

精密可调节限流配电开关

查询样品: TPS2553-Q1

特性

- 符合汽车应用要求
- 具有符合 AEC-Q100 的下列结果:
 - 器件温度 1 级: -40°C 至 125°C 的环境运行温度范围
 - 器件人体模型 (HBM) 静电放电 (ESD) 分类等级 H2
 - 器件充电器件模型 (CDM) ESD 分类等级 C3B
- 高达 1.5A 最大负载电流
- 1.7A 电流下 ±6% 限流精度(典型值)
- 满足 USB 限流要求
- 与 TPS2550/51 向后兼容
- 可调节电流限制,75mA-1300mA(典型值)
- 恒定电流 (TPS2553-Q1)
- 快速过流响应 -2µs(典型值)

- 85mΩ 高侧金属氧化物半导体场效应晶体管 (MOSFET) (DBV 封装)
- 反向输入-输出电压保护
- 工作范围: 2.5V 至 6.5V
- 内置软启动
- 符合 IEC 61000-4-2 标准的 15kV 静电放电 (ESD) 保护(用外部电容实现)
- UL列表 文件号E169910 和 NEMKO IEC60950-1-am1 ed2.0
- 请见TI 开关系列产品

应用范围

- 车载应用
- 配电
- 限流

说明

TPS2553-Q1 配电开关用于要求精确限流或者遇到高电容和短路的应用并提供高达 1.5A 的持续负载电流。 这些器件借助一个外部电阻器提供一个 75mA至 1.7A(典型值)间的可编程电流限制阀值。 在更高电流限制设置上可实现严格至 ±6% 的电流限制精度。 对电源开关的上升和下降次数进行控制以大大降低接通/切断期间的电流冲击。

当输出负载超过限流阀值时,TPS2553-Q1 器件借助于恒定电流模式来将输出电流限制在安全的水平上。 当输出电压被驱动至高于输入时,一个内部反向电压比较器将电源开关禁用来保护开关输入端上的器件。 在过流和反向电压情况下,FAULT输出被置为低电平。

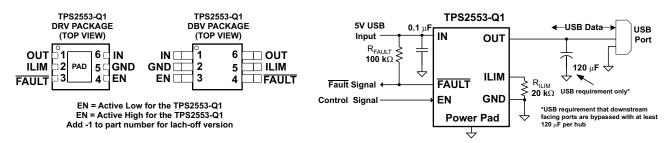


图 1. 作为 USB 电源开关的典型应用

W

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

GENERAL SWITCH CATALOG										
33 mΩ, single TPS201xA 0.2 A - 2 A TPS202x 0.2 A - 2 A TPS203x 0.2 A - 2 A	80 mΩ, single TPS2014 600 mA TPS2015 1 A TPS2041B 500 mA TPS2041B 500 mA TPS2045A 250 mA TPS2045 250 mA TPS2065 250 mA TPS2065 1 A TPS2065 1 A TPS2065 1.5 A TPS2069 1.5 A	80 mΩ, dual TPS2042B 500 mA TPS2052B 500 mA TPS2046B 250 mA TPS2062 1 A TPS2066 1 A TPS2066 1.5 A TPS2064 1.5 A	80 mΩ, dual TPS2080 500 mA TPS2081 500 mA TPS2082 500 mA TPS2092 250 mA TPS2091 250 mA	80 mΩ, triple TPS2043B 500 mA TPS2053B 500 mA TPS2047B 250 mA TPS2057A 250 mA TPS2063 1 A TPS2067 1 A	80 mΩ, quad	80 mΩ, quad TPS2085 500 mA TPS2086 500 mA TPS2087 500 mA TPS2095 250 mA TPS2097 250 mA TPS2097 250 mA				

ORDERING INFORMATION(1)

T _A ⁽²⁾	ENABLE	ORDERABLE PART NUMBER	TOP-SIDE MARKING	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT ⁽²⁾	CURRENT-LIMIT PROTECTION
-40°C to 125°C	Active high	TPS2553QDRVRQ1	Preview	1.5 A	Constant-Current
-40 C to 125 C	Active high	TPS2553QDBVRQ1	PYEQ	1.5 A	Constant-Current

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
- (2) Maximum ambient temperature is a function of device junction temperature and system level considerations, such as load current, power dissipation and board layout. See dissipation rating table and recommended operating conditions for specific information related to these devices.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1) (2)

		VALUE	UNIT
	Voltage range on IN, OUT, EN or EN, ILIM, FAULT	-0.3 to 7	V
	Voltage range from IN to OUT	–7 to 7	V
Io	Continuous output current	Internally Limited	
	Continuous FAULT sink current	25	mA
	ILIM source current	1	mA
	Human Body Model Classification Level H2	2	kV
ESD Ratings	Charged Device Model ESD Classification Level C3B	750	V
ramigo	IEC system level (contact/air) ⁽³⁾	8 / 15	kV
T _J	Maximum junction temperature	-40 to 150	°C
T _{stg}	Storage temperature	-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	TPS2553-Q1	TPS2553-Q1	
	THERMAL METRIC"	DBV (6 PINS)	DRV (6 PINS)	UNIT
θ_{JA}	Junction-to-ambient thermal resistance	182.6	72	
θ_{JCtop}	Junction-to-case (top) thermal resistance	122.2	85.3	
θ_{JB}	Junction-to-board thermal resistance	29.4	41.3	9 0 // //
Ψ_{JT}	Junction-to-top characterization parameter	20.8	1.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	28.9	41.7	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	11.1	

(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。

⁽²⁾ Voltages are referenced to GND unless otherwise noted.

⁽³⁾ Surges per EN61000-4-2. 1999 applied to output terminals of EVM. These are passing test levels, not failure threshold.

RECOMMENDED OPERATING CONDITIONS

				MIN	MAX	UNIT
V _{IN}	Input voltage, IN			2.5	6.5	V
V_{EN}	Enable voltage			0	6.5	V
V _{IH}	High-level input voltage on EN or EN			1.1		V
V_{IL}	Low-level input voltage on EN or EN				0.66	V
	Continuous output current, OUT	-40 °C ≤ T _J ≤ 125 °C		0	1.2	۸
I _{OUT}		-40 °C ≤ T _J ≤ 105 °C		0	1.5	Α
R _{ILIM}	Current-limit threshold resistor range		15	232	kΩ	
Io	Continuous FAULT sink current			0	10	mA
	Input de-coupling capacitance, IN to GND					μF
+	Operating virtual junction	I _{OUT} ≤ 1.2 A		-40	125	°C
T_J	Operating virtual junction temperature ⁽¹⁾	I _{OUT} ≤ 1.5 A		-40	105	٠.

