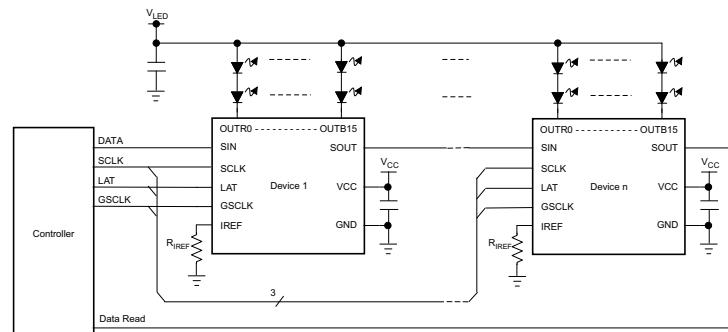


TLC5957 具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器


1 特性

- 48 个恒定灌电流输出通道
- 具有最大亮度控制 (BC)/最大颜色亮度控制 (CC) 数据的灌电流
 - 1~20mA (VCC = 3.3V)
 - 1~25mA (VCC = 5V)
- 全局亮度控制 (BC): 3 位 (8 步长)
- 每个颜色组的全局亮度控制 (CC): 9 位 (512 步长), 三组
- LED 电源电压高达 10V
- VCC = 3.0V 至 5.5V
- 10mA 时拐点电压 $V_{out} = 0.24V$
- 恒流精度
 - 通道之间 = $\pm 1\%$ (典型值), $\pm 3\%$ (最大值)
 - 器件之间 = $\pm 1\%$ (典型值), $\pm 2\%$ (最大值)
- 数据传输速率: 33MHz
- 灰度控制时钟: 33MHz
- 预充电 FET 可消除重影
- 增强电路可消除 Caterpillar 效应
- 可选数据传输位和脉宽调制 (PWM) 位 (9 位至 16 位)
- 可选传统 PWM 和 ES-PWM
- LED 开路检测 (LOD)
- 热关断 (TSD)
- 自动显示重复/自动数据刷新
- 延迟开关可防止浪涌电流
- 工作温度范围: -40°C 至 +85°C

2 应用范围

- 采用多路复用系统的 LED
- LED 信号板

4 典型应用电路 (多个菊花链 TLC5957)

3 说明

TLC5957 是一款 48 通道恒流灌电流驱动器。每个通道都具有单独可调的 65536 步长脉宽调制 (PWM) 灰度 (GS) 亮度控制。

输出通道分为三组, 每组均含 512 步长的颜色亮度控制 (CC) 功能, CC 可调节颜色之间的亮度。全部 48 通道的最大电流值可通过 8 步长全局亮度控制 (BC) 功能设置。BC 调节 LED 驱动器之间的亮度偏差。可通过一个串行接口端口访问 GS、CC 和 BC 数据。

TLC5957 有一个错误标志: LED 开路检测 (LOD), 可通过串行接口端口读取。每个恒流输出都有一个预充电的场效应晶体管 (FET), 能够消除复用 LED 显示时的重影并提升显示性能。此外, TLC5957 具有增强电路, 可消除 LED 开路所引起的 caterpillar 效应。

TLC5957 具有扑克数据传输模式: GS 数据长度可配置为 9 位至 16 位, 具体取决于各子段中的 PWM 位。扑克模式可显著提升复用应用的视觉刷新率。

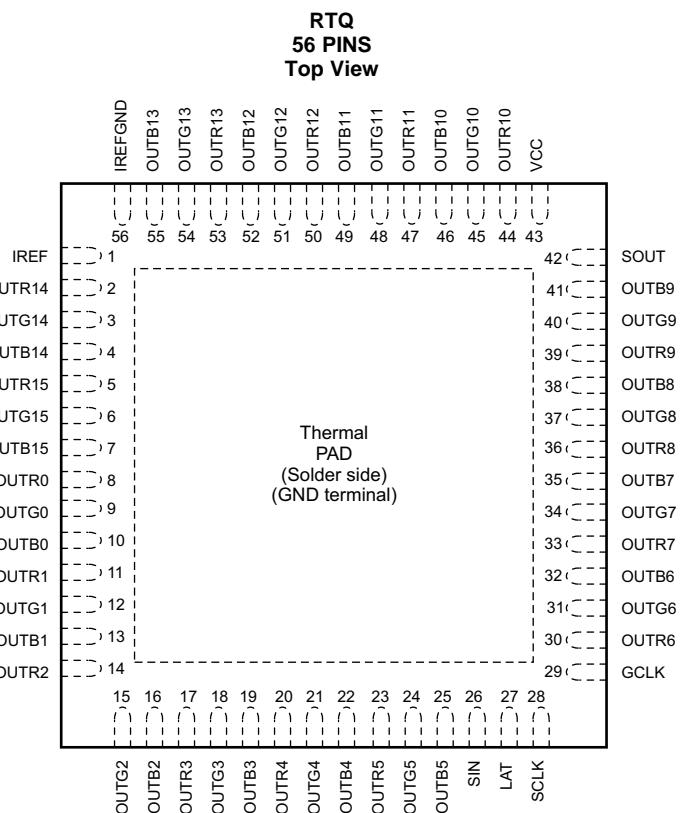
器件信息⁽¹⁾

部件号	封装	封装尺寸 (标称值)
TLC5957	QFN (56)	8.0mm x 8.0mm

(1) 如需了解所有可用封装, 请见数据表末尾的可订购产品附录。

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

English Data Sheet: [SLVSCQ4](#)


目录

1	特性	1	8.2	Test Circuit	10
2	应用范围	1	9	Detailed Description	11
3	说明	1	9.1	Overview	11
4	典型应用电路（多个菊花链 TLC5957）	1	9.2	Functional Block Diagram	12
5	修订历史记录	2	9.3	Device Functional Modes	13
6	Pin Configuration and Functions	3	10	Application and Implementation	17
7	Specifications	4	10.1	Application Information	17
7.1	Absolute Maximum Ratings	4	11	Power Supply Recommendations	17
7.2	Handling Ratings	4	12	Layout	17
7.3	Recommended Operating Conditions	5	12.1	Layout Guidelines	17
7.4	Thermal Information	5	12.2	Layout Example	18
7.5	Electrical Characteristics	5	13	器件和文档支持	18
7.6	Timing Requirements	7	13.1	相关链接	18
7.7	Typical Characteristics	8	13.2	商标	18
8	Parameter Measurement Information	10	13.3	静电放电警告	18
8.1	Pin Equivalent Input and Output Schematic Diagrams	10	13.4	术语表	18
			14	机械封装和可订购信息	18

5 修订历史记录

日期	修订版本	注释
2014 年 10 月	*	最初发布。

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
GCLK	29	I	Grayscale(GS) pulse width modulation (PWM) reference clock control for OUTXn.
			Each GCLK rising edge increase the GS counter by 1 for PWM control.
GND	ThermalPad	—	Power ground. The thermal pad must be soldered to GND on PCB.
IREF	1	—	Maximum constant-current value setting. The OUTR0 to OUTB15 maximum constant output current are set to the desired values by connecting an external resistor between IREF and IREFGND. See Equation 1 for more detail. The external resistor should be placed close to the device.
IREFGND	56	—	Analog ground. Dedicated ground pin for the external IREF resistor. This pin should be connected to analog ground trace which is connected to power ground near the common GND point of board.
LAT	27	I	The LAT falling edge latches the data from the common shift register into the GS data latch or FC data latch.
OUTR0-R15	8, 11, 14, 17, 20, 23, 30, 33, 36, 39, 44, 47, 50, 53, 2, 5	O	Constant current output for RED LED. Multiple outputs can be tied together to increase the constant current capability. Different voltages can be applied to each output. These outputs are turned on-off by GCLK signal and the data in GS data memory.
OUTG0-G15	9, 12, 15, 18, 21, 24, 31, 34, 37, 40, 45, 48, 51, 54, 3, 6	O	Constant current output for GREEN LED. Multiple outputs can be tied together to increase the constant current capability. Different voltages can be applied to each output. These outputs are turned on-off by GCLK signal and the data in GS data memory.
OUTB0-B15	10, 13, 16, 19, 22, 25, 32, 35, 38, 41, 46, 49, 52, 55, 4, 7	O	Constant current output for BLUE LED. Multiple outputs can be tied together to increase the constant current capability. Different voltages can be applied to each output. These outputs are turned on-off by GCLK signal and the data in GS data memory.

