

TPS25921 是一款具有全套保护功能的紧凑型多功能

熔丝。 它具有较宽的工作电压,可实现对多种常用直

流 (DC) 总线的控制。 室温下限流精度达 ±2%, 这种

优异的精度使得 TPS25921 成为多种系统保护应用的

TPS25921A, TPS25921L

ZHCSCQ0-AUGUST 2014

TPS25921x 具有精密限流和过压保护功能的 4.5V - 18V 熔丝

3 说明

理想选择。

特性

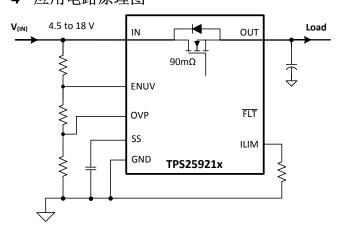
- 4.5V 18V 工作电压,最大绝对值 20V
- 90mΩ R_{DS(ON)} (典型值)
- 0.4A 至 1.6A 可调电流限值
- I_{LIMIT} 为 1A 且温度为 25°C 时限流精度达 ±2%
- ±3% 过压、欠压阈值
- 可编程的 dVo/dt 控制
- 热关断故障输出、欠压闭锁 (UVLO) 和过压保护
- -40°C 至 125°C 的结温范围
- 自动重试和闭锁型号
- UL2367 认证正在处理中
- UL60950 单点故障测试期间安全

2 应用范围

- 大型家用电器, 家用电器
- 机顶盒、数字化视频光盘 (DVD) 和游戏机
- 硬盘 (HDD) 和固态硬盘 (SSD)
- 智能仪表,气体分析仪
- 智能负载开关
- USB 开关
- 电源适配器器件

编程功能,能够对负载、电源和器件提供保护。欠压和 过压条件下的阈值精度为3%,无需监控电路即可确保 对总线电压进行严密控制。 此外,还针对系统状态监 视和下游负载控制提供了故障标志输出 (FLT)。

而且它还具有过流保护、过压保护和欠压保护等多种可


对于热插拔电路板, TPS25921 提供了浪涌电流控制 和可编程的输出斜坡速率。 为实现设计灵活性的最大 化,可使用软启动 (SS) 引脚处的电容器编程设定输出 斜坡速率。

器件信息(1)

部件号	封装	封装尺寸 (标称值)
TPS25921A	SOIC	4.90mm x 3.91mm
TPS25921L	3010	4.9011111 x 3.9111111

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

应用电路原理图

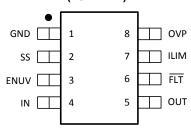
FLTb V(OUT) 5 V/div V(IN) 10 V/div I_IN

12V 短路响应

TIME = 20 μ s/div

目录

1	特性1	10	Applications and Implementation	18
2	应用范围 1		10.1 Application Information	18
3	说明 1		10.2 Typical Application	18
4	应用电路原理图1	11	System Examples	25
5	修订历史记录 2		11.1 Protection and Current Limiting for Primary-Sic Regulated Power Supplies	
6	Pin Configuration and Functions 3		11.2 Precision Current Limiting in Intrinsic Safety	20
7	Specifications3		Applications	26
	7.1 Absolute Maximum Ratings 3		11.3 Smart Load Switch	
	7.2 Handling Ratings3	12	Power Supply Recommendations	28
	7.3 Recommended Operating Conditions 4		12.1 Transient Protection	
	7.4 Thermal Characteristics 4		12.2 Output Short-Circuit Measurements	29
	7.5 Electrical Characteristics 5	13	Layout	
	7.6 Timing Requirements6		13.1 Layout Guidelines	
	7.7 Typical Characteristics		13.2 Layout Example	
8	Parametric Measurement Information 11	14	器件和文档支持	
9	Detailed Description 12		14.1 相关链接	
	9.1 Overview 12		14.2 Trademarks	
	9.2 Functional Block Diagram 12		14.3 Electrostatic Discharge Caution	31
	9.3 Feature Description		14.4 术语表	
	9.4 Device Functional Modes	15	机械封装和可订购信息	