⁽¹⁾ See "Dissipation Rating Table" and "Power Dissipation and Junction Temperature" sections for details on how to calculate maximum junction temperature for specific applications and packages.

ELECTRICAL CHARACTERISTICS

over recommended operating conditions, $V_{EN} = 0 \text{ V}$, or $V_{EN} = V_{IN}$, $R_{FAULT} = 10 \text{ k}\Omega$ (unless otherwise noted)

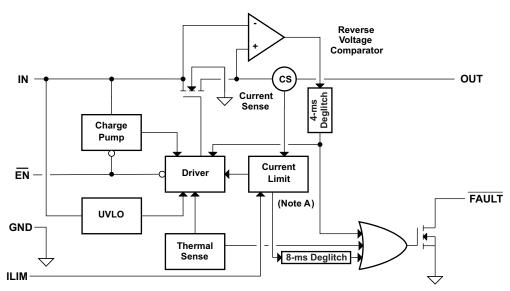
	PARAMETER	TEST CONDITIONS ⁽¹⁾				MIN	TYP	MAX	UNIT
POWE	R SWITCH								
		DBV package, T _A = 25°C				85	95		
		DBV package, -40°C	≤T _A ≤125°0	С				135	
r _{DS(on)}	Static drain-source on-state resistance	DRV package, T _A = 25°C					100	115	mΩ
		DRV package, –40°C ≤T _A ≤105°C						140	
		DRV package, -40°C	≤T _A ≤125°	С				150	
	Disa time autout	V _{IN} = 6.5 V					1.1	1.5	1
t _r	Rise time, output	V _{IN} = 2.5 V	$C_L = 1~\mu F,~R_L = 100~\Omega,$				0.7	1	
	F. II.	V _{IN} = 6.5 V (see Figure 2)		0.2		0.5	ms		
t _f	Fall time, output	V _{IN} = 2.5 V							0.5
ENABI	LE INPUT EN OR EN							<u> </u>	
	Enable pin turn on/off threshold					0.66		1.1	V
I _{EN}	Input current	V _{EN} = 0 V or 6.5 V, V _{EN} = 0 V or 6.5 V				-0.5		0.5	μA
t _{on}	Turnon time	C_L = 1 μ F, R_L = 100 Ω , (see Figure 2)						3	ms
t _{off}	Turnoff time							3	ms
CURRI	ENT-LIMIT					•			
				$R_{ILIM} = 15 \text{ k}\Omega$	–40°C ≤T _A ≤105°C	1610	1700	1800	
				D 00 1:0	T _A = 25°C	1215	1295	1375	
				$R_{ILIM} = 20 \text{ k}\Omega$	–40°C ≤T _A ≤125°C	1200	1295	1375	
los	Current-limit threshold (Maximum DC or load) and Short-circuit current, OUT cor		ered to	D 40.01-0	T _A = 25°C	490	520	550	mA
	local and official official current, correct	1100104 10 0112		$R_{ILIM} = 49.9 \text{ k}\Omega$	–40°C ≤T _A ≤125°C	475	520	565	
				$R_{ILIM} = 210 \text{ k}\Omega$		100	130	150	
				ILIM shorted to I	N	50	75	100	
t _{IOS}	Response time to short circuit	V _{IN} = 5 V (see Figure 3)				2		μs	
REVER	RSE-VOLTAGE PROTECTION					•			
	Reverse-voltage comparator trip point $(V_{OUT} - V_{IN})$					95	135	190	mV
	Time from reverse-voltage condition to MOSFET turn off	V _{IN} = 5 V				3	5	7	ms

⁽¹⁾ Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating conditions, $V_{\overline{EN}} = 0$ V, or $V_{EN} = V_{IN}$, $R_{FAULT} = 10$ k Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾			TYP	MAX	UNIT
SUPPL	LY CURRENT					,	
I _{IN_off}	Supply current, low-level output	V _{IN} = 6.5 V, No load on OUT, V	V _{EN} = 6.5 V or V _{EN} = 0 V		0.1	1	μΑ
	Cumply augreent high lavel autout	V CEV No load on OUT	R _{ILIM} = 20 kΩ		120	140	μΑ
I _{IN_on}	Supply current, high-level output	$V_{IN} = 6.5 \text{ V}$, No load on OUT	$R_{ILIM} = 210 \text{ k}\Omega$		100	120	μΑ
I _{REV}	Reverse leakage current	V _{OUT} = 6.5 V, V _{IN} = 0 V	T _A = 25 °C		0.01	1	μΑ
UNDE	RVOLTAGE LOCKOUT						
UVLO	Low-level input voltage, IN	V _{IN} rising	V _{IN} rising				V
	Hysteresis, IN	T _A = 25 °C	T _A = 25 °C				mV
FAUL1	FLAG					•	
V _{OL}	Output low voltage, FAULT	I _{/FAULT} = 1 mA				180	mV
	Off-state leakage	$V_{/FAULT} = 6.5 V$				1	μΑ
	FAULT deglitch	FAULT assertion or de-assertion due to overcurrent condition			8	11	ms
	FAULT degilleri	FAULT assertion or de-assertion due to reverse-voltage condition			4	6	ms
THER	MAL SHUTDOWN	•		·			
	Thermal shutdown threshold			155			°C
	Thermal shutdown threshold in current-limit			135			°C
	Hysteresis				10		°C


DEVICE INFORMATION

Pin Functions

PIN				
NAME	TPS2553-Q1DBV NO.	TPS2553-Q1DRV NO.	I/O	DESCRIPTION
EN	_	_	I	Enable input, logic low turns on power switch
EN	3	4	I	Enable input, logic high turns on power switch
GND	2	5		Ground connection; connect externally to PowerPAD
IN	1	6	1	Input voltage; connect a 0.1 μF or greater ceramic capacitor from IN to GND as close to the IC as possible.
FAULT	4	3	0	Active-low open-drain output, asserted during overcurrent, overtemperature, or reverse-voltage conditions.
OUT	6	1	0	Power-switch output
ILIM	5	2	0	External resistor used to set current-limit threshold; recommended 15 k Ω \leq R _{ILIM} \leq 232 k Ω .
PowerPAD™	_	PAD		Internally connected to GND; used to heat-sink the part to the circuit board traces. Connect PowerPAD to GND pin externally.