Pin Functions (continued)

PIN		I/O	DESCRIPTION
NAME	NO.		
SCLK	28	I	Serial data shift clock. Data present on SIN are shifted to the 48-bit common shift register LSB with the SCLK rising edge. Data in the shift register are shifted towards the MSB at each SCLK rising edge. The common shift register MSB appears on SOUT.
SIN	26	I	Serial data input of the 48-bit common shift register. When SIN is high level, the LSB is set to '1' for only one SCLK input rising edge. If two SCLK rising edges are input while SIN is high, then the 48-bit shift register LSB and LSB+1 are set to '1'. When SIN is low, the LSB is set to '0' at the SCLK input rising edge.
SOUT	42	O	Serial data output of the 48-bit common shift register. SOUT is connected to the MSB of the register.
VCC	43	—	Power-supply voltage.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CC} ⁽²⁾	Supply voltage	VCC	-0.3	6.0	V
I_{OUT}	Output current (dc)	OUTx0 to OUTx15, x = R, G, B	30	30	mA
$V_{IN}^{(2)}$	Input voltage range	SIN, SCLK, LAT, GCLK, IREF	-0.3	$V_{CC} + 0.3$	V
$V_{OUT}^{(2)}$	Output voltage range	SOUT	-0.3	$V_{CC} + 0.3$	V
		OUTx0 to OUTx15, x = R, G, B	-0.3	11	V
$T_{J(MAX)}$	Operation junction temperature		-40	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to device ground terminal.

7.2 Handling Ratings

			MIN	MAX	UNIT
T_{stg}	Storage temperature range		-55	150	°C
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-3	3	kV
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	-1	1	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

At $T_A = -40^\circ\text{C}$ to 85°C , unless otherwise noted.

		MIN	NOM	MAX	UNIT
DC CHARACTERISTICS $V_{CC} = 3 \text{ V to } 5.5 \text{ V}$					
V_{CC}	Supply voltage	3	5.5		V
V_O	Voltage applied to output	OUTx0 to OUTx15, $x = R, G, B$		10	V
V_{IH}	High level input voltage	SIN, SCLK, LAT, GCLK	$0.7 \times V_{CC}$	V_{CC}	V
V_{IL}	Low level input voltage	SIN, SCLK, LAT, GCLK	GND	$0.3 \times V_{CC}$	V
I_{OH}	High level output current	SOUT		-2	mA
I_{OL}	Low level output current	SOUT		2	mA
I_{OLC}	Constant output sink current	OUTx0 to OUTx15, $x = R, G, B$, $3V \leq V_{CC} \leq 4V$		20	mA
		OUTx0 to OUTx15, $x = R, G, B$, $4V < V_{CC} \leq 5.5V$		25	mA
T_A	Operating free air temperature		-40	85	$^\circ\text{C}$
T_J	Operation junction temperature		-40	125	$^\circ\text{C}$
AC CHARACTERISTICS, $V_{CC} = 3 \text{ V to } 5.5 \text{ V}$					
$F_{CLK(SCLK)}$	Data shift clock frequency	SCLK		33	MHz
$F_{CLK(GCLK)}$	Grayscale control clock frequency	GCLK		33	MHz

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TLC5957	UNIT
		RTQ (56 PINS)	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	27.4	$^\circ\text{C/W}$
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	13.6	
$R_{\theta JB}$	Junction-to-board thermal resistance	5.5	
Ψ_{JT}	Junction-to-top characterization parameter	0.2	
Ψ_{JB}	Junction-to-board characterization parameter	5.5	
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	0.8	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

7.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	Output voltage	High	$I_{OH} = -2\text{mA}$ at SOUT	$V_{CC}-0.4$	V_{CC}	V
		Low	$I_{OL} = 2\text{mA}$ at SOUT		0.4	V
V_{LOD0}	LED open detection threshold	LODVTH = 00b		0.05	0.09	0.15
		LODVTH = 01b		0.15	0.19	0.25
		LODVTH = 10b		0.3	0.35	0.4
		LODVTH = 11b		0.45	0.49	0.55
V_{IREF}	Reference voltage output	$R_{IREF} = 5.97\text{k}\Omega$ (1mA target), BC = 0h, CCR/G/B = 80h	1.184	1.209	1.234	V
I_{IN}	Input current (SIN, SCLK, LAT, GCLK)	$V_{IN} = V_{CC}$ or GND	-1	1		μA
I_{CC0}	Supply current (V_{CC})	SIN/SCLK/LAT/GSCLK = GND, GSn = 0000h, BC = 4h, CCR/G/B = 120h, VOUTn = 0.6V, RIREF = OPEN, $V_{CC} = 4V$		8	10	mA
		SIN/SCLK/LAT/GSCK = GND, GSn = 0000h, BC = 4h, CCR/G/B = 120h, VOUTn = 0.6V, RIREF = 7.5k Ω (Io = 10mA target), $V_{CC} = 4V$		11	13	
		SIN/SCLK/LAT = GND, GCLK = 33MHz, $T_{SU3} = 200\text{ns}$, XREFRESH = 0, GSn = FFFFh, BC = 4h, CCR/G/B = 120h, VOUTn = 0.6V, RIREF = 7.5k Ω (Io = 10mA target), $V_{CC} = 4V$		20	26	
		SIN/SCLK/LAT = GND, GCLK = 33MHz, $T_{SU3} = 200\text{ns}$, XREFRESH = 0, GSn = FFFFh, BC = 7h, CCR/G/B = 1D2h, VOUTn = 0.6V, RIREF = 7.5k Ω (Io = 25mA target), $V_{CC} = 4V$		22	28	
		In power save mode		0.9	1.5	

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ΔI_{OLC0}	Constant current error (OUTx0-15, x = R/G/B)	Channel-to-channel ⁽¹⁾	All OUTn = on, BC = 0h, CCR/G/B = 08Fh, VOUTn = VOUTfix = 0.6V, RREF = 7.5k Ω (1mA target), T_A = +25C, at same color grouped output of OUTR0-15, OUTG0-15 and OUTB0-15		$\pm 1\%$	$\pm 3\%$
ΔI_{OLC1}	Constant current error (OUTx0-15, x = R/G/B)	Device-to-device ⁽²⁾	All OUTn = on, BC = 0h, CCR/G/B = 08Fh, VOUTn = VOUTfix = 0.6V, RREF = 7.5k Ω (1mA target), T_A = +25C, at same color grouped output of OUTR0-15, OUTG0-15 and OUTB0-15		$\pm 1\%$	$\pm 2\%$
ΔI_{OLC2}	Line regulation ⁽³⁾		VCC = 3.0 to 5.5V, All OUTn = on, BC = 0h, CCR/G/B = 08Fh, VOUTn = VOUTfix = 0.6V, RREF = 7.5k Ω (1mA target)		± 1	± 3
ΔI_{OLC3}	Load regulation ⁽⁴⁾		VCC = 4V, All OUTn = on, BC = 0h, CCR/G/B = 08Fh, VOUTn = 0.6 to 3V, VOUTfix = 1V, RREF = 7.5k Ω (1mA target)		± 1	± 3
ΔI_{OLC4}	Constant current error (OUTx0-15, x = R/G/B)	Channel-to-channel ⁽¹⁾	All OUTn = on, BC = 7h, CCR/G/B - 1CCh, VOUTn = VOUTfix = 0.6V, RREF = 7.5k Ω (25mA target), T_A = +25C, at same color grouped output of OUTR0-15, OUTG0-15 and OUTB0-15		$\pm 1\%$	$\pm 3\%$
ΔI_{OLC5}	Constant current error (OUTx0-15, x = R/G/B)	Device-to-device ⁽²⁾	All OUTn = on, BC = 7h, CCR/G/B - 1CCh, VOUTn = VOUTfix = 0.6V, RREF = 7.5k Ω (25mA target), T_A = +25C, at same color grouped output of OUTR0-15, OUTG0-15 and OUTB0-15		$\pm 1\%$	$\pm 3\%$
ΔI_{OLC6}	Line regulation ⁽³⁾		VCC = 3.0 to 5.5V, All OUTn = on, BC = 7h, CCR/G/B - 1CCh, VOUTn = VOUTfix = 0.6V, RREF = 7.5k Ω (25mA target)		± 1	± 3
ΔI_{OLC7}	Load regulation ⁽⁴⁾		All OUTn = on, BC = 7h, CCR/G/B - 1CCh, VOUTn = 0.6 to 3V, VOUTfix = 0.6V, RREF = 7.5k Ω (25mA target)		± 1	± 3
T_{TSD}	Thermal shutdown threshold			160	170	180
T_{HYS}	Thermal shutdown hysteresis				10	°C
$V_{ISP(in)}$	I_{REF} resistor short protection threshold				0.190	V
$V_{ISP(out)}$	I_{REF} resistor short-protection release threshold				0.330	V

(1) The deviation of each outputs in same color group (OUTR0~15 or OUTG0~15 or OUTB0~15) from the average of same color group constant current. The deviation is calculated by the formula. (X = R or G or B, n = 0~15)

$$\Delta(\%) = \left(\frac{\frac{I_{OUTXn}}{(I_{OUTX0} + I_{OUTX1} + \dots + I_{OUTX14} + I_{OUTX15})}}{16} - 1 \right) \times 100$$