5 修订历史记录

日期	修订版本	注释
2014 年 8 月	*	最初发布。

6 Pin Configuration and Functions

SOIC (D) 8 PIN PACKAGE (TOP VIEW)

Pin Functions

NAME	NUMBER	DESCRIPTION
GND	1	Ground.
SS	2	A capacitor from this pin to GND sets the ramp rate of output voltage at device turn-on.
ENUV	ENUV 3 Input for setting programmable undervoltage lockout threshold. An undervoltage event will open internal FET assert FLT to indicate power-failure. When pulled to GND, resets the thermal fault latch in TPS25921L.	
IN	4	Power Input and supply voltage of the device.
OUT	5	Power Output of the device.
FLT	6	Fault event indicator, goes low to indicate fault condition due to Undervoltage, Overvoltage, and Thermal shutdown event. A nuisance fast trip does not trigger fault. It is an open drain output.
ILIM	7	A resistor from this pin to GND will set the overload and short circuit limit.
OVP	8	Input for setting programmable overvoltage protection threshold. An overvoltage event will open the internal FET and assert FLT to indicate overvoltage.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		VALUE ⁽²	2)	UNIT
		MIN	MAX	UNIT
	IN, OUT, ENUV, OVP, FLT	-0.3	20	V
Input voltage range	IN (10 ms Transient)		22	V
	ILIM, SS	-0.3	7	
Sink current	SS		5	mA
Sink current	FLT		100	mA
Source current	ILIM, SS, FLT	Internally Lin	nited	
Maximum junction temper	Maximum junction temperature, T _J Internally Lin			°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to network ground terminal.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	ge	-65	150	°C
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2	2	137	
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-0.5	0.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	TYP	MAX	UNIT
	IN	4.5		18	
Innut valtage renge	OUT, OVP, ENUV, FLT	0		18	V
Input voltage range	SS	0		6	V
	ILIM	0		3.3	
Resistance	ILIM	35.7	95.3	158	kΩ
External conscitones	OUT	0.1	1		μF
External capacitance	SS		1	1000	nF
Operating junction ten	nperature range, T _J	-40	25	125	°C