Add -1 for Latch-Off version

FUNCTIONAL BLOCK DIAGRAM

Note A: TPS255x parts enter constant current mode during current limit condition; TPS255x-1 parts latch off

PARAMETER MEASUREMENT INFORMATION

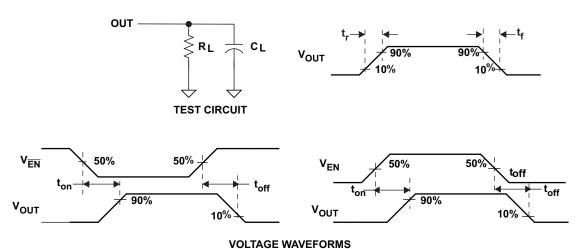


Figure 2. Test Circuit and Voltage Waveforms

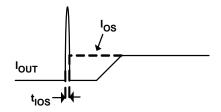


Figure 3. Response Time to Short Circuit Waveform

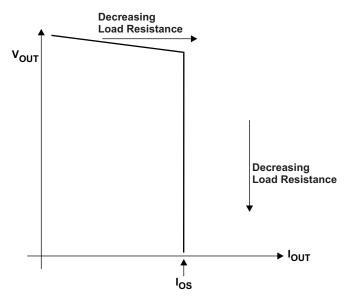


Figure 4. Output Voltage vs. Current-Limit Threshold

TYPICAL CHARACTERISTICS

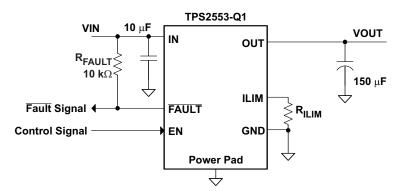


Figure 5. Typical Characteristics Reference Schematic

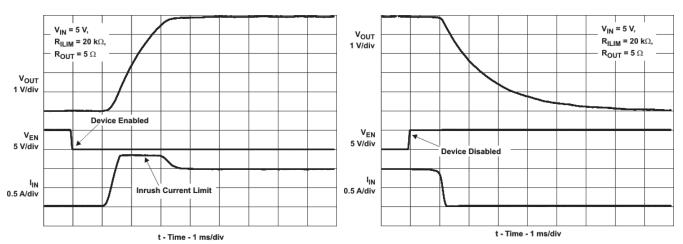
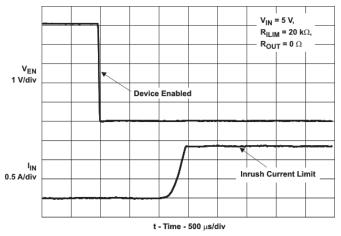



Figure 6. Turnon Delay and Rise Time

Figure 7. Turnoff Delay and Fall Time

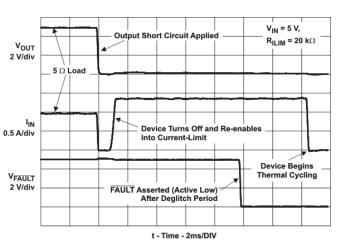


Figure 9. Full-Load to Short-Circuit Transient Response

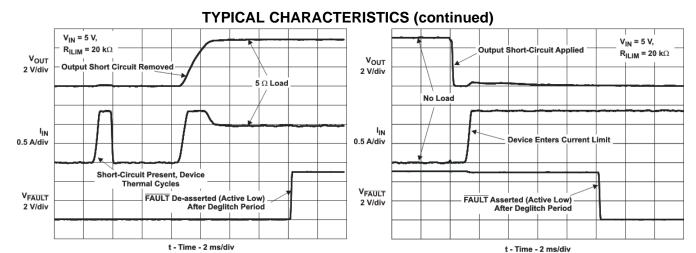


Figure 10. Short-Circuit to Full-Load Recovery Response

Figure 11. No-Load to Short-Circuit Transient Response

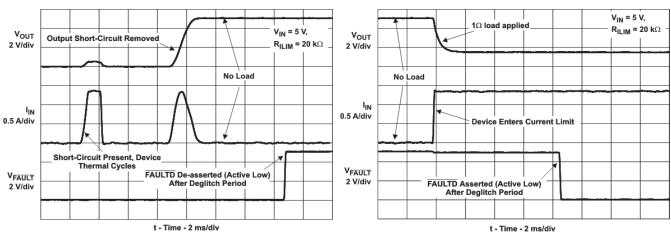


Figure 12. Short-Circuit to No-Load Recovery Response

Figure 13. No Load to 1Ω Transient Response

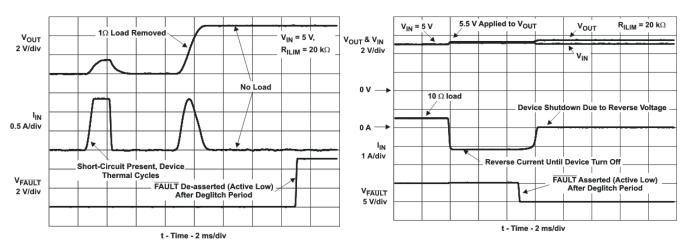


Figure 14. 1Ω to No Load Transient Response

Figure 15. Reverse-Voltage Protection Response

STRUMENTS

ZHCSAI1 -NOVEMBER 2012 www.ti.com.cn

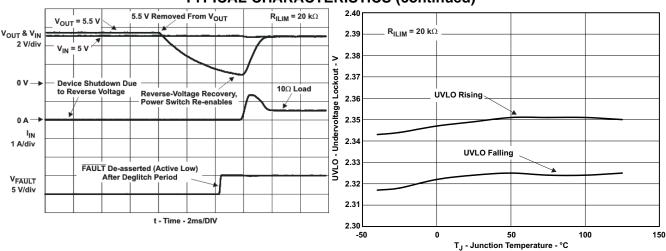
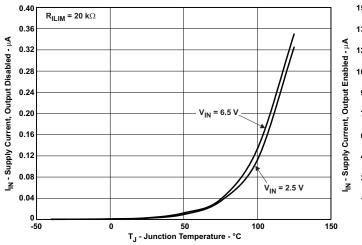