(2) The deviation of the average of constant-current in each color group from the ideal constant-current value. (X = R or G or B) :

$$\Delta(\%) = \left(\frac{\frac{(I_{OUTX0} + I_{OUTX1} + \dots + I_{OUTX15})}{16} - (\text{Ideal Output Current})}{\text{Ideal Output Current}} \right) \times 100$$

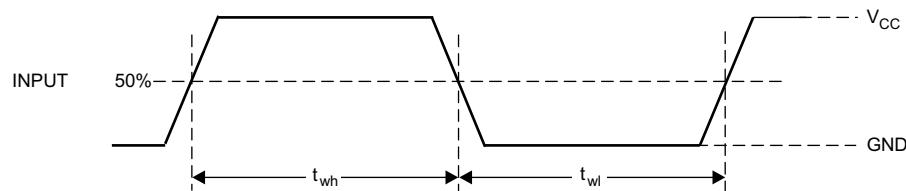
Ideal current is calculated by the following equation:

$$\text{Ideal Output (mA)} = \text{Gain} \times \left(\frac{V_{IREF}}{R_{IREF} (\Omega)} \right) \times \text{CCR(or CCG, CCB) / 511d}, \quad V_{IREF} = 1.209V(\text{Typ}), \text{ refer to Table 1 for the Gain at chosen BC.}$$

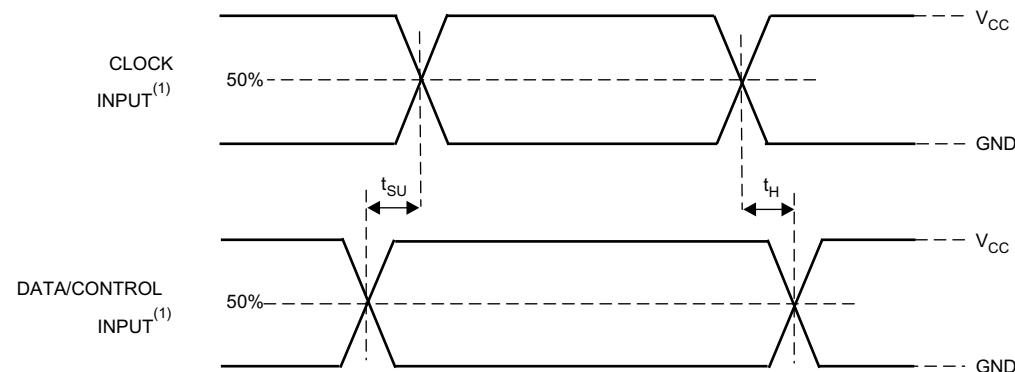
(3) Line regulation is calculated by the following equation. (X = R or G or B, n = 0~15):

$$\Delta(\% / V) = \left(\frac{(I_{OUTXn} \text{ at } VCC = 5.5V) - (I_{OUTXn} \text{ at } VCC = 3.0V)}{(I_{OUTXn} \text{ at } VCC = 3.0V)} \right) \times \frac{100}{5.5V - 3V}$$

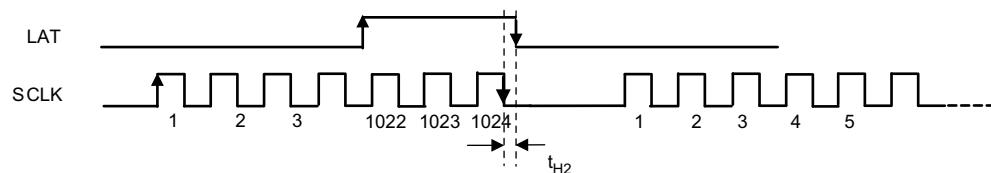
(4) Load regulation is calculated by the following equation. (X = R or G or B, n = 0~15):


$$\Delta(\% / V) = \left(\frac{(I_{OUTXn} \text{ at } VOUTXn = 3V) - (I_{OUTXn} \text{ at } VOUTXn = 1V)}{(I_{OUTXn} \text{ at } VOUTXn = 1V)} \right) \times \frac{100}{3V - 1V}$$

7.6 Timing Requirements

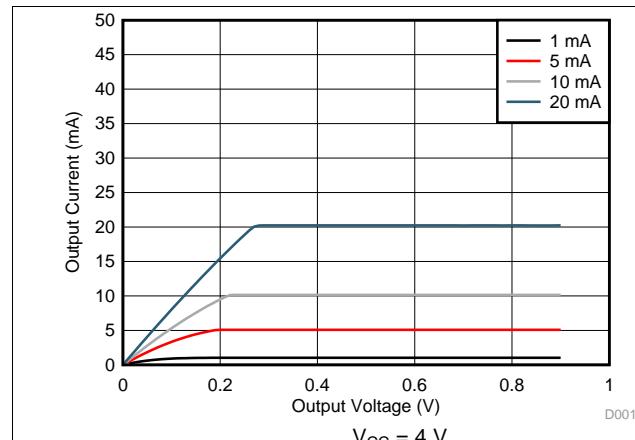

At $T_A = -40^\circ\text{C}$ to 85°C , unless otherwise noted.

			MIN	TYP	MAX	UNIT
AC CHARACTERISTICS, $V_{CC} = 3\text{ V}$ to 5.5 V						
t_{WH0} t_{WL0} t_{WH1} t_{WL1} t_{WH2}	Pulse duration	SCLK	10			ns
		SCLK	10			ns
		GCLK	10			ns
		GCLK	10			ns
		LAT	10			ns
t_{SU0} t_{SU1} t_{SU2} t_{SU3}	Setup time	SIN – SCLK \uparrow	2			ns
		LAT \uparrow – SCLK \uparrow	3			ns
		LAT \downarrow – SCLK \uparrow , for WRTGS, WRTFC, and TMGST Command	20			ns
		LAT \downarrow – SCLK \uparrow , for LATGS, READFC, and LINERESET Command	80			ns
		LAT \downarrow – GCLK \uparrow , for LATGS AND LINERESET Command	30			ns
t_{H0}		SCLK \uparrow – SIN	2			ns
t_{H1}		SCLK \uparrow – LAT \uparrow	2			ns
t_{H2}		SCLK \downarrow – LAT \downarrow	2			ns

