

USB 专用充电端口控制器和电流限制电源开关

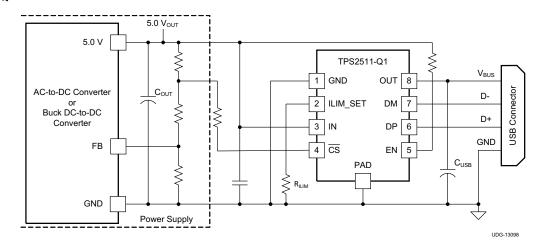
查询样品: TPS2511-Q1

特性

- 符合汽车应用要求
- 具有符合 AEC-Q100 的下列结果:
 - 器件温度 1 级: -40°C 至 125°C 的环境运行温度范围
 - 器件人体模型 (HBM) 静电放电 (ESD) 分类等级 H2
 - 器件充电器件模型 (CDM) ESD 分类等级 C3B
- 支持一个 D+ 短接至 D- 的专用充电端口 (DCP)
- 支持一个 DCP 在 D+ 上施加 2.0V 电压,在 D- 上 施加 2.7V 电压(或者在 D+ 上施加 2.7V,而在 D-上施加 2.0V)
- 支持 DCP 在数据线路上施加 1.2V 电压
- 自动为连接的器件切换 D+ 和 D- 线路连接
- 针对短路保护的断续模式
- 为 USB 线缆补偿提供CS引脚
- 可编程电流限值(ILIM SET 引脚)
- 80mΩ 典型高侧金属氧化物半导体场效应晶体管 (MOSFET)
- 2.3A(典型值)时精准的±10%电流限制
- 符合 USB 电源开关要求
- 插槽和材料列表与 TPS2511 兼容
- 工作电压范围: 4.5V 至 5.5V
- 采用微型小外形尺寸 (MSOP), 8 引脚封装
- UL 认证和 CB 文件号 E169910

应用范围

- 车辆 USB 电源充电器
- 带有 USB 端口的直流 (AC) 交流 (DC) 墙式适配 器
- 其它 USB 充电器
- 汽车信息娱乐系统


说明

TPS2511-Q1 是一款 USB 专用充电端口 (DCP) 控制器和电流限制电源开关。一个自动检测特性监控 USB 数据线路电压,并且自动在数据线路上提供正确的电气特征,以在下列充电系统配置中为兼容器件充电:

- 分频器 DCP, 需要在 D+ 上施加 2.7V 电压, 在 D-上施加 2.0V 电压, 或者将 2.0V 电压施加在 D+ 上, 而将 2.7V 电压施加在 D- 上;
- BC1.2 DCP, 要求将 D+ 短接至 D-;
- D+ 和 D- 上的电压均为 1.2V。

TPS2511-Q1 是一款 80mΩ 配电开关,此开关用于有可能出现高电容负载和短路的应用。 这个器件还在输出 (OUT) 电压少于 3.80V(典型值)时或者在过载情况下过热保护发生时提供断续模式。 精准且可编程的电流限值为应用提供了灵活性和便利性。 TPS2511-Q1 提供一个 $\overline{\text{CS}}$ 引脚用于 USB 电缆电阻补偿,以及一个使能 (EN) 引脚来接通和关闭器件。

简化的应用

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

$T_A = T_J$	PACKAGE	PINS	TRANSPORT MEDIA	MINIMUM QUANTITY	ORDERABLE DEVICE NUMBER	TOP-SIDE MARKING
40°C to 125°C	MCOD (DON)		Tube	80	TPS2511QDGNQ1	2511Q
–40°C to 125°C	MSOP (DGN)	8	Tape and Reel	2500	TPS2511QDGNRQ1	2511Q

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

Over recommended junction temperature range, voltages are referenced to GND (unless otherwise noted)

		MIN	MAX	UNIT			
Supply voltage range	IN	-0.3	7				
Input voltage range	EN, ILIM_SET -0.3						
Voltage range	OUT, CS	-0.3	7	V			
	IN to OUT	-7	7	V			
	DP output voltage, DM output voltage	-0.3	IN+0.3 or 5.7				
	DP input voltage, DM input voltage	-0.3	IN+0.3 or 5.7				
Continuous output sink current	DP input current, DM input current						
Continuous output source current	DP output current, DM output current		A				
Continuous output sink current	CS		mA				
Continuous output source current	ILIM_SET						
ECD noting	Human Body Model (HBM) QSS 009-105 (JESD22-A114A) and AEC-Q100 Classification Level H2		2	kV			
ESD rating	D rating		750	V			
Operating junction temperature,							
Storage temperature range, T _{stg}		-65	150	°C			

THERMAL INFORMATION

	TUTDAMA AUSTRIO(1)	TPS2511-Q1	
	THERMAL METRIC ⁽¹⁾	DGN (8 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	65.2	
θ_{JCtop}	Junction-to-case (top) thermal resistance	53.3	
θ_{JB}	Junction-to-board thermal resistance	36.9	°C // //
ΨЈТ	Junction-to-top characterization parameter	3.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	36.6	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	13.4	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

voltages are referenced to GND (unless otherwise noted), positive current are into pins.

		MIN	MAX	UNIT
V _{IN}	Input voltage of IN	4.5	5.5	
V cs	Input voltage of CS	0	5.5	
V _{EN}	Input voltage of EN	0	5.5	V
V_{DP}	DP data line input voltage	0	5.5	
V_{DM}	DM data line input voltage	0	5.5	
I _{DP}	Continuous sink/source current		±10	
I _{DM}	Continuous sink/source current		±10	mA
I cs	Continuous sink current		2	
I _{OUT}	Continuous output current of OUT		2.2	Α
R _{ILIM_SET}	A resistor of current-limit, ILIM_SET to GND	16.9	750	kΩ
T_{J}	Operating junction temperature	-40	125	° C