Figure 16. Reverse-Voltage Protection Recovery

Figure 17. UVLO - Undervoltage Lockout - V

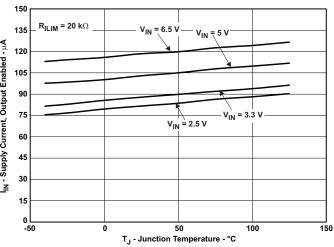


Figure 19. I_{IN} - Supply Current, Output Enabled - μA

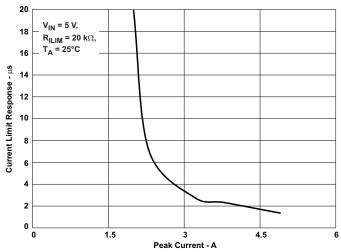


Figure 20. current-limit Response - µs

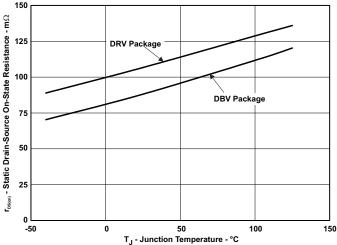


Figure 21. MOSFET $r_{DS(on)}$ Vs. Junction Temperature

www.ti.com.cn ZHCSAI1 -NOVEMBER 2012

TYPICAL CHARACTERISTICS (continued) DS - Static Drain-Source Current - m4 1000 800 700 600 400 300 300 IDS - Static Drain-Source Current - mA T_A = -40°C T_A = -40°C _T_A = 25°C T_A = 25°C T_A = 125°C T_A = 125°C $V_{IN} = 6.5 V,$ V_{IN} = 6.5 V, $R_{ILIM} = 20 \text{ k}\Omega$ R_{ILIM} = 200 kΩ

V_{IN} - V_{OUT} - 100 mV/div Figure 22. Switch Current Vs. Drain-Source Voltage Across Switch

V_{IN} - V_{OUT} - 100 mV/div Figure 23. Switch Current Vs. Drain-Source Voltage Across Switch

DETAILED DESCRIPTION

OVERVIEW

The TPS2553-Q1 is current-limited. Power-distribution switches using N-channel MOSFETs for applications where short circuits or heavy capacitive loads will be encountered and provide up to 1.5 A of continuous load current. These devices allow the user to program the current-limit threshold between 75 mA and 1.7 A (typ) via an external resistor. Additional device shutdown features include overtemperature protection and reverse-voltage protection. The device incorporates an internal charge pump and gate drive circuitry necessary to drive the N-channel MOSFET. The charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.5 V and requires little supply current. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The TPS2553-Q1 enters constant-current mode when the load exceeds the current-limit threshold.

OVERCURRENT CONDITIONS

The TPS2553-Q1 responds to overcurrent conditions by limiting the output current to the I_{OS} levels shown in Figure 24. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Two possible overload conditions can occur.

The first condition is when a short circuit or partial short circuit is present when the device is powered-up or enabled. The output voltage is held near zero potential with respect to ground and the TPS2553-Q1 ramps the output current to I_{OS}. The TPS2553-Q1 device will limit the current to I_{OS} until the overload condition is removed or the device begins to thermal cycle. The device will remain off until power is cycled or the device enable is toggled.

The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is enabled and powered on. The device responds to the overcurrent condition within time t_{IOS} (see Figure 3). The current-sense amplifier is overdriven during this time and momentarily disables the internal current-limit MOSFET. The current-sense amplifier recovers and limits the output current to I_{OS} . Similar to the previous case, the TPS2553-Q1 will limit the current to I_{OS} until the overload condition is removed or the device begins to thermal cycle.

The TPS2553-Q1 thermal cycles if an overload condition is present long enough to activate thermal limiting in any of the above cases. The device turns off when the junction temperature exceeds 135°C (typ) while in current-limit. The device remains off until the junction temperature cools 10°C (typ) and then restarts. The TPS2553-Q1 cycles on/off until the overload is removed (see Figure 10 and Figure 12).

REVERSE-VOLTAGE PROTECTION

The reverse-voltage protection feature turns off the N-channel MOSFET whenever the output voltage exceeds the input voltage by 135 mV (typ) for 4-ms (typ). A reverse current of $(V_{OUT} - V_{IN})/r_{DS(on)})$ will be present when this occurs. This prevents damage to devices on the input side of the TPS2553-Q1 by preventing significant current from sinking into the input capacitance. The TPS2553-Q1 device allows the N-channel MOSFET to turn on once the output voltage goes below the input voltage for the same 4-ms deglitch time.

FAULT RESPONSE

The FAULT open-drain output is asserted (active low) during an overcurrent, overtemperature or reverse-voltage condition. The TPS2553-Q1 asserts the FAULT signal until the fault condition is removed and the device resumes normal operation. The TPS2553-Q1 is designed to eliminate false FAULT reporting by using an internal delay "deglitch" circuit for overcurrent (7.5-ms typ) and reverse-voltage (4-ms typ) conditions without the need for external circuitry. This ensures that FAULT is not accidentally asserted due to normal operation such as starting into a heavy capacitive load. The deglitch circuitry delays entering and leaving fault conditions. Overtemperature conditions are not deglitched and assert the FAULT signal immediately.

UNDERVOLTAGE LOCKOUT (UVLO)

The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turnon threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage drop from large current surges.

ENABLE (EN OR EN)

The logic enable controls the power switch, bias for the charge pump, driver, and other circuits to reduce the supply current. The supply current is reduced to less than 1-µA when a logic high is present on EN or when a logic low is present on EN. A logic low input on EN or a logic high input on EN enables the driver, control circuits, and power switch. The enable input is compatible with both TTL and CMOS logic levels.