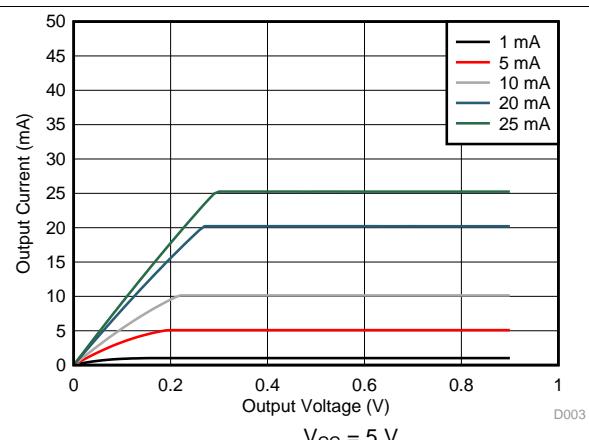

t_{WH0} , t_{WL0} , t_{WH1} , t_{WL1} , t_{WH2}

t_{SU0} , t_{SU1} , t_{SU2} , t_{SU3} , t_{H0} , t_{H1}

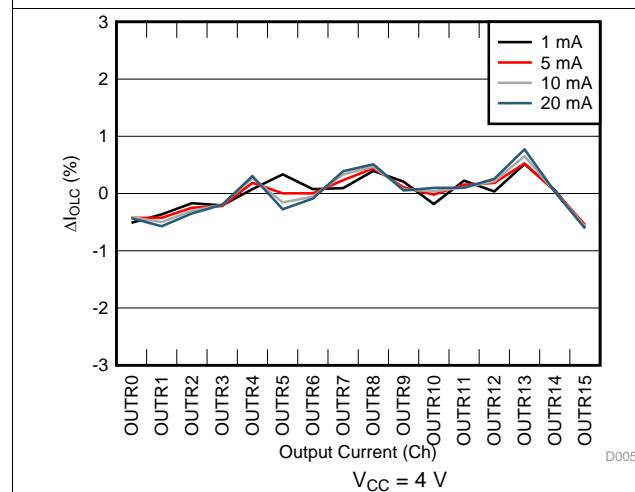
t_{H2}

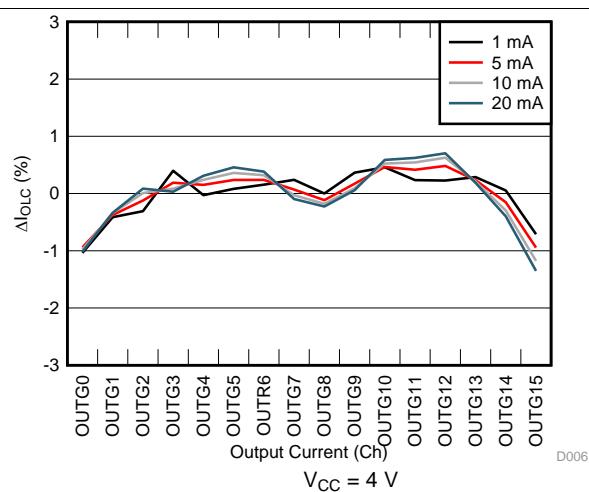


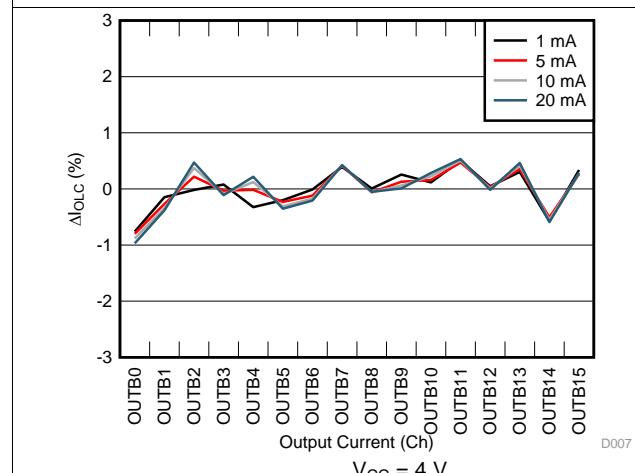
LAT Signal needs to include falling edge of SCLK

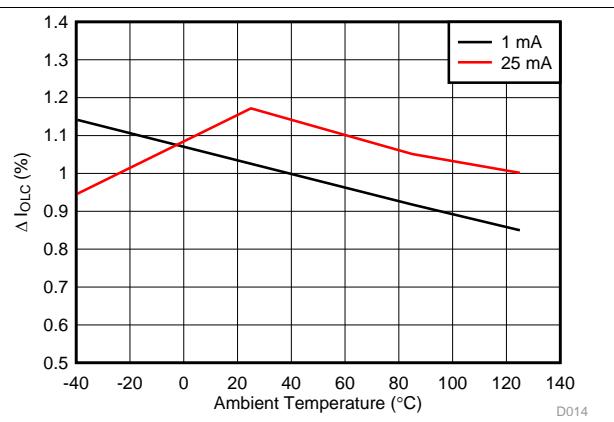

Figure 1. Input Timing

7.7 Typical Characteristics

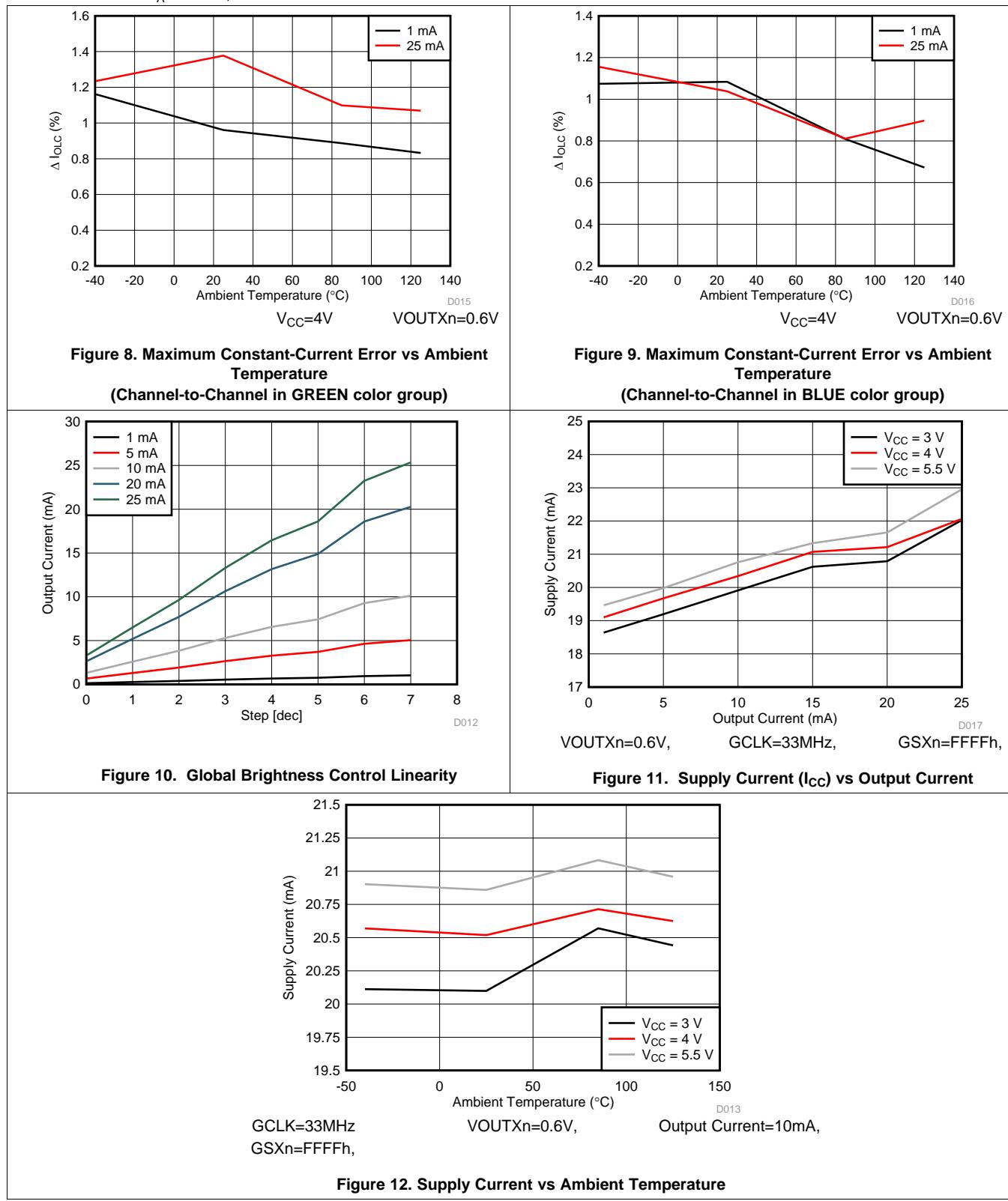

At $V_{CC} = 4\text{V}$ and $T_A = 25^\circ\text{C}$, unless otherwise noted.