ELECTRICAL CHARACTERISTICS

Conditions are $-40^{\circ}\text{C} \le (T_J = T_A) \le 125^{\circ}\text{C}$, $4.5 \text{ V} \le V_{\text{IN}} \le 5.5 \text{ V}$, $V_{\text{EN}} = V_{\text{IN}}$ and $R_{\text{ILIM_SET}} = 22.1 \text{ k}\Omega$. Positive current are into pins. Typical values are at 25°C. All voltages are with respect to GND (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SWITCH	1					
		I _{OUT} = 2 A		80	125	
R _{DS(on)}	Static drain-source on-state resistance	$I_{OUT} = 2 \text{ A}, -40^{\circ}\text{C} \le (T_{J} = T_{A}) \le 85^{\circ}\text{C}$		80	110	mΩ
	resistance	I _{OUT} = 2 A, T _J =T _A = 25°C		80	89	
t _r	OUT voltage rise time	C_L = 1 μ F, R_L = 100 Ω , V_{IN} = 5 V see Figure 1, Figure 3		1.0	1.5	
t _f	OUT voltage fall time	C_L = 1 μ F, R_L = 100 Ω , V_{IN} = 5 V see Figure 1, Figure 3	0.2	0.35	0.5	ms
I _{REV}	Reverse leakage current	V _{OUT} = 5.5 V, V _{IN} = V _{EN} = 0 V		0.01	2	μA
DISCHARGE					·	
R _{DCHG}	Discharge resistance	V _{OUT} = 4 V	400	500	630	Ω
CURRENT LIMIT	•					
		$R_{ILIM_SET} = 44.2 \text{ k}\Omega$	1060	1160	1270	
Ios	OUT short-circuit current limit	$R_{ILIM_SET} = 22.1 \text{ k}\Omega$	2110	2300	2550	mA
		$R_{ILIM_SET} = 16.9 \text{ k}\Omega$	2760	3025	3330	
t _{IOS}	Short-circuit response time ⁽¹⁾	$V_{IN} = 5.0 \text{ V}, R_L = 50 \text{ m}\Omega, 2 \text{ inches lead}$ length, See Figure 4		1.5		μs
HICCUP MODE						
V _{OUT_SHORT}	OUT voltage threshold of going into hiccup mode	V_{IN} = 5.0 V, R_{ILIIM_SET} = 210 k Ω	3.6	3.8	4.1	V
tos deg	On time of hiccup mode ⁽¹⁾	$V_{IN} = 5.0 \text{ V}, R_L = 0$		16		ms
t _{SC_TURN_OFF}	Off time of hiccup mode (1)	V _{IN} = 5.0 V, R _L = 0		12		S
UNDERVOLTAG	E LOCKOUT				•	
V _{UVLO}	IN UVLO threshold voltage, rising		3.9	4.1	4.3	V
	Hysteresis ⁽¹⁾			100		mV
SUPPLY CURRE	NT					
I _{IN_OFF}	Disabled, IN supply current	$V_{EN} = 0 \text{ V}, V_{IN} = 5.5 \text{ V}, \\ -40^{\circ}\text{C} \le T_{J} \le 85^{\circ}\text{C}$		0.1	5	μA
I _{IN ON}	Enabled, IN supply current	$V_{EN} = V_{IN}, R_{ILIM SET} = 210 \text{ k}\Omega$		180	230	'

⁽¹⁾ Specified by design. Not production tested.

ELECTRICAL CHARACTERISTICS (continued)

Conditions are $-40^{\circ}\text{C} \le (\text{T}_{\text{J}} = \text{T}_{\text{A}}) \le 125^{\circ}\text{C}$, $4.5 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}$, $\text{V}_{\text{EN}} = \text{V}_{\text{IN}}$ and $\text{R}_{\text{ILIM_SET}} = 22.1 \text{ k}\Omega$. Positive current are into pins. Typical values are at 25°C. All voltages are with respect to GND (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
THERMAL SHUTDO	own .					
	T	Not in current limit	155			
	Temperature rising threshold (2)	In current limit	135			٥С
	Hysteresis (2)			10		
OUT CURRENT DET	TECTION TECTION				*	
	Load detection current threshold,	$R_{ILIM_SET} = 22.1 \text{ k}\Omega$		1060		1
Інсс_тн	rising ⁽²⁾	$R_{ILIM_SET} = 44.2 \text{ k}\Omega$		560		mA
	Load detection current	$R_{ILIM_SET} = 22.1 \text{ k}\Omega$		230		A
IHCC_TH_HYS	Hysteresis (2)	$R_{ILIM_SET} = 44.2 \text{ k}\Omega$		120		mA
V cs	CS output active low voltage (2)	I CS = 1 mA	0	80	140	mV
t _{CS_EN}	CS deglitch time during turning on	I GS = 1 mA		8		ms
ENABLE INPUT (EN	1)		Ш			
V _{EN_TRIP}	EN threshold voltage, falling		0.9	1.1	1.65	V
V _{EN_TRIP_HYS}	Hysteresis		100	200	300	mV
I _{EN}	Leakage current	V _{EN} = 0 V or V _{EN} = 5.5 V	-0.5		0.5	μA
t _{on}	OUT voltage turn-on time	$C_L = 1 \mu F$, $R_L = 100 \Omega$, see Figure 1,		2.6	5	
t _{off}	OUT voltage turn-off time	Figure 2		1.7	3	ms
BC 1.2 DCP MODE	(SHORT MODE)					
R _{DPM_SHORT}	DP and DM shorting resistance	V _{DP} = 0.8 V, I _{DM} = 1 mA		125	200	Ω
R _{DCHG_SHORT}	Resistance between DP/DM and GND	V _{DP} = 0.8 V	400	700	1300	kΩ
V _{DPL_TH_DETACH}	Voltage threshold on DP under which the device goes back to divider mode		310	330	350	mV
V _{DPL_TH_DETACH_HYS}	Hysteresis			50 ⁽²⁾		mV
DIVIDER MODE						
V _{DP_2.7V}	DP output voltage	V _{IN} = 5.0 V	2.57	2.7	2.84	V
V _{DM_2.0V}	DM output voltage	V _{IN} = 5.0 V	1.9	2.0	2.1	V
R _{DP_PAD1}	DP output impedance	$I_{DP} = -5 \mu A$	24	30	40	kΩ
R _{DM_PAD1}	DM output impedance	$I_{DM} = -5 \mu A$	24	30	40	K12
1.2 V / 1.2 V MODE						
$V_{DP_1.2V}$	DP output voltage	V _{IN} = 5.0 V	1.12	1.2	1.28	V
$V_{DM_1.2V}$	DM output voltage	V _{IN} = 5.0 V	1.12	1.2	1.28	V
R _{DP_PAD2}	DP output impedance	$I_{DP} = -5 \text{ uA}$	80	105	130	kΩ
R _{DM_PAD2}	DM output impedance	$I_{DM} = -5 \text{ uA}$	80	105	130	kΩ

⁽²⁾ Specified by design. Not production tested.