THERMAL SENSE

The TPS2553-Q1 has a self-protection feature using two independent thermal sensing circuits that monitor the operating temperature of the power switch. It disables the operation if the temperature exceeds recommended operating conditions. The TPS2553-Q1 device operates in constant-current mode during an overcurrent condition, which increases the voltage drop across the power-switch. The power dissipation in the package is proportional to the voltage drop across the power switch, which increases the junction temperature during an overcurrent condition. The first thermal sensor turns off the power switch when the die temperature exceeds 135°C (min) and the part is in current-limit. Hysteresis is built into the thermal sensor, and the switch turns on after the device has cooled approximately 10 °C.

The TPS2553-Q1 also has a second ambient thermal sensor. The ambient thermal sensor turns off the power-switch when the die temperature exceeds 155°C (min) regardless of whether the power switch is in current-limit and will turn on the power switch after the device has cooled approximately 10 °C. The TPS2553-Q1 continues to cycle off and on until the fault is removed.

The open-drain fault reporting output FAULT is asserted (active low) immediately during an overtemperature shutdown condition.

APPLICATION INFORMATION

INPUT AND OUTPUT CAPACITANCE

Input and output capacitance improves the performance of the device; the actual capacitance should be optimized for the particular application. For all applications, a $0.1\mu F$ or greater ceramic bypass capacitor between IN and GND is recommended as close to the device as possible for local noise de-coupling. This precaution reduces ringing on the input due to power-supply transients. Additional input capacitance may be needed on the input to reduce voltage overshoot from exceeding the absolute maximum voltage of the device during heavy transient conditions. This is especially important during bench testing when long, inductive cables are used to connect the evaluation board to the bench power-supply.

Placing a high-value electrolytic capacitor on the output pin is recommended when large transient currents are expected on the output.

PROGRAMMING THE CURRENT-LIMIT THRESHOLD

The overcurrent threshold is user programmable via an external resistor. The TPS2553-Q1 uses an internal regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the current sourced out of ILIM. The recommended 1% resistor range for R_{ILIM} is 15 k $\Omega \le R_{\text{ILIM}} \le 232$ k Ω to ensure stability of the internal regulation loop. Many applications require that the minimum current-limit is above a certain current level or that the maximum current-limit is below a certain current level, so it is important to consider the tolerance of the overcurrent threshold when selecting a value for R_{ILIM} . The following equations and Figure 24 can be used to calculate the resulting overcurrent threshold for a given external resistor value (R_{ILIM}). Figure 24 includes current-limit tolerance due to variations caused by temperature and process. However, the equations do not account for tolerance due to external resistor variation, so it is important to account for this tolerance when selecting R_{ILIM} . The traces routing the R_{ILIM} resistor to the TPS2553-Q1 should be as short as possible to reduce parasitic effects on the current-limit accuracy.

R_{ILIM} can be selected to provide a current-limit threshold that occurs 1) above a minimum load current or 2) below a maximum load current.

To design above a minimum current-limit threshold, find the intersection of R_{ILIM} and the maximum desired load current on the $I_{OS(min)}$ curve and choose a value of R_{ILIM} below this value. Programming the current-limit above a minimum threshold is important to ensure start up into full load or heavy capacitive loads. The resulting maximum current-limit threshold is the intersection of the selected value of R_{ILIM} and the $I_{OS(max)}$ curve.

To design below a maximum current-limit threshold, find the intersection of R_{ILIM} and the maximum desired load current on the $I_{OS(max)}$ curve and choose a value of R_{ILIM} above this value. Programming the current-limit below a maximum threshold is important to avoid current-limiting upstream power supplies causing the input voltage bus to droop. The resulting minimum current-limit threshold is the intersection of the selected value of R_{ILIM} and the $I_{OS(min)}$ curve.

Current-Limit Threshold Equations (I_{OS}):

$$\begin{split} I_{OSmax}(mA) &= \frac{22980V}{R_{ILIM}^{0.94}k\Omega} \\ I_{OSnom}(mA) &= \frac{23950V}{R_{ILIM}^{0.977}k\Omega} \\ I_{OSmin}(mA) &= \frac{25230V}{R_{ILIM}^{1.016}k\Omega} \end{split}$$

(1)

where 15 k $\Omega \le R_{IIIM} \le 232 k\Omega$.

While the maximum recommended value of RILIM is 232 $k\Omega$, there is one additional configuration that allows for a lower current-limit threshold. The ILIM pin may be connected directly to IN to provide a 75 mA (typ) current-limit threshold. Additional low-ESR ceramic capacitance may be necessary from IN to GND in this configuration to prevent unwanted noise from coupling into the sensitive ILIM circuitry.

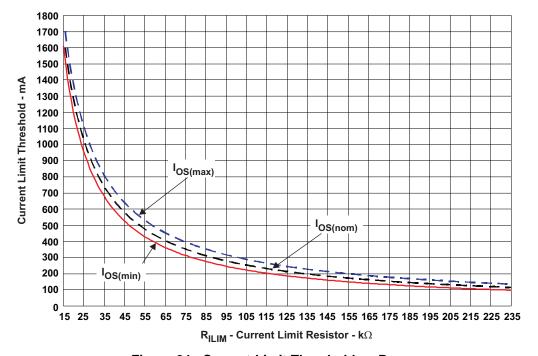


Figure 24. Current-Limit Threshold vs R_{ILIM}

TEXAS INSTRUMENTS

ZHCSAI1 -NOVEMBER 2012 www.ti.com.cn

APPLICATION 1: DESIGNING ABOVE A MINIMUM current-limit

Some applications require that current-limiting cannot occur below a certain threshold. For this example, assume that 1 A must be delivered to the load so that the minimum desired current-limit threshold is 1000 mA. Use the I_{OS} equations and Figure 24 to select R_{ILIM} .

$$I_{OSmin}(mA) = 1000mA$$

$$I_{OSmin}(mA) = \frac{25230V}{R_{ILIM}^{1.016}k\Omega}$$

$$R_{ILIM}(k\Omega) = \left(\frac{25230V}{I_{OSmin}mA}\right)^{\frac{1}{1.016}}$$

$$R_{ILIM}(k\Omega) = 24k\Omega$$
(2)

Select the closest 1% resistor less than the calculated value: $R_{ILIM} = 23.7 \text{ k}\Omega$. This sets the minimum current-limit threshold at 1 A . Use the I_{OS} equations, Figure 24, and the previously calculated value for R_{ILIM} to calculate the maximum resulting current-limit threshold.

$$\begin{split} R_{ILIM}(k\Omega) &= 23.7 k\Omega \\ I_{OSmax}(mA) &= \frac{22980 \text{V}}{R_{ILIM}^{0.94} k\Omega} \\ I_{OSmax}(mA) &= \frac{22980 \text{V}}{23.7^{0.94} k\Omega} \\ I_{OSmax}(mA) &= 1172.4 mA \end{split}$$

The resulting maximum current-limit threshold is 1172.4 mA with a 23.7 k Ω resistor.