Figure 2. Output Current vs Output Voltage

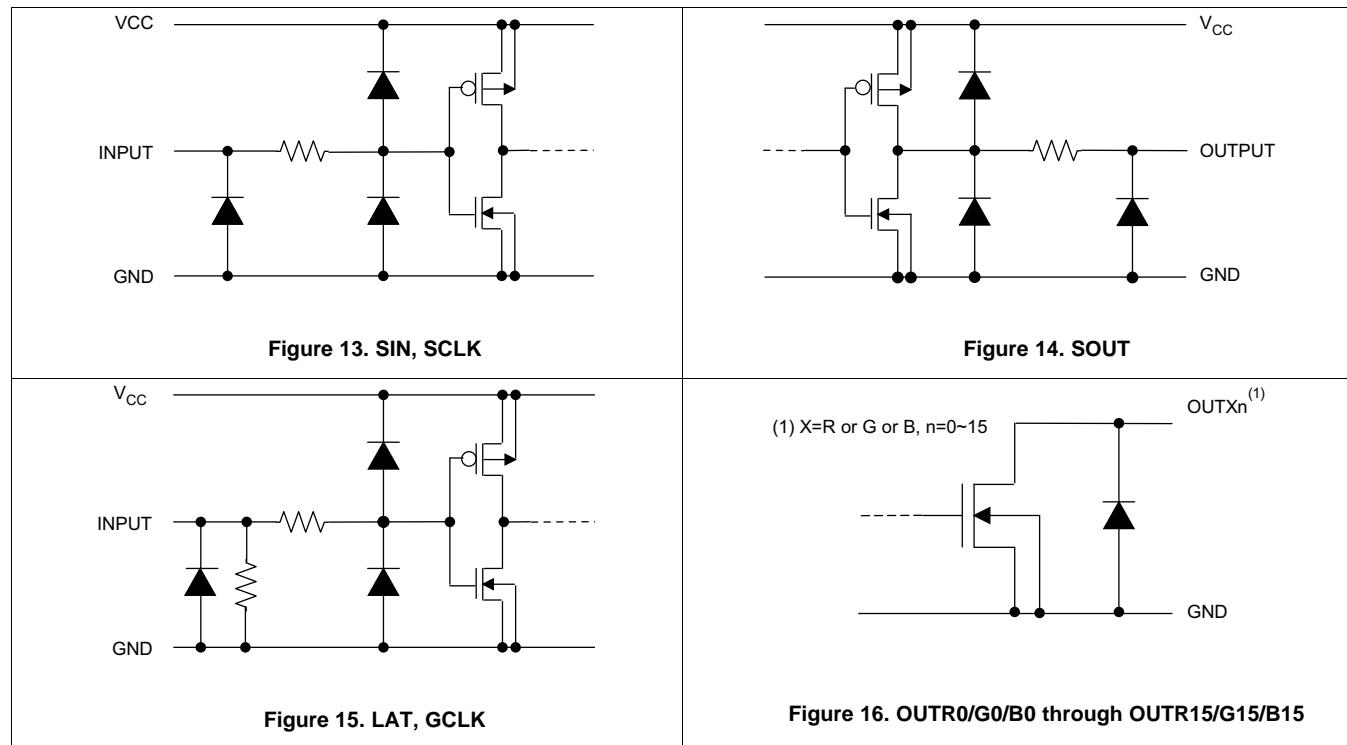

Figure 3. Output Current vs Output Voltage


**Figure 4. Constant-Current Error vs Output Current
(Channel-to-Channel in RED color group)**

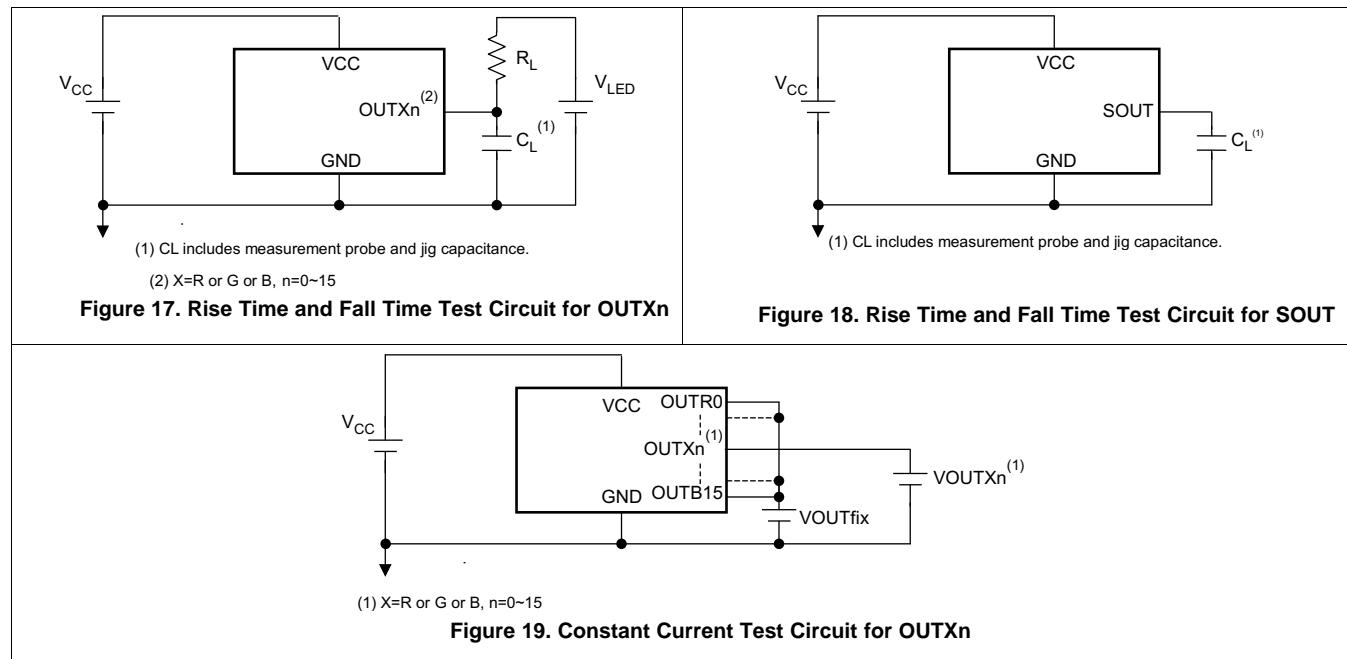
**Figure 5. Constant-Current Error vs Output Current
(Channel-to-Channel in GREEN color group)**


**Figure 6. Constant-Current Error vs Output Current
(Channel-to-Channel in BLUE color group)**

**Figure 7. Maximum Constant-Current Error vs Ambient Temperature
(Channel-to-Channel in RED color group)**


Typical Characteristics (continued)

At $V_{CC} = 4V$ and $T_A = 25^\circ C$, unless otherwise noted.



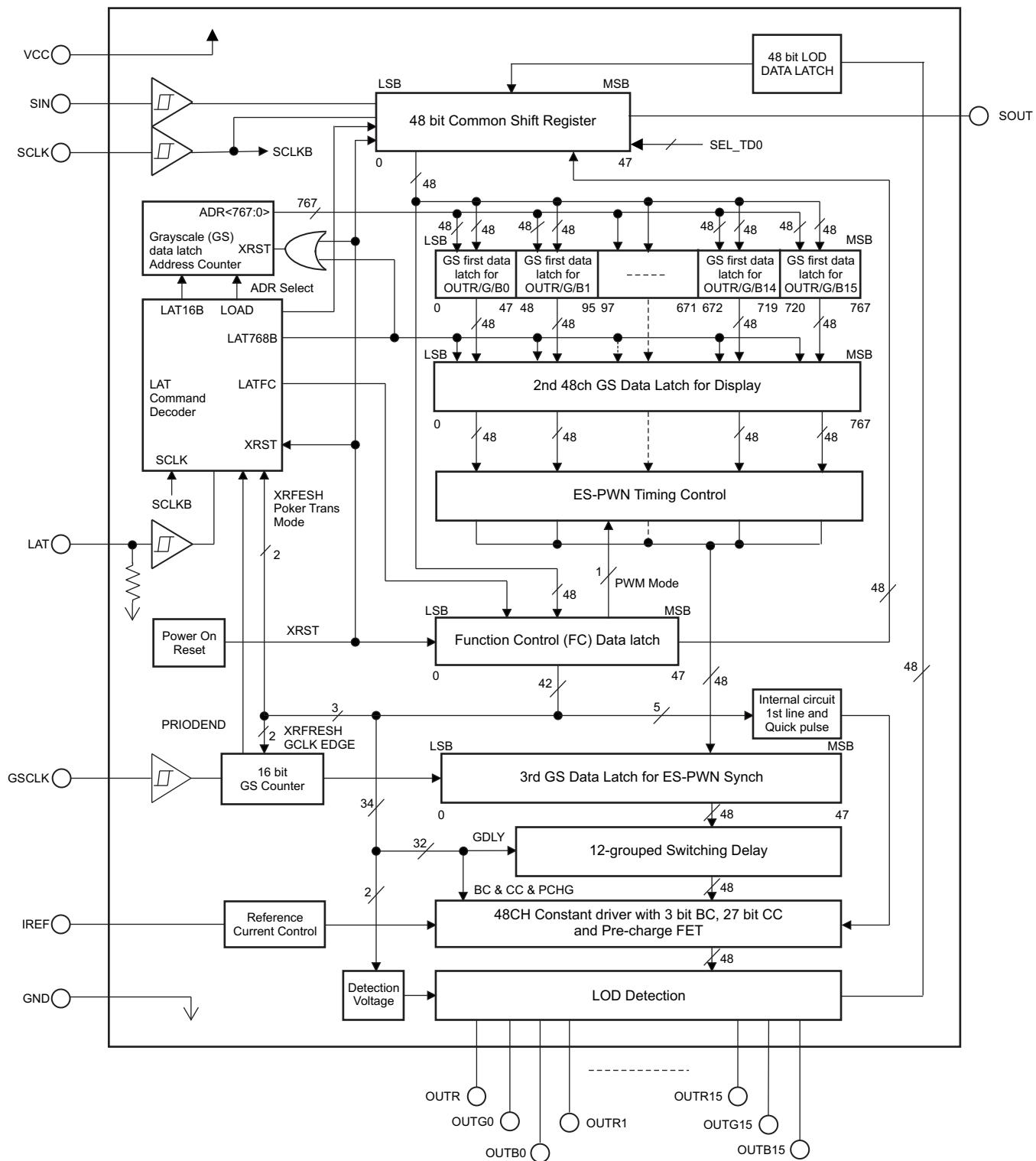
8 Parameter Measurement Information

8.1 Pin Equivalent Input and Output Schematic Diagrams

8.2 Test Circuit

9 Detailed Description

9.1 Overview


The TLC5957 is a 48-channel constant-current sink driver for multiplexing an LED display system. Each channel has an individually-adjustable, 65536-step, pulse width modulation (PWM) grayscale control.

The TLC5957 supports output current range from 1 mA to 25 mA. Channel-to-channel accuracy is 3% max, device-to-device accuracy is 2% max in all current ranges. Also, the TLC5957 implements Low Grayscale Enhancement (LGSE) technology to improve the display quality at low grayscale conditions. These features improve the performance of the TLC5957-multiplexed display system.