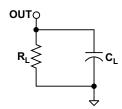


Figure 1. Output Rise and Fall Test Load

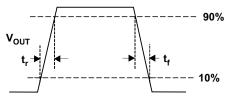


Figure 3. Power-On and Off

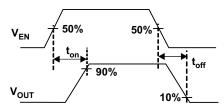


Figure 2. Enable Timing, Active High Enable

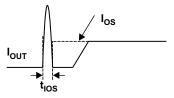
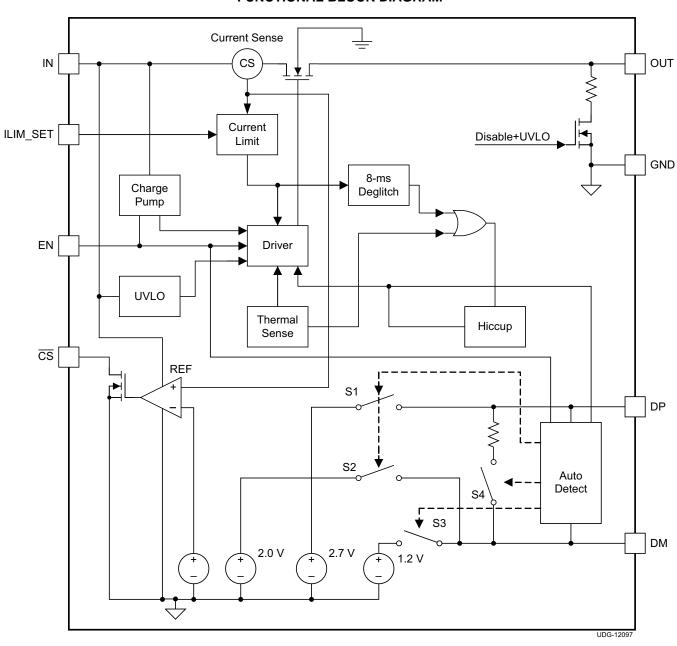
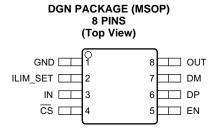



Figure 4. Output Short-Circuit Parameters



FUNCTIONAL BLOCK DIAGRAM

DEVICE INFORMATION

PIN FUNCTIONS

PIN	l	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
CS	4	0	Active low open -drain output, when OUT current is more than approximately half of the current limit set by a resistor on ILIM_SET pin, the output is active low. Maximum sink current is 10 mA.
DM	7	I/O	Connected to the D- or D+ line of USB connector, provide the correct voltage with an attached portable equipment for DCP detection, high impedance while disabled.
DP	6	I/O	Connected to the D+ or D- line of USB connector, provide the correct voltage with an attached portable equipment for DCP detection, high impedance while disabled.
EN	5	I.	Logic-level control input, when it is high, turns power switch on, when it is low, turns power switch off and turns DP and DM into the high impedance state.
GND	1	G	Ground connection.
ILIM_SET	2	1	External resistor used to set current-limiting threshold, recommended 16.9 k $\Omega \le R_{ILIM_SET} \le 750 \text{ k}\Omega$.
IN	3	Р	Power supply. Input voltage connected to power switch, connect a ceramic capacitor with a value of 0.1-µF or greater from the IN pin to GND as close to the device as possible.
OUT	8	0	Power-switch output. Connect to VBUS of USB
PowerPAD	•	G	Ground connection.

(1) G = Ground, I = Input, O = Output, P = Power

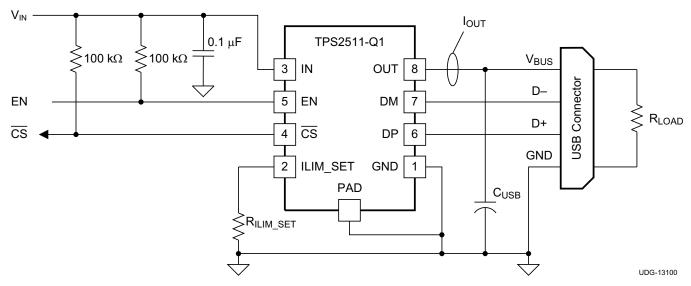


Figure 5. Test Circuit for System Operation in Typical Characteristics Section

TYPICAL CHARACTERISTICS

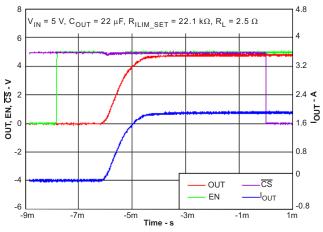


Figure 6. Turn on Delay and Rise Time With 22-µF Load

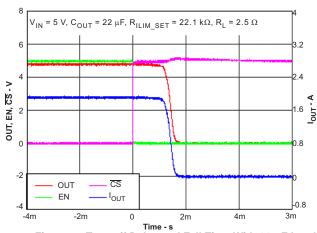


Figure 7. Turn off Delay and Fall Time With 22-µF Load

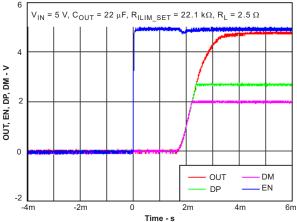


Figure 8. Enable into 2.5-Ω Load

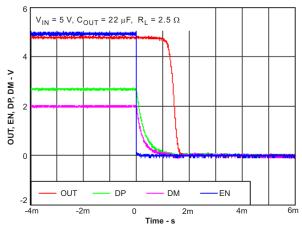


Figure 9. Disable with 2.5- Ω Load

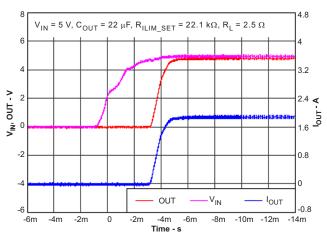


Figure 10. Power Up - Enabled

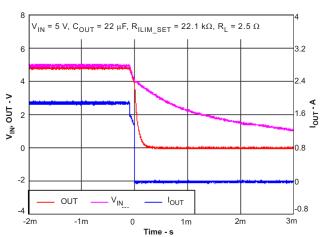
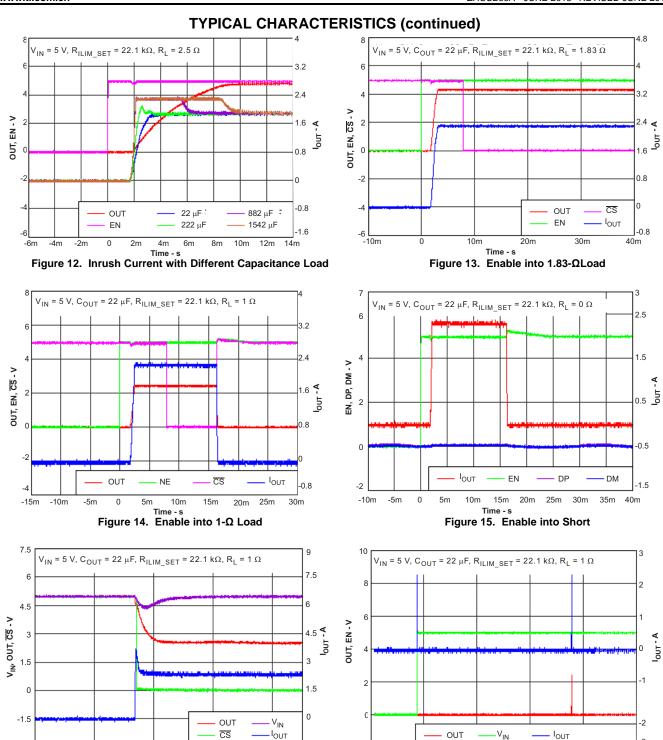



