltage	$I_{I} = -18 \text{ mA}$				-1.5	V
V _{OH}	High-level output voltage	V_{ID} = 200 mV or in I_{OH} = -400 μ A,	V_{ID} = 200 mV or inputs open, I_{OH} = -400 μ A, See Figure 6				٧
.,		$V_{ID} = -200 \text{ mV},$	I _{OL} = 16 mA			0.5	.,
V_{OL}	Low-level output voltage	See Figure 6	$I_{OL} = 8 \text{ mA}$			0.45	V
loz	High-impedance-state output current	$V_O = 0.4 \text{ V to } 2.4 \text{ V}$				±20	μΑ
		Other input = 0,	V _I = 12 V			1	mA
Ц	Line input current	See Note 5	$V_I = -7 \text{ V}$			-0.8	
I _{IH}	High-level enable-input current	V _{IH} = 2.7 V				20	μΑ
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V				-100	μΑ
rį	Input resistance			12			kΩ
los	Short-circuit output current§	V _O = 0		-15		-85	mA
	Committee accomment	Noteed	Outputs enabled		23	50	A
I _{CC}	Supply current	No load	Outputs disabled		19	35	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

NOTE 5: This applies for power on and power off. Refer to TIA/EIA-485-A for exact conditions.

[‡] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

[§] Duration of the short circuit should not exceed one second for this test.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature range, C_L = 15 pF

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		14	37	ns
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 7		14	37	ns
t _{PZH}	Output enable time to high level	Coo Figure 0		7	20	ns
t_{PZL}	Output enable time to low level	See Figure 8		7	20	ns
t _{PHZ}	Output disable time from high level	Coo Figure 0		7	16	ns
t_{PLZ}	Output disable time from low level	See Figure 8		8	16	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION

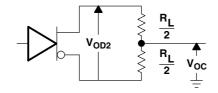


Figure 1. Driver V_{OD} and V_{OC}

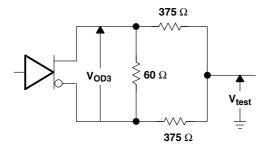
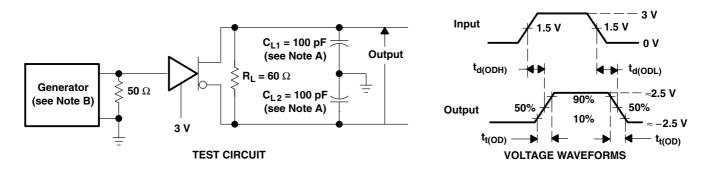
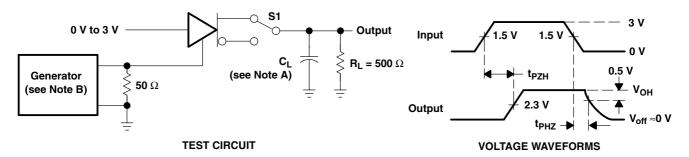
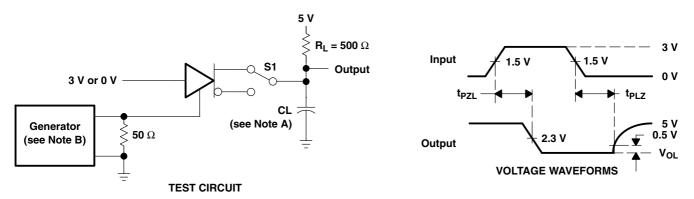



Figure 2. Driver V_{OD3}


NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.

Figure 3. Driver Differential-Output Test Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns, $Z_O = 50 \Omega$.

Figure 4. Driver Test Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns, $Z_O =$ 50 Ω .