The output channels are grouped in three groups, each group has 16 channels for one color. Each group has a 512-step color brightness control (CC) function. The maximum current value of all 48 channels can be set by 8-step global brightness control (BC) function. GS, CC and BC data are accessible via a serial interface port.

The TLC5957 has one error flag: LED open detection (LOD), that can be read via a serial interface port. The TLC5957 also has an enhanced circuit to solve the caterpillar issue caused by open LEDs. Thermal shutdown (TSD) and Iref resistor short protection (ISP) assure TLC5957 of a higher system reliability.

9.2 Functional Block Diagram

9.3 Device Functional Modes

After power on, all OUTXn of TLC5957 are turned off. All the internal counters and function control registers are initialized. Below is a brief summary of the sequence to operate TLC5957, just give users a general idea how this part works. After that, the function block related to each step will be detailed in following sections.

1. According to required LED current, choose BC and CC code, select the current programming resistor R_{REF} .
2. Send WRTFC command to set FC register value if the default value need be changed.
3. Write GS data of line 1 into GS data latch. Using LATGS command for the last group of 48bit GS data loading, the GS data written just now will be displayed.
4. Input GCLK continuously, 2^N GCLK ($N \geq 9$) as a segment. Between the interval of two segments, supply voltage should be switched from one line to next line accordingly.
5. During the same period of step4, GS data for next line should be written into GS data latch. Using LATGS command for the last group of 48bit GS data loading.
6. Repeat step 4-5 until it comes to the last line for a multiplexing panel. Input 2^N GCLK ($N \geq 9$) as a segment, at the same time, GS data for 1st line should be written into GS data latch. Using LINEREST command for the last group of 48bit GS data loading.

Repeat step 4 through 6.

9.3.1 Brightness Control (BC) Function

The TLC5957 is able to adjust the output current of all constant-current outputs simultaneously. This function is called *global brightness control* (BC). The global BC for all outputs is programmed with a 3-bit word, thus all output currents can be adjusted in 8 steps from 12.9% to 100% (See [Table 2](#)) for a given current programming resistor (R_{REF})

BC data can be set via the serial interface. When the BC data change, the output current also changes immediately. When the device is powered on, the BC data in the function control (FC) register is set to 4h as the initial value.

9.3.2 Color Control (CC) Function

The TLC5957 is able to adjust the output current of each of the three color groups OUTR0-OUTR15, OUTG0-OUTG15, and OUTB0-OUTB15 separately. This function is called *color brightness control* (CC). For each color, it has 9-bit data latch CCR, CCG, or CCB in FC register. Thus, all color group output currents can be adjusted in 512 steps from 0% to 100% of the maximum output current, I_{OLCMax} . (See next section for more details about I_{OLCMax}). The CC data are entered via the serial interface. When the CC data change, the output current also changes immediately.

When the IC is powered on, the CC data are set to '100h'.

[Equation 1](#) calculates the actual output current.

$$I_{out}(mA) = I_{OLCMax}(mA) \times (CCR/511d \text{ or } CCB/511d) \quad (1)$$

Where:

I_{OLCMax} = the maximum channel current for each channel, determined by BC data and R_{REF} (See [Equation 2](#))
 $CCR/G/B$ = the color brightness control value for each color group in the FC1 register (000h to 1FFh)

[Table 1](#) shows the CC data versus the constant-current against I_{OLCMax} .

Device Functional Modes (continued)

Table 1. CC Data vs Current Ratio and Set Current Value

CC DATA (CCR or CCG or CCB)			RATIO OF OUTPUT CURRENT TO I_{OLCMax} (%, typical)	OUTPUT CURRENT (mA, $R_{IREF} = 7.41\text{ k}\Omega$)	
BINARY	DECIMAL	HEX		BC = 7h ($I_{OLCMax} = 25\text{mA}$)	BC = 0h ($I_{OLCMax} = 3.2\text{mA}$)
0 0000 0000	0	00	0	0	0
0 0000 0001	1	01	0.2	0.05	0.006
0 0000 0010	2	02	0.4	0.10	0.013
—	—	—	—	—	—
1 0000 0000 (Default)	256 (Default)	100 (Default)	50.1	12.52	1.621
—	—	—	—	—	—
1 1111 1101	509	1FD	99.6	24.90	3.222
1 1111 1110	510	1FE	99.8	24.95	3.229
1 1111 1111	511	1FF	100.0	25	3.235

9.3.3 Select R_{IREF} For a Given BC

The maximum output current per channel, I_{OLCMax} is determined by resistor R_{IREF} placed between the IREF and IREFGND pins, and the BC code in FC register. The voltage on IREF is typically 1.209V. R_{IREF} can be calculated by [Equation 2](#).

$$R_{IREF}(\text{k}\Omega) = V_{IREF}(\text{V}) / I_{OLCMax}(\text{mA}) \times \text{Gain} \quad (2)$$

Where:

V_{IREF} = the internal reference voltage on IREF (1.209V, typical)

I_{OLCMax} is the largest current for each output at CCR/G/B=1FFh.

Gain = the current gain at a selected BC code (See [Table 2](#))

Table 2. Current Gain Versus BC Code

BC DATA		GAIN	RATIO OF GAIN / GAIN_MAX (AT MAX BC)
BINARY	HEX		
000 (recommend)	0 (recommend)	20.0	12.9%
001	1	39.5	25.6%
010	2	58.6	37.9%
011	3	80.9	52.4%
100 (default)	4 (default)	100.0	64.7%
101	5	113.3	73.3%
110	6	141.6	91.7%
111	7	154.5	100%

NOTE: Recommend to use smaller BC code for better performance. For noise immunity purposes, suggest $R_{IREF} < 60\text{ k}\Omega$.

9.3.4 Choosing BC/CC For a Different Application

BC is mainly used for global brightness adjustment between day and night. Suggested BC is 4h, which is in the middle of the range; thus, one can change brightness up and down flexibly.

CC can be used to fine tune the brightness in 512 steps, this is suitable for white balance adjustment between RGB color groups. To get a pure white color, the general requirement for the luminous intensity ratio of R, G, B LED is 3:6:1. Depending on LED's characteristics (Electro-Optical conversion efficiency), the current ratio of R, G, B LED will be much different from this ratio. Usually, the Red LED will need the largest current. One can choose 511d(the max value) CC code for the color group which needs the largest current at first, then choose proper CC code for the other two color groups according to the current ratio requirement of the LED used.

9.3.4.1 Example 1: Red LED Current is 20mA, Green LED Needs 12mA, Blue LED needs 8mA

1. Red LED needs the largest current, so choose 511d for CCR
2. $511 \times 12\text{mA} / 20\text{mA} = 306.6$, thus choose 307d for CCG. With same method, choose 204d for CCB.
3. According to the required red LED current, choose 7h for BC.
4. According to [Equation 2](#), $R_{\text{REF}} = 1.2\text{V}/20\text{mA} \times 154.5 = 9.27\text{ k}\Omega$

In this example, we choose 7h for BC, instead of using the default 4h. This is because the Red LED current is 20mA, approaching the upper limit of current range. To prevent the constant output current from exceeding the upper limit in case a larger BC code is input accidentally, we choose the maximum BC code here.

9.3.4.2 Example 2: Red LED Current is 5mA, Green LED Needs 2mA, Blue LED Needs 1mA

1. Red LED needs the largest current, so choose 511d for CCR
2. $511 \times 2\text{mA} / 5\text{mA} = 204.4$, thus choose 204d for CCG. With same method, choose 102d for CCB.
3. According to the required blue LED current, choose 0h for BC.
4. According to [Equation 2](#), $R_{\text{REF}} = 1.2\text{V} / 5\text{mA} \times 20 = 4.8\text{ k}\Omega$

In this example, we choose 0h for BC, instead of using the default 4h. This is because the Blue LED current is 1mA, which is approaching the lower limit of current range. To prevent the constant output current from exceeding the lower limit in case a lower BC code is input accidentally, we choose the min BC code here.

In general, if LED current is in the middle of range(i.e, 10mA), one can just use the default 4h as BC code.

9.3.5 LED Open Detection (LOD)

LOD function detects a fault caused by an open circuit in any LED string, or a short from OUTXn to ground with low impedance, by comparing the OUTXn voltage to the LOD detection threshold voltage level set by LODVLT in the FC register. If the OUTXn voltage is lower than the programmed voltage, the corresponding output LOD bit will be set to '1' to indicate a opened LED. Otherwise, the output of that LOD bit is '0'. LOD data output by the detect circuit are valid only during the 'on' period of that OUTXn output channel. LOD data are always '0' for outputs that are turned off.