Figure 11. Power Down - Enabled

-0.8

0.0004

0.0002

Copyright © 2013, Texas Instruments Incorporated

-0.0002

0 Time - s Figure 16. 1-Ω Load Applied

-3 L -0.0004

-3

Figure 17. Hiccup Mode While Enabled into 1-Ω Load

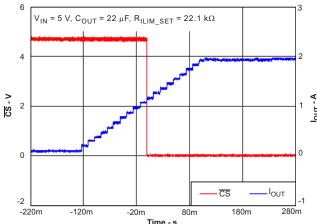


Figure 18. Output Current Sensing Report

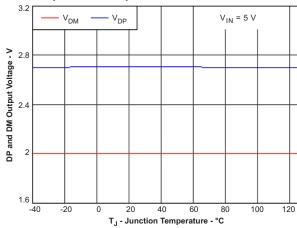


Figure 19. DP and DM Output Voltage vs Temperature

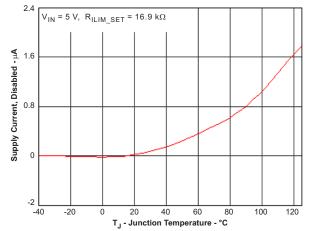


Figure 20. Supply Current Disabled vs Temperature

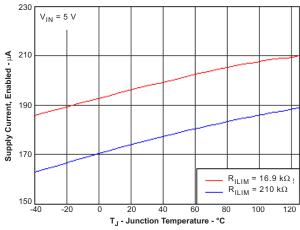


Figure 21. Supply Current Enabled vs Temperature

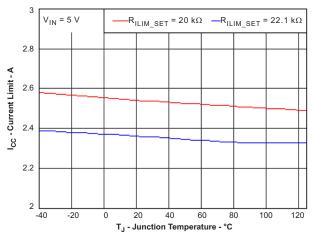


Figure 22. Current Limit vs Temperature

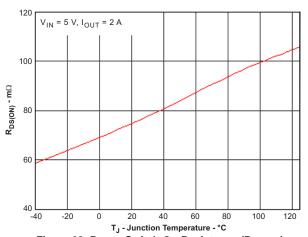


Figure 23. Power Switch On-Resistance (R_{DS(ON)}) vs Temperature

DETAILED DESCRIPTION

Overview

The following overview references various industry standards. It is always recommended to consult the latest standard to ensure the most recent and accurate information.

Rechargeable portable equipment requires an external power source to charge its batteries. USB ports are convenient locations for charging because of an available 5-V power source. Universally accepted standards are required to ensure host and client-side devices meet the power management requirements. Traditionally, USB host ports following the USB 2.0 Specification must provide at least 500 mA to downstream client-side devices. Because multiple USB devices can be attached to a single USB port through a bus-powered hub, it is the responsibility of the client-side device to negotiate the power allotment from the host to guarantee the total current draw does not exceed 500 mA. The TPS2511-Q1 provides 100 mA of current to each USB device. Each USB device can subsequently request more current, which is granted in steps of 100 mA up 500 mA total.. The host may grant or deny the request based on the available current.

Additionally, the success of the USB technology makes the micro-USB connector a popular choice for wall adapter cables. This allows a portable device to charge from both a wall adapter and USB port with only one connector.

One common difficulty has resulted from this. As USB charging has gained popularity, the 500-mA minimum defined by the USB 2.0 Specification or 900 mA defined in the USB 3.0 Specification, has become insufficient for many handsets, tablets and personal media players (PMP) which have a higher rated charging current. Wall adapters and car chargers can provide much more current than 500 mA or 900 mA to fast charge portable devices. Several new standards have been introduced defining protocol handshaking methods that allow host and client devices to acknowledge and draw additional current beyond the 500 mA (defined in the USB 2.0 Specification) or 900 mA (defined in the USB 3.0 Specification) minimum while using a single micro-USB input connector.

The TPS2511-Q1 supports three of the most common protocols:

- USB Battery Charging Specification, Revision 1.2 (BC1.2)
- Chinese Telecommunications Industry Standard YD/T 1591-2009
- Divider Mode

In these protocols there are three types of charging ports defined to provide different charging current to clientside devices. These charging ports are defined as:

- Standard downstream port (SDP)
- Charging downstream port (CDP)
- Dedicated charging port (DCP)

The BC1.2 Specification defines a charging port as a downstream facing USB port that provides power for charging portable equipment.

Table 1 shows different port operating modes according to the BC1.2 Specification.

Table 1. Operating Modes Table

PORT TYPE	SUPPORTS USB 2.0 COMMUNICATION	MAXIMUM ALLOWABLE CURRENT DRAWN BY PORTABLE EQUIPMENT (A)			
SDP (USB 2.0)	Yes	0.5			
SDP (USB 3.0)	Yes	0.9			
CDP	Yes	1.5			
DCP	No	1.5			

The BC1.2 Specification defines the protocol necessary to allow portable equipment to determine what type of port it is connected to so that it can allot its maximum allowable current drawn. The hand-shaking process is two steps. During step one, the primary detection, the portable equipment outputs a nominal 0.6 V output on its D+ line and reads the voltage input on its D- line. The portable device concludes it is connected to a SDP if the voltage is less than the nominal data detect voltage of 0.3 V. The portable device concludes that it is connected to a Charging Port if the D- voltage is greater than the nominal data detect voltage of 0.3V and less than 0.8 V.

The second step, the secondary detection, is necessary for portable equipment to determine between a CDP and a DCP. The portable device outputs a nominal 0.6 V output on its D- line and reads the voltage input on its D+ line. The portable device concludes it is connected to a CDP if the data line being remains is less than the nominal data detect voltage of 0.3 V. The portable device concludes it is connected to a DCP if the data line being read is greater than the nominal data detect voltage of 0.3V and less than 0.8 V.

Dedicated Charging Port (DCP)

A dedicated charging port (DCP) is a downstream port on a device that outputs power through a USB connector. but is not capable of enumerating a downstream device, which generally allows portable devices to fast charge at their maximum rated current. A USB charger is a device with a DCP, such as a wall adapter or car power adapter. A DCP is identified by the electrical characteristics of its data lines. The following DCP identification circuits are usually used to meet the handshaking detections of different portable devices.