Figure 5. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

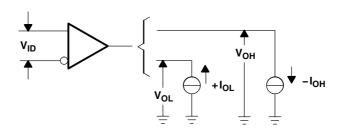
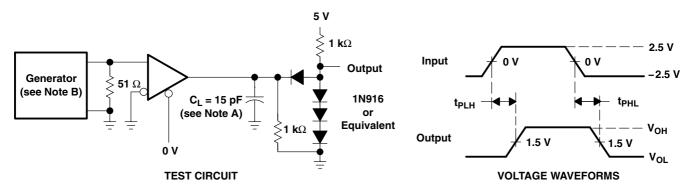
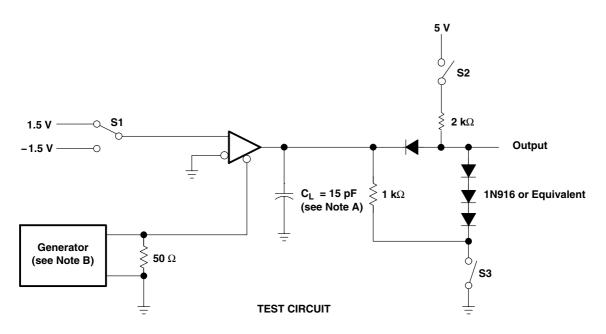
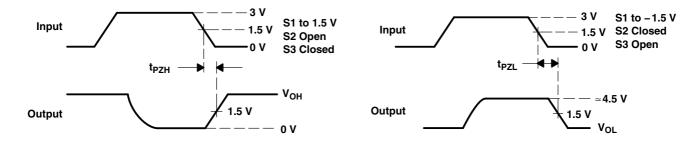



Figure 6. Receiver VOH and VOL




NOTES: A. C_L includes probe and jig capacitance.

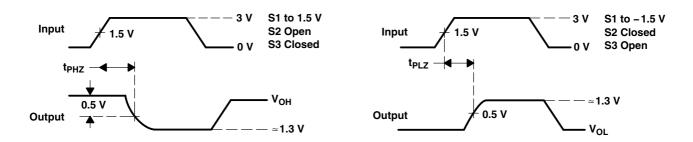
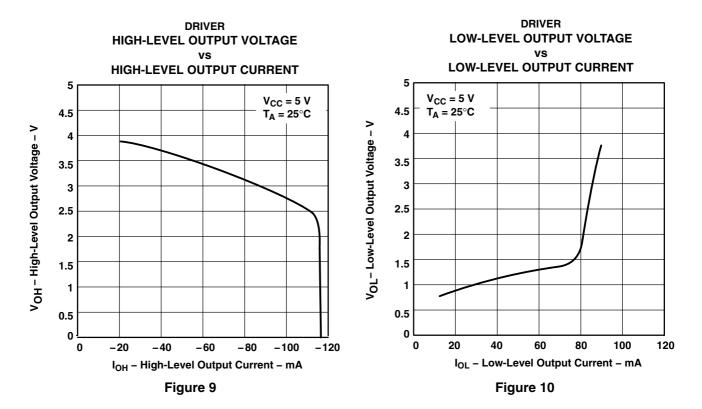

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns, $Z_O =$ 50 Ω .

Figure 7. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS


NOTES: A. C_L includes probe and jig capacitance.

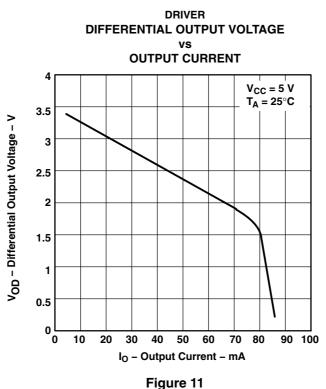

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns, $Z_O =$ 50 Ω .

Figure 8. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS[†]

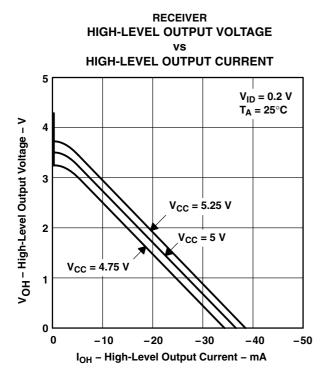
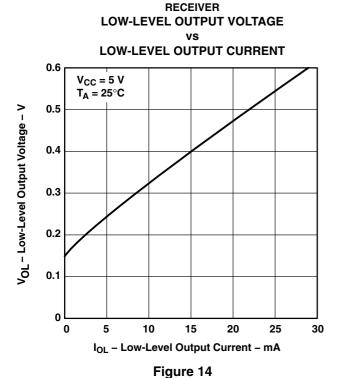



Figure 12

RECEIVER
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

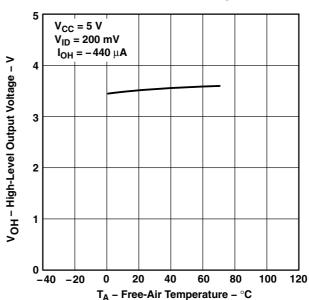


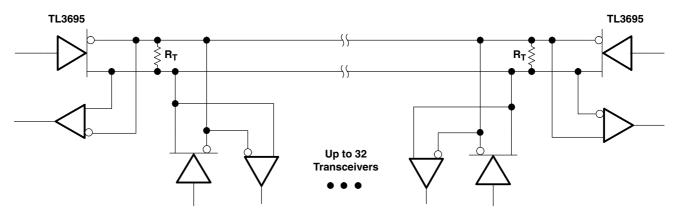
Figure 13

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs



Figure 15

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.



TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 18. Typical Application Circuit

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TL3695D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL3695
TL3695D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL3695
TL3695DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL3695
TL3695DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL3695
TL3695DRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL3695
TL3695P	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	TL3695P
TL3695P.A	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	TL3695P

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

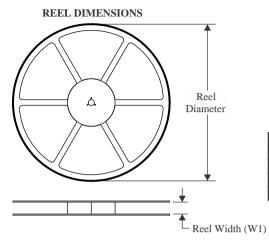
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

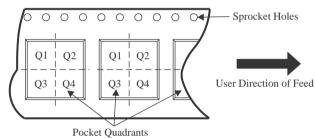
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

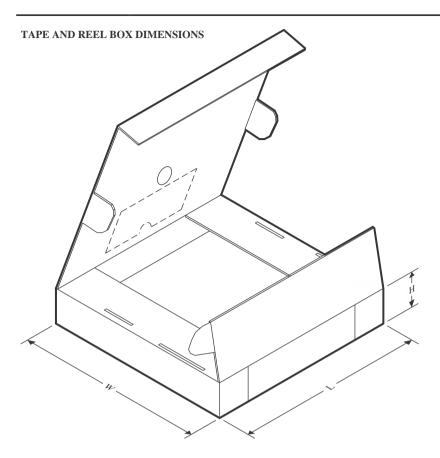
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

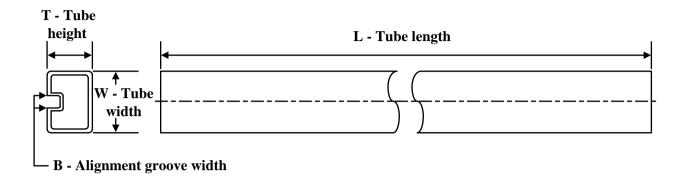
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	` '	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL3695DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 23-May-2025

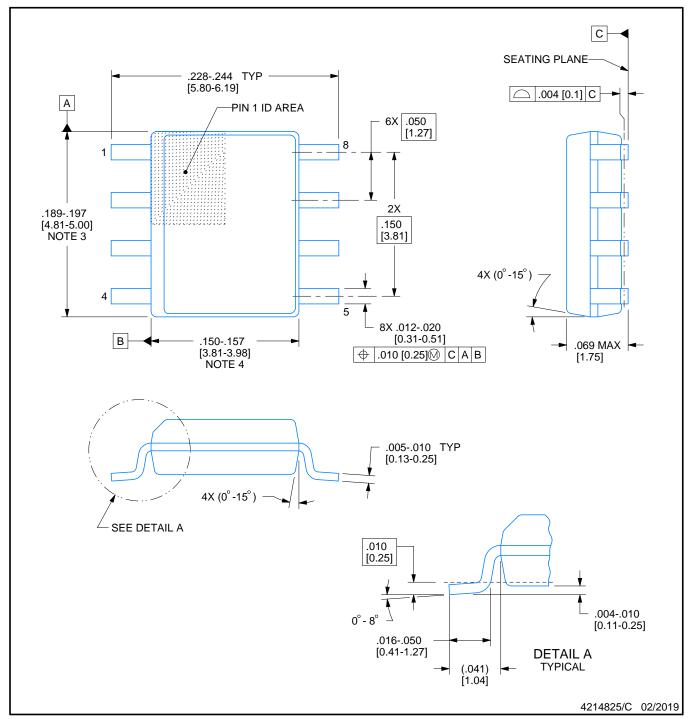

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TL3695DR	SOIC	D	8	2500	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