9.3.6 Poker Mode

Poker Mode provides the TLC5957 with a flexible PWM bit, from 9 bit to 16 bit. Therefore, data length can be reduced. In high multiplexing applications, Poker Mode can significantly increase visual refresh rate.

9.3.7 Internal Circuit for Caterpillar Removal

Caterpillar effect is a very common issue on LED panels. It is usually caused by an LED lamp open, LED lamp leakage or LED lamp short. The TLC5957 implements an internal circuit that can eliminate the caterpillar issue caused by LED open. This function can be enabled and disabled by LINEREST command. If the function is enabled, the IC automatically detects the broken LED lamp, and the lamp will not light until IC reset.

9.3.8 Internal Pre-charge FET for Ghost Removal

The internal pre-charge FET can prevent ghosting of multiplexed LED modules. One cause of this phenomenon is the charging current for parasitic capacitance of the OUTXn through the LED when the supply voltage switches from one common line to the next common line.

To prevent this unwanted charging current, the TLC5957 uses an internal FET to pull OUTXn up to VCC-1.4V during the common line switching period. Thus, no charging current flows through LED and the ghosting is eliminated.

9.3.9 Thermal Shutdown (TSD)

The thermal shutdown (TSD) function turns off all IC constant-current outputs when the junction temperature (T_J) exceeds 170°C (typ). It resumes normal operation when T_J falls below 160°C (typ).

9.3.10 IREF Resistor Short Protection (ISP)

The Iref resistor short protection (ISP) function prevents unwanted large currents from flowing through the constant-current output when the Iref resistor is shorted accidentally. The TLC5957 turns off all output channels when the Iref pin voltage is lower than 0.19V (typ). When the Iref pin voltage goes higher than 0.33V (typ), the TLC5957 resumes normal operation.

9.3.11 Noise Reduction

Large surge currents may flow through the IC and the board on which the device is mounted if all 48 LED channels turn on simultaneously at the 1st GCLK rising edge. This large surge current could induce detrimental noise and electromagnetic interference (EMI) into other circuits.

The TLC5957 separates the LED channels into 12 groups. Each group turns on sequentially with some delay between one group and the next group. By this means, a soft-start feature is provided and the inrush current is minimized.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

Send request via [email](#) for Application Note: *Build High Density, High Refresh Rate, Multiplexing LED Panel with TLC5957*

11 Power Supply Recommendations

The V_{CC} power supply voltage should be decoupled by placing a 0.1 μ F ceramic capacitor close to VCC pin and GND plane. Depending on panel size, several electrolytic capacitors must be placed on board equally distributed to get a well regulated LED supply voltage (VLED). VLED voltage ripple should be less than 5% of its nominal value. Furthermore, the VLED should be set to the voltage calculated by equation:

$$V_{LED} > V_f + 0.4V \text{ (10mA constant current example)} \quad (3)$$

Where: V_f = maximum forward voltage of LED

12 Layout

12.1 Layout Guidelines

1. Place the decoupling capacitor near the VCC pin and GND plane.
2. Place the current programming resistor R_{IREF} close to IREF pin and IREFGND pin.
3. Route the GND pattern as widely as possible for large GND currents. Maximum GND current is approximately 1.2A
4. Routing between the LED cathode side and the device OUTXn pin should be as short and straight as possible to reduce wire inductance.
5. The PowerPAD™ must be connected to GND plane because the pad is used as power ground pin internally, there will be large current flow through this pad when all channels turn on. Furthermore, this pad should be connected to a heat sink layer by thermal via to reduce device temperature. One suggested thermal via pattern is shown as below. For more information about suggested thermal via pattern and via size, see "PowerPAD Thermally Enhanced Package", SLMA002G.

12.2 Layout Example

13 器件和文档支持

13.1 相关链接

以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件，并且可以快速访问样片或购买链接。

表 3. 相关链接

部件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
TLC5957	请单击此处				

13.2 商标

PowerPAD is a trademark of Texas Instruments.

13.3 静电放电警告

 这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

13.4 术语表

SLYZ022 — TI 术语表

这份术语表列出并解释术语、首字母缩略词和定义。

14 机械封装和可订购信息

以下页中包括机械封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TLC5957RTQR	Active	Production	QFN (RTQ) 56	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	5957AB
TLC5957RTQR.A	Active	Production	QFN (RTQ) 56	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	5957AB
TLC5957RTQT	Active	Production	QFN (RTQ) 56	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	5957AB
TLC5957RTQT.A	Active	Production	QFN (RTQ) 56	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	5957AB

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

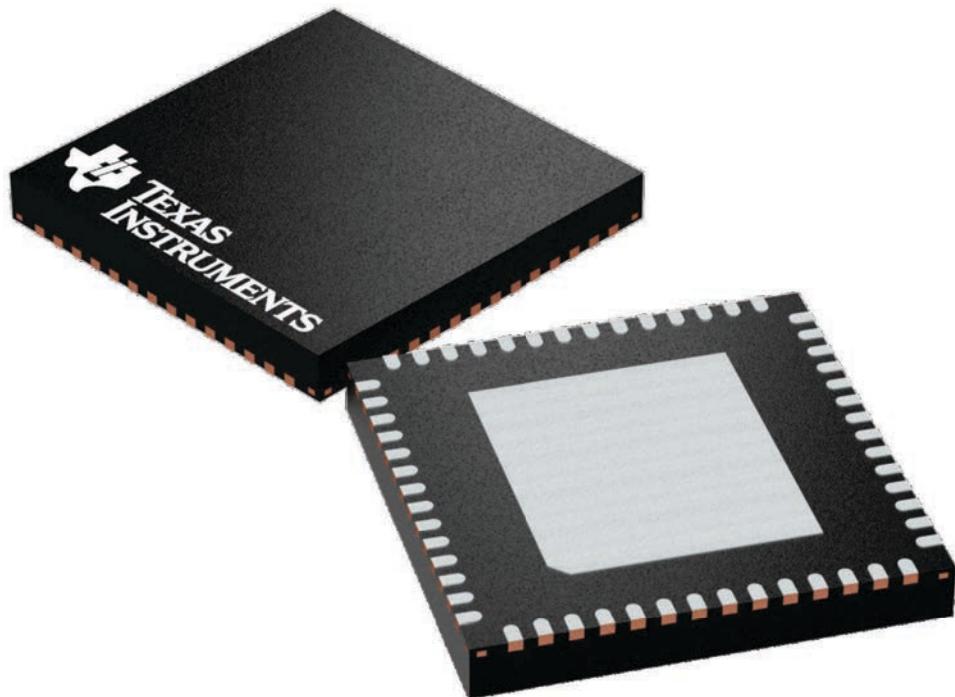
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