APPLICATION 2: DESIGNING BELOW A MAXIMUM current-limit

Some applications require that current-limiting must occur below a certain threshold. For this example, assume that the desired upper current-limit threshold must be below 500 mA to protect an up-stream power supply. Use the I_{OS} equations and Figure 24 to select R_{ILIM} .

$$\begin{split} I_{OSmax}(mA) &= 500mA \\ I_{OSmax}(mA) &= \frac{22980V}{R_{ILIM}^{0.94}k\Omega} \\ R_{ILIM}(k\Omega) &= \left(\frac{22980V}{I_{OSmax}mA}\right)^{\frac{1}{0.94}} \\ R_{ILIM}(k\Omega) &= 58.7k\Omega \end{split}$$

Select the closest 1% resistor greater than the calculated value: R_{ILIM} = 59 k Ω . This sets the maximum current-limit threshold at 500 mA . Use the I_{OS} equations, Figure 24, and the previously calculated value for R_{ILIM} to calculate the minimum resulting current-limit threshold.

$$\begin{split} R_{\text{ILIM}}(k\Omega) &= 59k\Omega \\ I_{\text{OSmin}}(mA) &= \frac{25230V}{R_{\text{ILIM}}^{1.016}k\Omega} \\ I_{\text{OSmin}}(mA) &= \frac{25230V}{59^{1.016}k\Omega} \\ I_{\text{OSmin}}(mA) &= 400.6mA \end{split}$$
 (5)

The resulting minimum current-limit threshold is 400.6 mA with a 59 k Ω resistor.

ACCOUNTING FOR RESISTOR TOLERANCE

The previous sections described the selection of $R_{\rm ILIM}$ given certain application requirements and the importance of understanding the current-limit threshold tolerance. The analysis focused only on the TPS2553-Q1 performance and assumed an exact resistor value. However, resistors sold in quantity are not exact and are bounded by an upper and lower tolerance centered around a nominal resistance. The additional $R_{\rm ILIM}$ resistance tolerance directly affects the current-limit threshold accuracy at a system level. The following table shows a process that accounts for worst-case resistor tolerance assuming 1% resistor values. Step one follows the selection process outlined in the application examples above. Step two determines the upper and lower resistance bounds of the selected resistor. Step three uses the upper and lower resistor bounds in the $I_{\rm OS}$ equations to calculate the threshold limits. It is important to use tighter tolerance resistors, e.g. 0.5% or 0.1%, when precision current-limiting is desired.

Resistor Tolerance Actual Limits Ideal Closest 1% **Desired Nominal** Resistor Resistor IOS MIN IOS MAX **IOS Nom** current-limit (mA) 1% low (kΩ) 1% high (kΩ) $(k\Omega)$ $(k\Omega)$ (mA) (mA) (mA) SHORT ILIM to IN 75 50.0 75.0 100.0 120 226 101.3 120.0 142.1 226.1 223.7 228.3 200 134.0 133 131.7 134.3 173.7 201.5 233.9 300 88.5 88.7 87.8 89.6 262.1 299.4 342.3 400 65.9 66.5 65.8 67.2 351.2 396.7 448.7 500 52.5 52.3 51.8 448.3 501.6 562.4 52.8 600 43.5 43.2 42.8 544.3 604.6 673.1 43.6 700 37.2 37.4 37.0 37.8 630.2 696.0 770.8 800 32.4 32.4 32.1 32.7 729.1 8.008 882.1 900 28.7 28.7 28.4 29.0 824.7 901.5 988.7 1000 25.8 26.1 25.8 26.4 908.3 989.1 1081.0 23.2 23.0 23.4 1023.7 1109.7 1207.5 1100 23.4 1200 21.4 21.5 21.3 21.7 1106.0 1195.4 1297.1 19.7 19.6 19.4 1215.1 1308.5 1414.9 1300 19.8 1400 18.3 18.2 18.0 18.4 1310.1 1406.7 1517.0 1500 17.0 16.9 16.7 17.1 1412.5 1512.4 1626.4 1600 16.0 15.8 15.6 16.0 1512.5 1615.2 1732.7 1700 15.0 15.0 14.9 15.2 1594.5 1699.3 1819.4

Table 1. Common R_{ILIM} Resistor Selections

CONSTANT-CURRENT VS. LATCH-OFF OPERATION AND IMPACT ON OUTPUT VOLTAGE

During normal operation the constant-current device (TPS2553-Q1) has a load current that is less than the current-limit threshold and the device is not limiting current. During normal operation the N-channel MOSFET is fully enhanced, and $V_{OUT} = V_{IN}$ - ($I_{OUT} \times r_{DS(on)}$). The voltage drop across the MOSFET is relatively small compared to V_{IN} , and $V_{OUT} \neq V_{IN}$.

During the initial onset of an overcurrent event, the constant-current device (TPS2553-Q1) limits current to the programmed current-limit threshold set by R_{ILIM} by operating the N-channel MOSFET in the linear mode. During current-limit operation, the N-channel MOSFET is no longer fully-enhanced and the resistance of the device increases. This allows the device to effectively regulate the current to the current-limit threshold. The effect of increasing the resistance of the MOSFET is that the voltage drop across the device is no longer negligible ($V_{IN} \neq V_{OUT}$), and V_{OUT} decreases. The amount that V_{OUT} decreases is proportional to the magnitude of the overload condition. The expected V_{OUT} can be calculated by $I_{OS} \times R_{LOAD}$, where I_{OS} is the current-limit threshold and R_{LOAD} is the magnitude of the overload condition. For example, if I_{OS} is programmed to 1 A and a 1 Ω overload condition is applied, the resulting V_{OUT} is 1 V_{OUT} .