Short the D+ Line to the D- Line

The USB BC1.2 Specification and the Chinese Telecommunications Industry Standard YD/T 1591-2009 define that the D+ and D- data lines should be shorted together with a maximum series impedance of 200 Ω. This is shown in Figure 24.

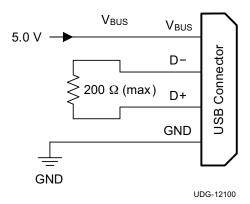


Figure 24. DCP Short Mode

Divider1 (DCP Applying 2.0 V on D+ Line and 2.7 V on D- Line) or Divider2 (DCP Applying 2.7 V on D+ Line and 2.0 V on D- Line)

There are two charging schemes for divider DCP. They are named after Divider1 and Divider2 DCPs that are shown in Figure 25 and Figure 26. The Divider1 charging scheme is used for 5-W adapters, Divider1 applies 2.0 V to the D+ line and 2.7 V to the D- data line. The Divider2 charging scheme is used for 10-W adapters and applies 2.7 V on the D+ line and 2.0 V is applied on the D- line.

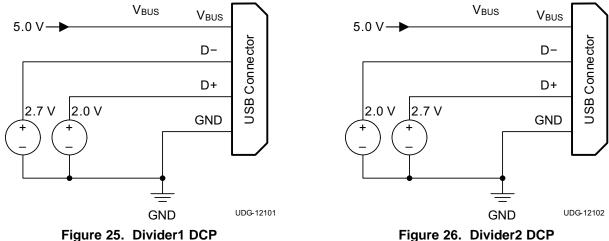


Figure 26. Divider2 DCP

Applying 1.2 V to the D+ Line and 1.2 V to the D- Line

As shown in Figure 27, some tablet USB chargers require 1.2 V on the shorted data lines of the USB connector. The maximum resistance between the D+ line and the D- line is 200Ω .

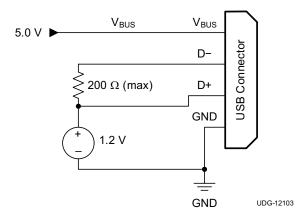


Figure 27. DCP Applying 1.2 V to the D+ Line and 1.2 V to the D- Line

The TPS2511-Q1 is a combination of a current-limiting USB power switch and an USB DCP identification controller. Applications include vehicle power charger, wall adapters with USB DCP and other USB chargers. The TPS2511-Q1 DCP controller has the auto-detect feature that monitors the D+ and D- line voltages of the USB connector, providing the correct electrical characteristics on the DP and DM pins for the correct detections of compliant portable devices to fast charge. These portable devices include smart phones, 5-V tablets and personal media players.

The TPS2511-Q1 power-distribution switch is intended for applications where heavy capacitive loads and short-circuits are likely to be encountered, incorporating a 70-m Ω , N-channel MOSFET in a single package. This device provides hiccup mode when in current limit and OUT voltage is less than 3.8 V (typ) or an over temperature protection occurs under an overload condition. Hiccup mode operation can reduce the output short-circuit current down to several milliamperes. The TPS2511-Q1 provides a logic-level enable EN pin to control the device turn-on and tuen-off and an open drain output $\overline{\text{CS}}$ for compensating V_{BUS} to account for cable I \times R voltage loss.

DCP Auto-Detect

The TPS2511-Q1 integrates an *auto-detect* feature to support divider mode, short mode and 1.2 V / 1.2 V mode. If a divider device is attached, 2.7 V is applied to the DP pin and 2.0 V is applied to the DM pin. If a BC1.2-compliant device is attached, the TPS2511-Q1 automatically switches into short mode. If a device compliant with the 1.2 V / 1.2 V charging scheme is attached, 1.2 V is applied on both the DP pin and the DM pin. The functional diagram of DCP auto-detect feature is shown in Figure 28.

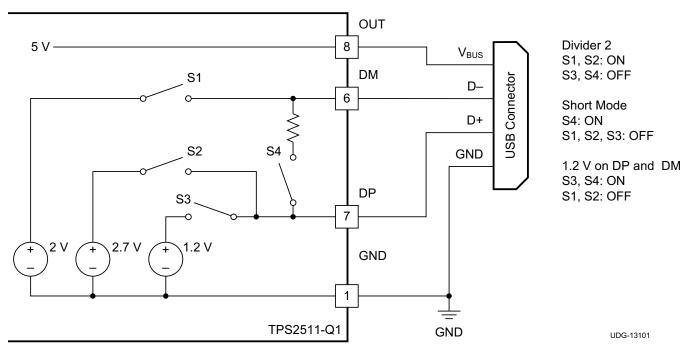


Figure 28. TPS2511-Q1 DCP Auto-Detect Functional Diagram

Overcurrent Protection

During an overload condition, the TPS2511-Q1 maintains a constant output current and reduces the output voltage accordingly. If the output voltage falls below 3.8 V for 16 ms, the TPS2511-Q1 turns off the output for a period of 12 seconds as shown in Figure 29. This operation is referred to as hiccup mode. The device stays in hiccup mode (power cycling) until the overload condition is removed. Therefore the average output current is significantly reduced to greatly improve the thermal stress of the device while the OUT pin is shorted.

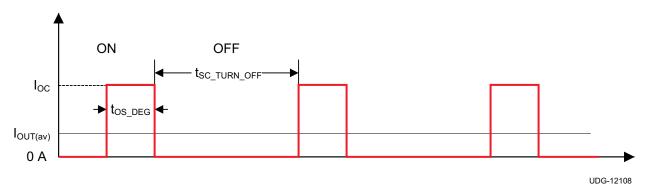


Figure 29. OUT Pin Short-Circuit Current in Hiccup Mode

Two possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before the voltage of IN has been applied. The TPS2511-Q1 senses the short and immediately switches into hiccup mode of constant-current limiting. In the second condition, a short or an overload occurs while the device is enabled. At the instant the overload occurs, high currents may flow for several microseconds before the current-limit circuit can react. The device operates in constant-current mode for a period of 16 ms after the current-limit circuit has responded, then switches into hiccup mode (power cycling).

(1)

Current-Limit Threshold

The TPS2511-Q1 has a current-limiting threshold that is externally programmed with a resistor. Equation 1 and Figure 30 help determine the typical current-limit threshold:

$$I_{OS_TYP} = \frac{51228}{R_{ILIM}}$$

where

- $I_{OS\ TYP}$ is in mA and R_{ILIM} is in $k\Omega$
- $I_{OS\ TYP}$ has a better accuracy if R_{ILIM} is less than 210 k Ω

Figure 30. Typical Current Limit vs Programming Resistor

Current Sensing Report (CS)

The $\overline{\text{CS}}$ open-drain output is asserted immediately when the OUT pin current is more than about half of the current limit set by a resistor on ILIM_SET pin. Built-in hysteresis improves the ability to resist current noise on the OUT pin. The $\overline{\text{CS}}$ output is active low. The recommended operating sink current is less than 2 mA and maximum sink current is 10 mA.