GENERIC PACKAGE VIEW

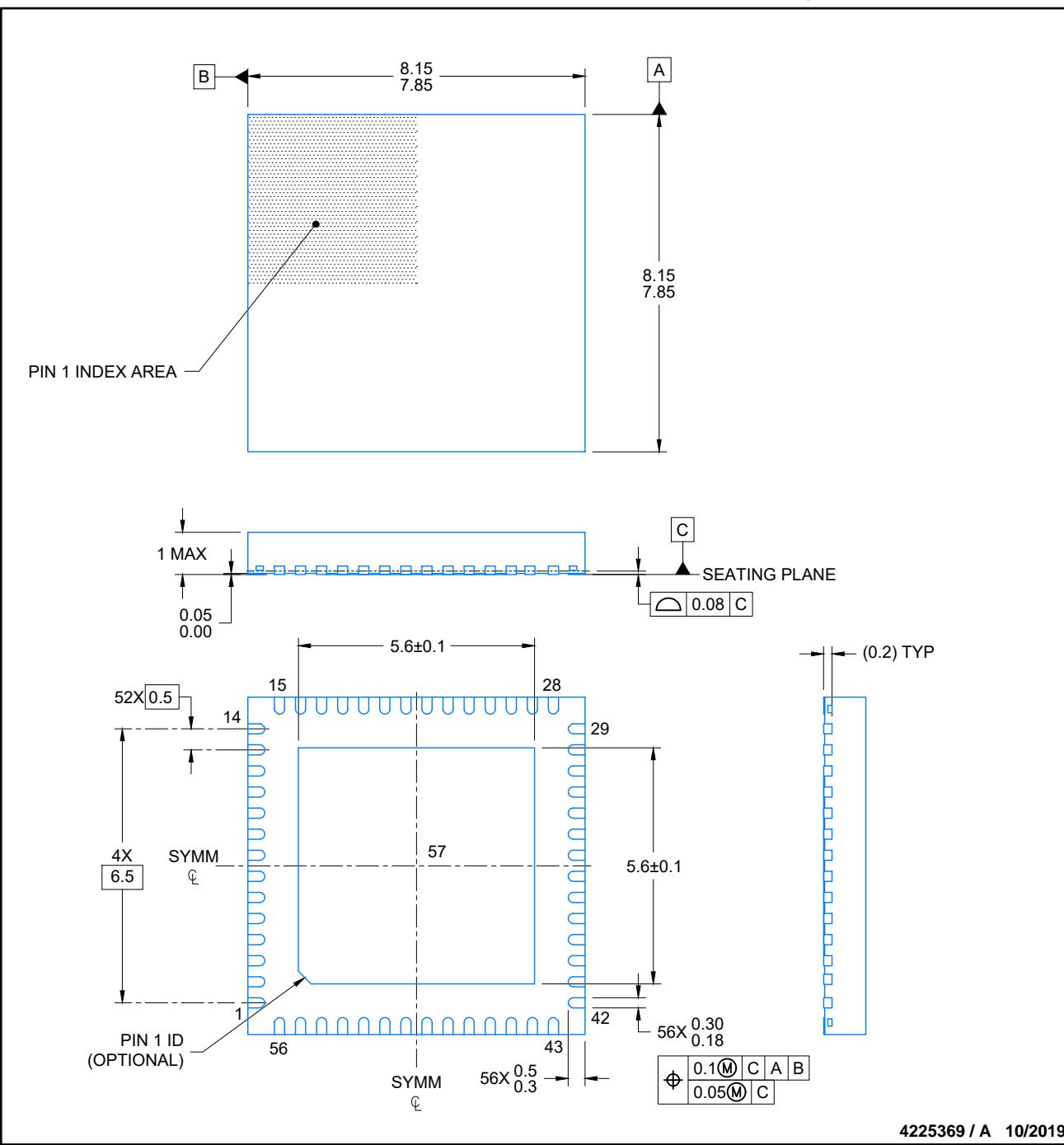
RTQ 56

VQFN - 1 mm max height

8 x 8, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.


4224653/A

PACKAGE OUTLINE

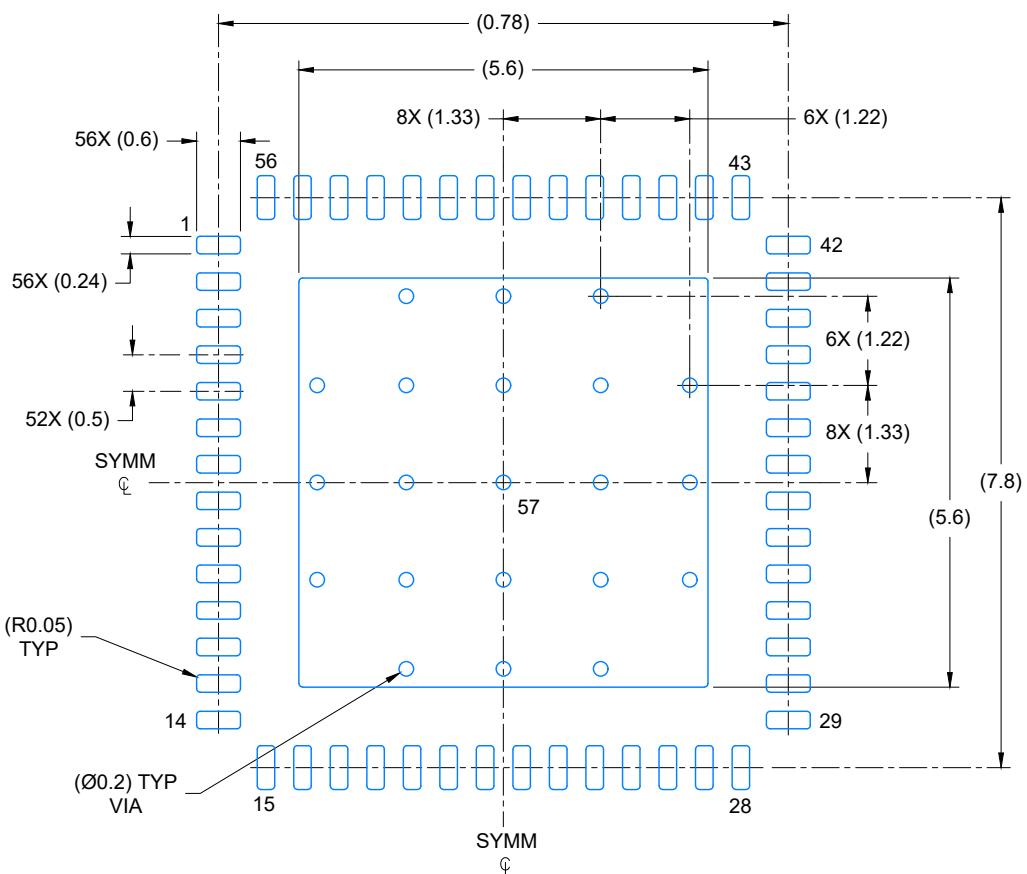
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

RTQ0056G

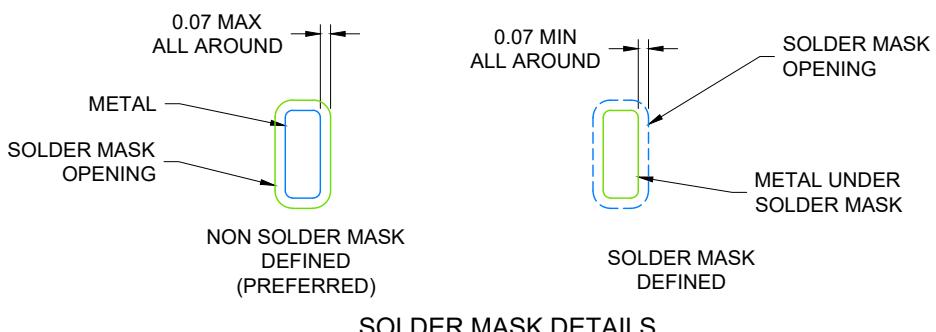
4225369 / A 10/2019

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RTQ0056G


VQFN - 1 mm max height

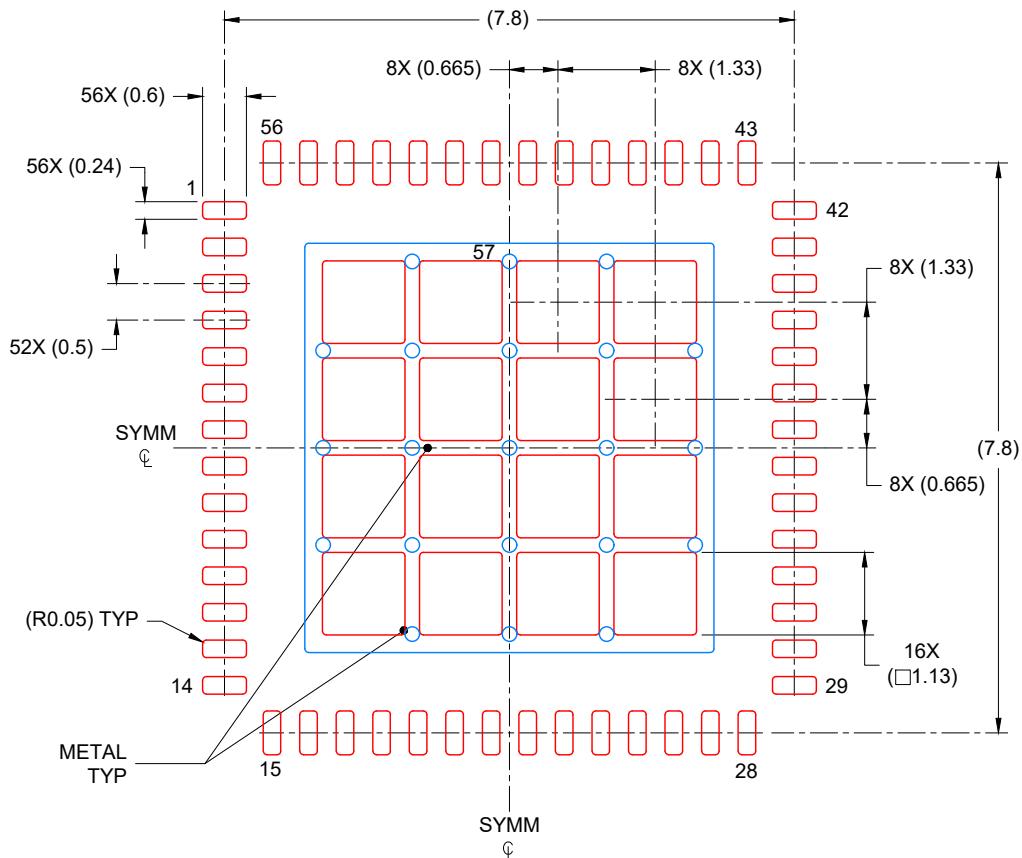
PLASTIC QUAD FLATPACK-NO LEAD

LAND PATTERN EXAMPLE

SCALE: 10X

4225369 / A 10/2019

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RTQ0056G

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月