The constant-current device (TPS2553-Q1) operates during the initial onset of an overcurrent event, if the overcurrent event lasts longer than the internal delay "deglitch" circuit (7.5-ms typ). The constant-current device (TPS2553-Q1) asserts the FAULT flag after the deglitch period and continues to regulate the current to the current-limit threshold indefinitely. In practical circuits, the power dissipation in the package will increase the die temperature above the overtemperature shutdown threshold (135°C min), and the device will turn off until the die temperature decreases by the hysteresis of the thermal shutdown circuit (10°C typ). The device will turn on and continue to thermal cycle until the overload condition is removed. The constant-current devices resume normal operation once the overload condition is removed.

POWER DISSIPATION AND JUNCTION TEMPERATURE

The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It is good design practice to estimate power dissipation and junction temperature. The below analysis gives an approximation for calculating junction temperature based on the power dissipation in the package. However, it is important to note that thermal analysis is strongly dependent on additional system level factors. Such factors include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating power. Good thermal design practice must include all system level factors in addition to individual component analysis.

Begin by determining the $r_{DS(on)}$ of the N-channel MOSFET relative to the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from the typical characteristics graph. Using this value, the power dissipation can be calculated by:

$$P_D = r_{DS(on)} \times I_{OUT}^2$$

Where:

P_D = Total power dissipation (W)

 $r_{DS(on)}$ = Power switch on-resistance (Ω)

I_{OUT} = Maximum current-limit threshold (A)

This step calculates the total power dissipation of the N-channel MOSFET.

Finally, calculate the junction temperature:

$$T_J = P_D \times \theta_{JA} + T_A$$

Where:

 T_A = Ambient temperature (°C)

 θ_{JA} = Thermal resistance (°C/W)

P_D = Total power dissipation (W)

Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat the calculation using the "refined" $r_{DS(on)}$ from the previous calculation as the new estimate. Two or three iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on thermal resistance θ_{JA} , and thermal resistance is highly dependent on the individual package and board layout. The Thermal Information Table provides example thermal resistance for specific packages and board layouts.

UNIVERSAL SERIAL BUS (USB) POWER-DISTRIBUTION REQUIREMENTS

One application for this device is for current-limiting in universal serial bus (USB) applications. The original USB interface was a 12-Mb/s or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). As the demand for more bandwidth increased, the USB 2.0 standard was introduced increasing the maximum data rate to 480-Mb/s. The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply. The USB specification classifies two different classes of devices depending on its maximum current draw. A device classified as low-power can draw up to 100 mA as defined by the standard. A device classified as high-power can draw up to 500 mA. It is important that the minimum current-limit threshold of the current-limiting power-switch exceed the maximum current-limit draw of the intended application. The latest USB standard should always be referenced when considering the current-limit threshold

The USB specification defines two types of devices as hubs and functions. A USB hub is a device that contains multiple ports for different USB devices to connect and can be self-powered (SPH) or bus-powered (BPH). A function is a USB device that is able to transmit or receive data or control information over the bus. A USB function can be embedded in a USB hub. A USB function can be one of three types included in the list below.

- Low-power, bus-powered function
- · High-power, bus-powered function
- Self-powered function

SPHs and BPHs distribute data and power to downstream functions. The TPS2553-Q1 has higher current capability than required for a single USB port allowing it to power multiple downstream ports.

SELF-POWERED AND BUS-POWERED HUBS

A SPH has a local power supply that powers embedded functions and downstream ports. This power supply must provide between 4.75 V to 5.25 V to downstream facing devices under full-load and no-load conditions. SPHs are required to have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

A BPH obtains all power from an upstream port and often contains an embedded function. It must power up with less than 100 mA. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This is accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than 100 mA. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

LOW-POWER BUS-POWERED AND HIGH-POWER BUS-POWERED FUNCTIONS

Both low-power and high-power bus-powered functions obtain all power from upstream ports. Low-power functions always draw less than 100 mA; high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current-limiting.

USB POWER-DISTRIBUTION REQUIREMENTS

USB can be implemented in several ways regardless of the type of USB device being developed. Several power-distribution features must be implemented.

- · SPHs must:
 - current-limit downstream ports
 - Report overcurrent conditions
- BPHs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μF)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2553-Q1 meets each of these requirements. The integrated current-limiting and overcurrent reporting is required by self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-powered hubs and the input ports for bus-powered functions.

AUTO-RETRY FUNCTIONALITY

Some applications require that an overcurrent condition disables the part momentarily during a fault condition and re-enables after a pre-set time. This *auto-retry* functionality can be implemented with an external resistor and capacitor. During a fault condition, FAULT pulls low disabling the part. The part is disabled when EN is pulled low, and FAULT goes high impedance allowing C_{RETRY} to begin charging. The part re-enables when the voltage on EN reaches the turnon threshold, and the auto-retry time is determined by the resistor/capacitor time constant. The part will continue to cycle in this manner until the fault condition is removed.

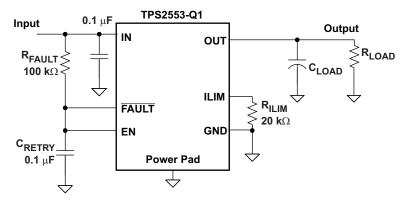


Figure 25. Auto-Retry Functionality

Some applications require auto-retry functionality and the ability to enable/disable with an external logic signal. The figure below shows how an external logic signal can drive EN through R_{FAULT} and maintain auto-retry functionality. The resistor/capacitor time constant determines the auto-retry time-out period.

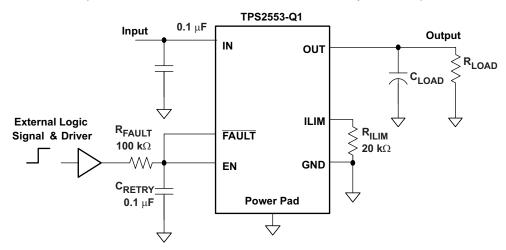


Figure 26. Auto-Retry Functionality With External EN Signal

TWO-LEVEL CURRENT-LIMIT CIRCUIT

Some applications require different current-limit thresholds depending on external system conditions. Figure 27 shows an implementation for an externally controlled, two-level current-limit circuit. The current-limit threshold is set by the total resistance from ILIM to GND (see the Programming the Current-Limit Threshold section). A logic-level input enables/disables MOSFET Q1 and changes the current-limit threshold by modifying the total resistance from ILIM to GND. Additional MOSFET/resistor combinations can be used in parallel to Q1/R2 to increase the number of additional current-limit levels.