Undervoltage Lockout (UVLO) and Enable (EN)

The undervoltage lockout (UVLO) circuit disables the power switch and other functional circuits until the input voltage reaches the UVLO turn-on threshold. Built-in hysteresis prevents unwanted oscillations on the output due to input voltage drop from large current surges.

The logic input of the EN pin disables all of the internal circuitry while maintaining the power switch off. A logic-high input on the EN pin enables the driver, control circuits, and power switch. The EN input voltage is compatible with both TTL and CMOS logic levels.

Soft-Start, Reverse Blocking and Discharge Output

The power MOSFET driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges on the input supply, and provides built-in soft-start functionality. The TPS2511-Q1 power switch blocks current from the OUT pin to the IN pin when turned off by the UVLO or disabled. The TPS2511-Q1 includes an output discharge function. A $500-\Omega$ (typ.) discharge resistor dissipates stored charge and leakage current on the OUT pin when the device is in UVLO or disabled. However as this circuit is biased from the IN pin, the output discharge is not active when the input approaches 0 V.

Thermal Sense

The TPS2511-Q1 provides thermal protection from two independent thermal sensing circuits that monitor the operating temperature of the power distribution switch and turn off for 12 seconds (typ) if the temperature exceeds recommended operating conditions. The device operates in constant-current mode during an over-current condition and OUT pin voltage is above 3.8 V (typ), which has a relatively large voltage drop across power switch. The power dissipation in the package is proportional to the voltage drop across the power switch, so the junction temperature rises during the over-current condition. The first thermal sensor turns off the power switch when the die temperature exceeds 135°C and the device is within the current limit. The second thermal sensor turns off the power switch when the die temperature exceeds 155°C regardless of whether the power switch is in current limit. Hysteresis is built into both thermal sensors, and the switch turns on after the device has cooled approximately 10°C. The switch continues to cycle off and on until the fault is removed.

APPLICATION INFORMATION

Programming the Current Limit Threshold

The user-programmable R_{ILIM} resistor on the ILIMIT_SET pin sets the current limit. The TPS2511-Q1 uses an internal regulation loop to provide a regulated voltage on the ILIM_SET pin. The current-limiting threshold is proportional to the current sourced out of the ILIM_SET pin. The recommended 1% resistor range for R_{ILIM} is between 16.9 k Ω and 750 k Ω to ensure stability of the internal regulation loop, although not exceeding 210 k Ω results in a better accuracy. Many applications require that the minimum current limit remain above a certain current level or that the maximum current limit remain below a certain current level, so it is important to consider the tolerance of the overcurrent threshold when selecting a value for R_{ILIM} . The Equation 2 and Equation 3 calculate the resulting overcurrent thresholds for a given external resistor value (R_{ILIM}). The traces routing the R_{ILIM} resistor to the TPS2511-Q1 should be as short as possible to reduce parasitic effects on the current limit accuracy. The equations and the graph below can be used to estimate the minimum and maximum variation of the current limit threshold for a predefined resistor value. This variation disregards the inaccuracy of the resistor itself.

$$I_{OS_MIN} = \frac{51228}{R_{ILIM}^{1.030}}$$

where

I_{OS MIN} is in mA

•
$$R_{ILIM}$$
 is in $k\Omega$ (2)

$$I_{OS_MAX} = \frac{51228}{R_{ILIM}^{0.967}}$$

where

I_{OS_MAX} is in mA

•
$$R_{ILIM}$$
 is in $k\Omega$ (3)

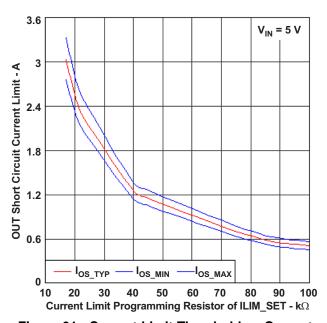


Figure 31. Current Limit Threshold vs Current Limit Resistance

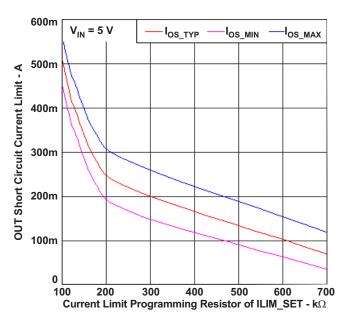


Figure 32. Current Limit Threshold vs Current Limit Resistance

Current Limit Setpoint Example

In the following example, choose the ILIM_SET resistor to ensure that TPS2511-Q1 does not trip off under worst case conditions of current limit and resistor tolerance (assume 1% resistor tolerance). For this example, $I_{OS_MIN} = 2100 \text{ mA}$.

$$I_{OS_MIN} = \frac{51228}{R_{ILIM}^{1.03}} = 2100 \text{ mA}$$
 (4)

$$R_{\text{ILIM}} = \left(\frac{51228}{I_{\text{OS_MIN}}}\right)^{\frac{1}{1.03}} = \left(\frac{51228}{2100}\right)^{\frac{1}{1.03}} = 22.227 \text{ k}\Omega$$
(5)

Including resistor tolerance, target nominal resistance value:

$$R_{\text{ILIM}} = \frac{22.227 \text{ k}\Omega}{1.01 \text{ k}\Omega} = 22.007 \text{ k}\Omega$$
 (6)

Choose:

$$R_{\rm ILIM} = 22.0 \text{ k}\Omega \tag{7}$$

V_{BUS} Voltage Drop Compensation

Figure 33 shows a USB charging design using the TPS2511-Q1. In general V_{BUS} has some voltage loss due to USB cable resistance and TPS2511-Q1 power switch on-state resistance. The sum of voltage loss is likely several hundred millivolts from $5V_{OUT}$ to V_{PD_IN} that is the input voltage of PD while the high charging current charges the PD. For example, in Figure 34, assuming that the loss resistance is 170 m Ω (includes 100 m Ω of USB cable resistance and 70 m Ω of power switch resistance) and $5V_{OUT}$ is 5.0 V, the input voltage of PD (V_{PD_IN}) is about 4.66 V at 2.0 A. (see Figure 34)

The charging current of most portable devices is less than their maximum charging current while V_{PD_IN} is less than the certain voltage value. Furthermore actual charging current of PD decreases with input voltage falling. Therefore, a portable devices cannot accomplish a fast charge with its maximum charging rated current if V_{BUS} voltage drop across the power path is not compensated at the high charging current. The TPS2511-Q1 provides \overline{CS} pin to report the high charging current for USB chargers to increase the $5V_{OUT}$ voltage. This is shown by the solid lines of Figure 34.