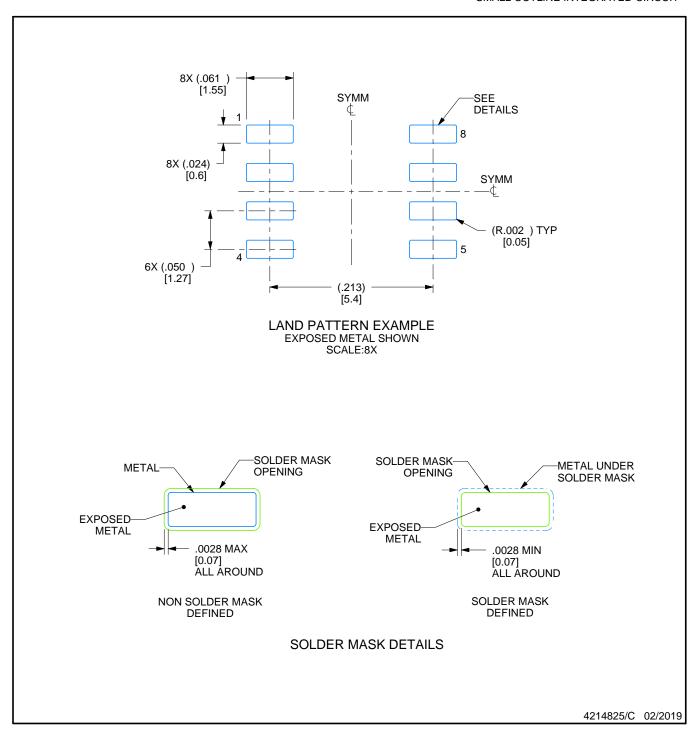
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TL3695D	D	SOIC	8	75	507	8	3940	4.32
TL3695D.A	D	SOIC	8	75	507	8	3940	4.32
TL3695P	Р	PDIP	8	50	506	13.97	11230	4.32
TL3695P.A	Р	PDIP	8	50	506	13.97	11230	4.32

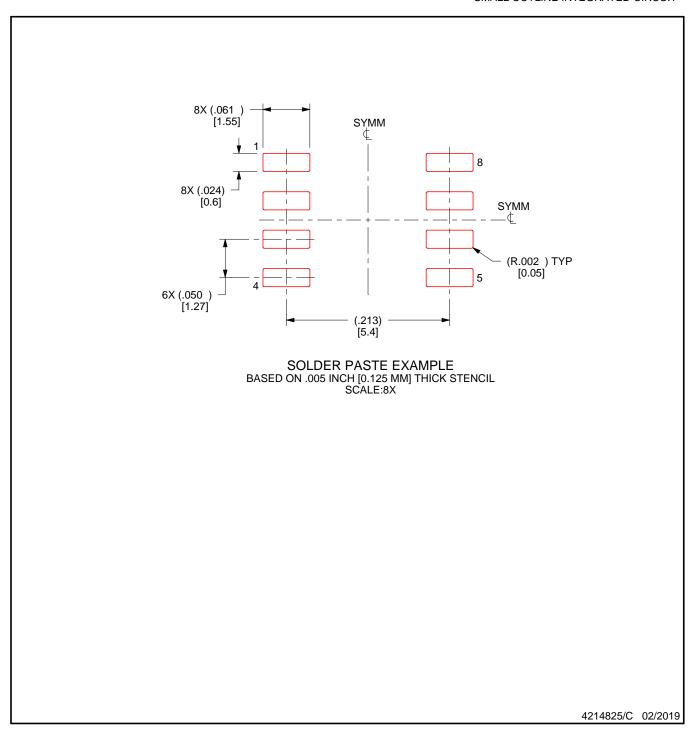
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

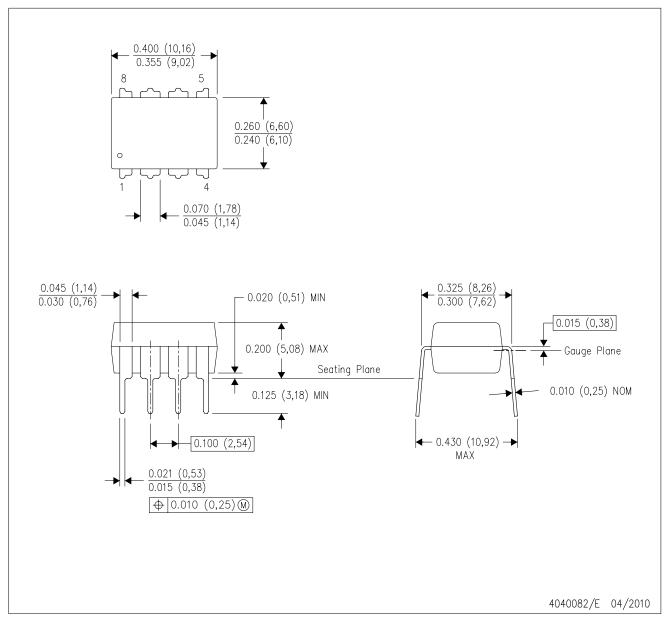
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025