NOTE

ILIM should never be driven directly with an external signal.

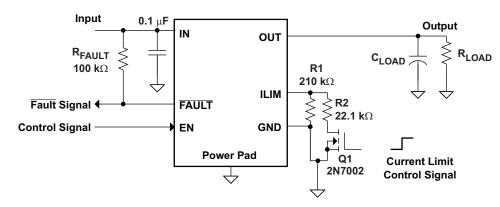


Figure 27. Two-Level Current-Limit Circuit

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TPS2553QDBVRQ1	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PYEQ
TPS2553QDBVRQ1.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PYEQ

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS2553-Q1:

Catalog: TPS2553

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

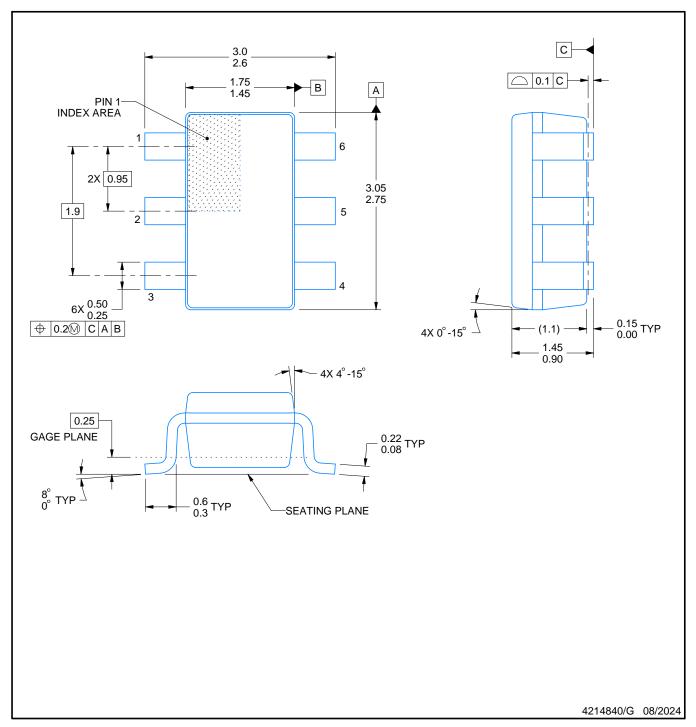
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025

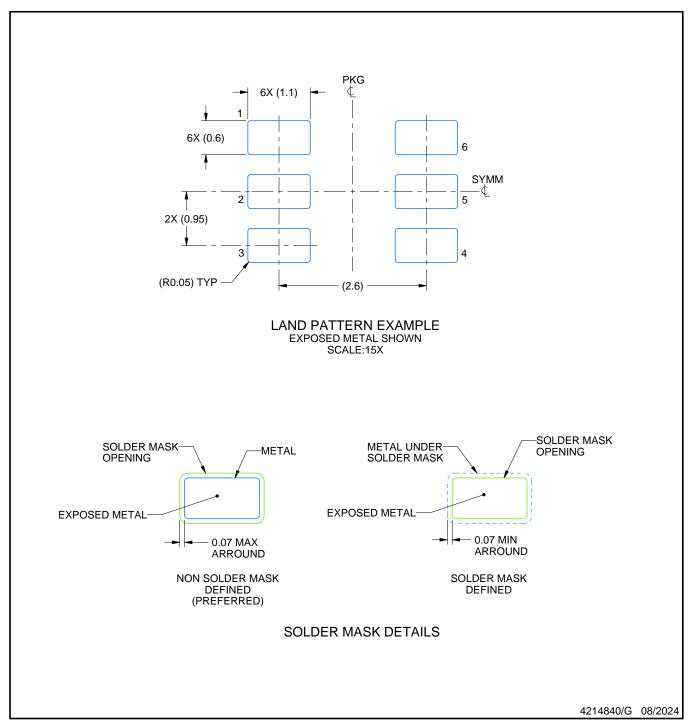
NOTE: Qualified Version Definitions:

 $_{\bullet}$ Catalog - TI's standard catalog product

SMALL OUTLINE TRANSISTOR

NOTES:

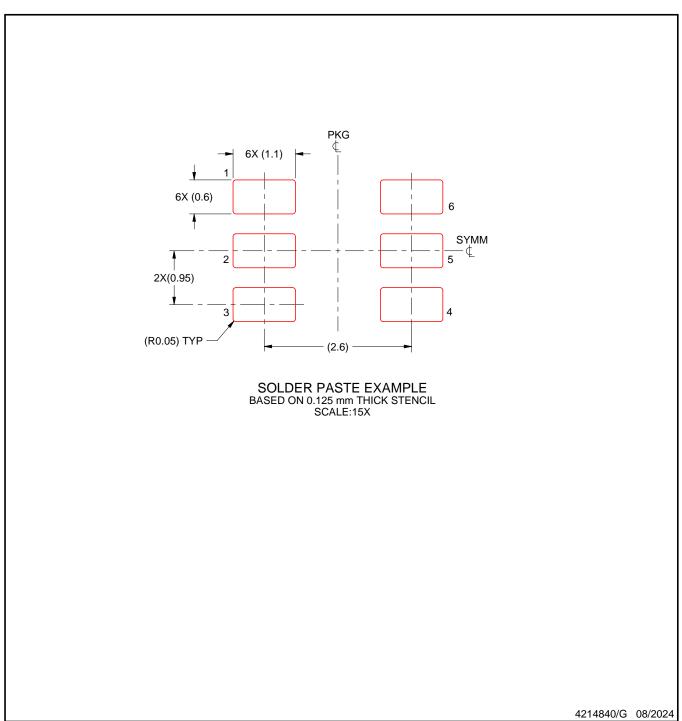
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月