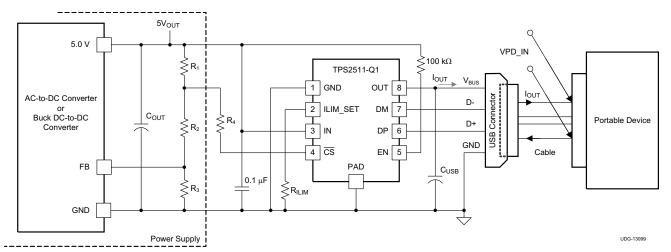


Figure 33. TPS2511-Q1 Charging System Schematic Diagram

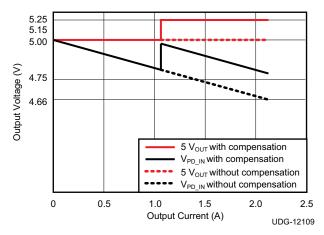


Figure 34. TPS2511-Q1 CS Function

Equation 8 through Equation 11 refer to Figure 33.

The power supply output voltage is calculated in Equation 8.

$$5V_{OUT} = \frac{(R_1 + R_2 + R_3) \times V_{FB}}{R_3}$$
 (8)

 $5V_{OUT}$ and V_{FB} are known. If R_3 is given and R_1 is fixed, R_2 can be calculated. The $5V_{OUT}$ voltage change with compensation is shown in Equation 9 and Equation 10.

$$\Delta V = \frac{\left(R_2 + R_3\right) \times R_1 \times V_{FB}}{R_3 \times R_4} \tag{9}$$

$$\Delta V = \left(\frac{5V_{OUT}}{V_{FB}} - \frac{R_1}{R_3}\right) \frac{R_1 \times V_{FB}}{R_4} \tag{10}$$

If R₁ is less than R₃, then Equation 10 can be simplified as Equation 11.

$$\Delta V \approx \frac{5V_{OUT} \times R_1}{R_4} \tag{11}$$

Divide Mode Selection of 5-W and 10-W USB Chargers

The TPS2511-Q1 provides two types of connections between the DP pin and the DM pin and between the D+ data line and the D- data line of the USB connector for a 5-W USB charger and a 10-W USB charger with a single USB port. For a 5-W USB charger, the DP pin is connected to the D- line and the DM pin is connected to the D+ line. This is shown in Figure 37 and Figure 38. It is necessary to apply DP and DM to D+ and D- of USB connector for 10-W USB chargers. See Figure 35 and Figure 36. Table 2. shows different charging schemes for both 5-W and 10-W USB charger solutions

Table 2. Charging Schemes for 5-W and 10-W USB Chargers

USB CHARGER TYPE	CONTAINING CHARGING SCHEMES						
5-W	Divider1	1.2 V on both D+ and D- Lines	BC1.2 DCP				
10-W	Divider2	1.2 V on both D+ and D- Lines	BC1.2 DCP				

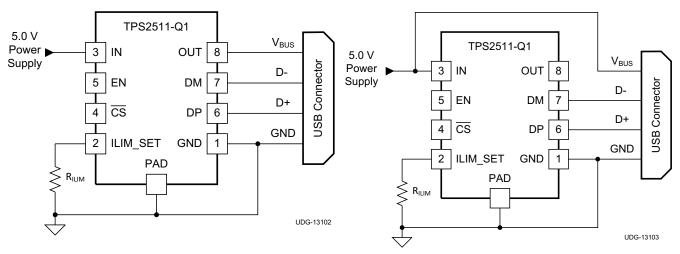


Figure 35. 10-W USB Charger Application with Power Switch

Figure 36. 10-W USB Charger Application without Power Switch

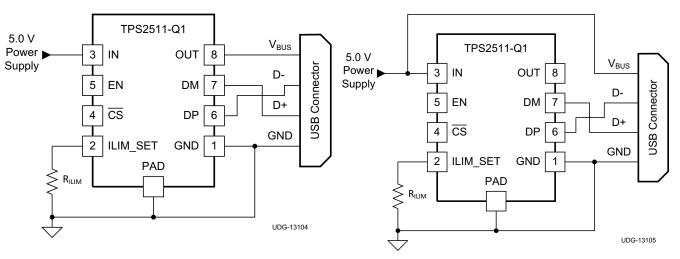


Figure 37. 5-W USB Charger Application with Power Switch

Figure 38. 5-W USB Charger Application without Power Switch

Layout Guidelines

- TPS2511-Q1 placement. Place the TPS2511-Q1 near the USB output connector and at lest 22-µF OUT pin filter capacitor. Connect the exposed Power PAD to the GND pin and to the system ground plane using a via array.
- **IN pin bypass capacitance.** Place the 0.1-µF bypass capacitor near the IN pin and make the connection using a low-inductance trace.
- ILIM_SET pin connection. Current limit set point accuracy can be compromised by stray leakage from a
 higher voltage source to the ILIM_SET pin. Ensure that there is adequate spacing between IN pin
 copper/trace and ILIM_SET pin trace to prevent contaminant buildup during the PCB assembly process. The
 traces routing the R_{ILIM} resistor to the device should be as short as possible to reduce parasitic effects on the
 current-limit accuracy.

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	. ,	, ,			. , ,	(4)	(5)		.,
TPS2511QDGNQ1	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2511Q
TPS2511QDGNQ1.A	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2511Q
TPS2511QDGNRQ1	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2511Q
TPS2511QDGNRQ1.A	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2511Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS2511-Q1:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

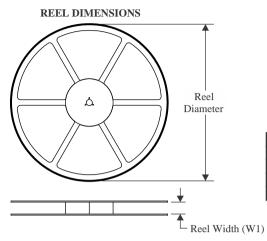
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

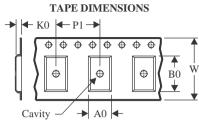
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

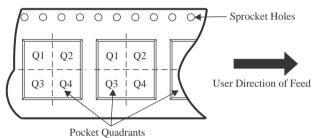
www.ti.com 11-Nov-2025


NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

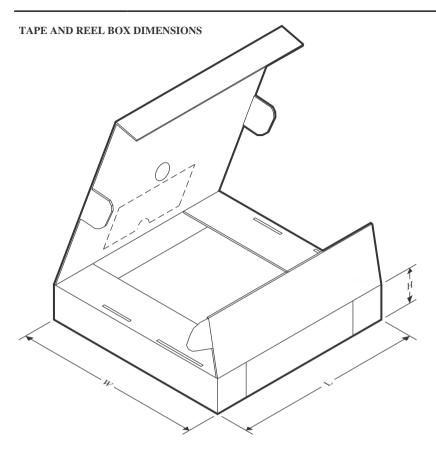
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

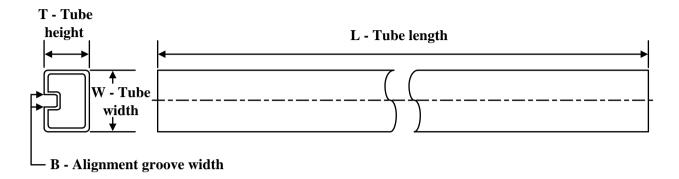


*All dimensions are nominal

Device	Package Type	Package Drawing	l .	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2511QDGNRQ1	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

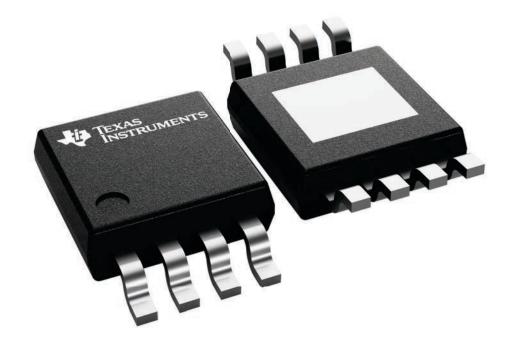

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2511QDGNRQ1	HVSSOP	DGN	8	2500	366.0	364.0	50.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

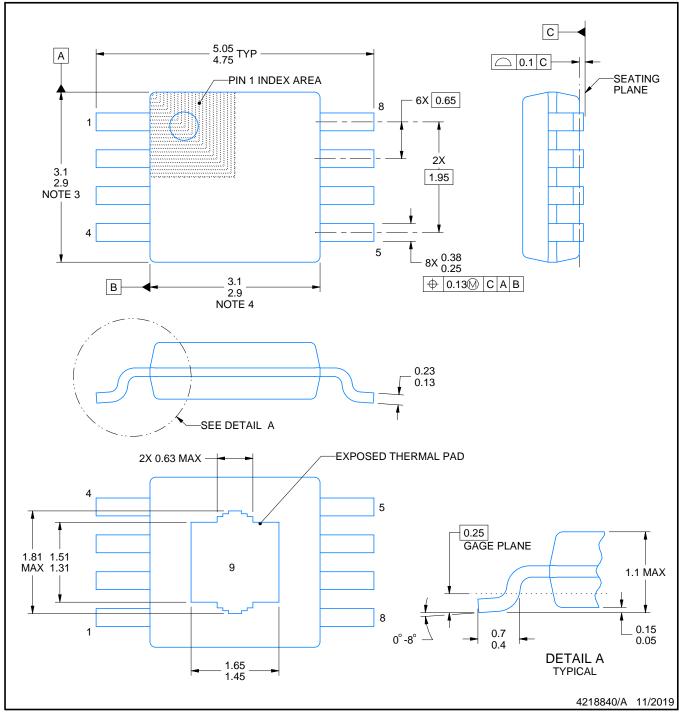
TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TPS2511QDGNQ1	DGN	HVSSOP	8	80	330	6.55	500	2.88
TPS2511QDGNQ1.A	DGN	HVSSOP	8	80	330	6.55	500	2.88

3 x 3, 0.65 mm pitch

SMALL OUTLINE PACKAGE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

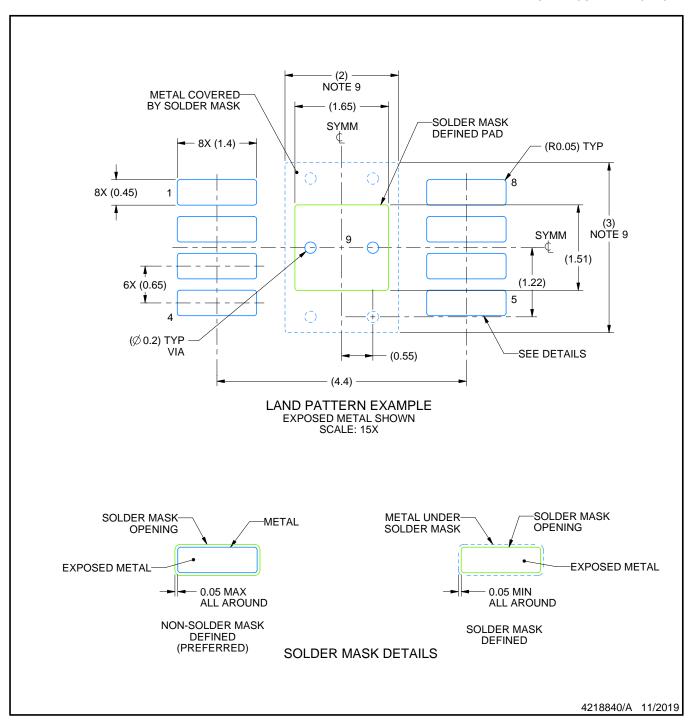
INSTRUMENTS www.ti.com

PowerPAD[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

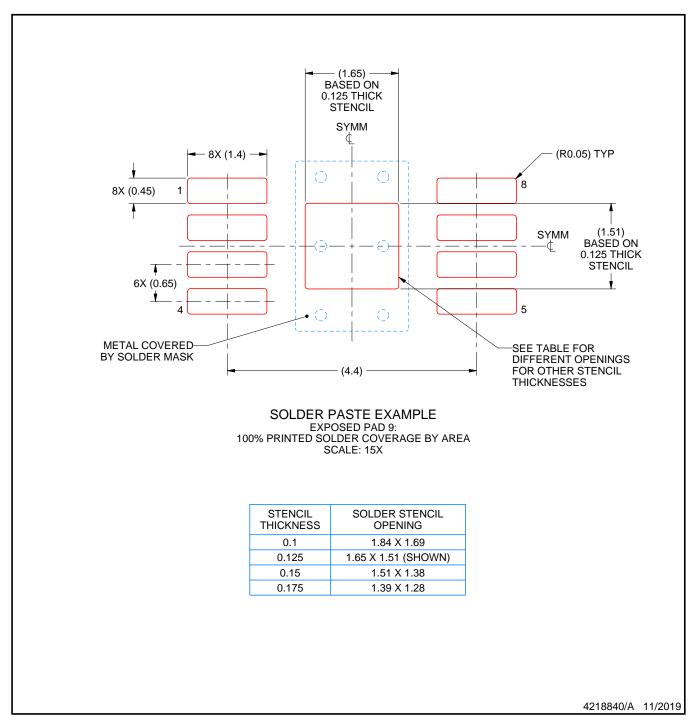
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月