7.4 Thermal Characteristics⁽¹⁾

	THERMAL METRIC	TPS2592xx	LINUT
	THERMAL METRIC	SOIC (8) PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	120.8	
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	65.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	51.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	17.4	
Ψ_{JB}	Junction-to-board characterization parameter	61.2	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$, $4.5 \text{ V} \le \text{V}_{(\text{IN})} \le 18 \text{ V}$, $\text{V}_{(\text{EN UV})} = 2 \text{ V}$, $\text{V}_{(\text{OVP})} = 0 \text{ V}$, $\text{R}_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $\text{C}_{\text{SS}} = \text{OPEN}$, FLT = OPEN. Positive current into terminals. All voltages are referenced to GND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOI	TAGE AND INTERNAL UNDERVOLTAG					
V _(IN)	Operating Input Voltage		4.5		18	V
V _(UVR)	UVLO Threshold, Rising		4.10	4.26	4.40	
` '	UVLO Hysteresis		168	224	279	mV
V _(UVHys)	•	V 2VV 42V			0.58	
Q(ON)	Supply Current, Enabled	$V_{(ENUV)} = 2 \text{ V}, V_{(IIN)} = 12 \text{ V}$	0.22	0.41		mA
Q(OFF)	Supply Current, Disabled	$V_{(ENUV)} = 0 \text{ V}, V_{(IN)} = 12 \text{ V}$	0.08	0.132	0.20	mA
OVERVOLIA	AGE PROTECTION (OVP) INPUT	I				
V _(OVPR)	Overvoltage Threshold Voltage, Rising		1.35	1.39	1.43	V
V _(OVPF)	Overvoltage Threshold Voltage, Falling		1.30	1.34	1.37	V
I _(OVP)	OVP Input Leakage Current	$0V \le V_{(OVP)} \le 18 V$	-100	0	100	nA
ENABLE AN	D UNDERVOLTAGE LOCKOUT (ENUV) I	NPUT				
V _(ENR)	ENUV Threshold voltage, rising		1.36	1.39	1.42	V
V _(ENF)	ENUV Threshold voltage, falling		1.30	1.34	1.37	V
V _(ENF_RST)	ENUV Threshold voltage to reset thermal fault, falling		0.5	0.61	0.8	V
I _{EN}	EN Input leakage current	0 ≤ V _(ENUV) ≤ 18 V	-100	0	100	nA
	T: OUTPUT RAMP CONTROL (SS)	(ENOV)				
I _(SS)	SS charging current	V _(SS) = 0 V	0.9	1.04	1.2	μA
R _(SS)	SS discharging resistance	$V_{(SNUV)} = 0 \text{ V}, I_{(SS)} = 10 \text{ mA sinking}$	60	70	85	Ω
V _(SSmax)	SS maximum capacitor voltage	V(ENUV) - O V, I(SS) - TO THA SHIKING	00	5.5	00	V
, ,		A\/	4.81	4.86	4.92	V/V
GAIN _(SS)	SS to OUT gain	$\Delta V_{(OUT)}/\Delta V_{(SS)}$	4.61	4.00	4.92	V/V
	MIT PROGRAMMING (ILIM)					
I _(ILIM)	ILIM Bias current	D 07710 0/	6	10	16	μA
		$R_{(ILIM)} = 35.7 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	0.284	0.368	0.452	
		$R_{(ILIM)} = 45.3 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	0.394	0.471	0.547	A
		$R_{(ILIM)} = 95.3 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}, T_A = T_J = 25^{\circ}\text{C}$	0.98	1.0	1.02	
I _{LIMIT}	Current Limit ⁽¹⁾	$R_{(ILIM)} = 95.3 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	0.93	1.0	1.062	
		$R_{(ILIM)} = 150 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	1.43	1.57	1.7	
		R _(ILIM) = SHORT, Shorted resistor current limit R _(ILIM) = OPEN, Open resistor current limit (Single Point Failure Test: UL60950)	0.12	0.257	0.406	
		$R_{(ILIM)} = 35.7 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 12 \text{ V}$	0.275	0.356	0.438	-
	Chart sissuit and the (4)	$R_{(ILIM)} = 45.3 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 12 \text{ V}$	0.376	0.45	0.522	
I _{OS}	Short-circuit current limit ⁽¹⁾	$R_{(ILIM)} = 95.3 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 12 \text{ V}$	0.837	0.9	0.964	Α
		R _(ILIM) = 150 kΩ, (V _(IN) - V _(OUT)) = 12 V	1.219	1.34	1.46	
I _(FASTRIP)	Fast-Trip comparator threshold	$R_{(ILIM)}$ in $k\Omega$		0.0142 x R _(ILIM) + 0.36		А
V _(ILIMopen)	ILIM Open resistor detect threshold	V _(LIM) Rising, R _(LIM) = OPEN	2.81	3.0	3.25	V
	OWER SWITCH	V(ILIM) NOTING, N(ILIM) - OT LIV	2.01	5.0	5.25	v
MOSFEL - P	OHER SWITCH	40°C < T < 95°C	FF	07	400	
R _{DS(on)}	FET ON resistance ⁽²⁾	-40°C ≤ T _J ≤ 85°C	55	87	120	mΩ
		$-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$	55	87	135	
PASS FET O	UTPUT (OUT)	T				
I _{lkg(OUT)}	OUT Bias current in off state	$V_{(ENUV)} = 0 \text{ V}, V_{(OUT)} = 0 \text{ V (Sourcing)}$	-2	0	1	μΑ
I _{sink(OUT)}	20. 2.ac carrett in on oldio	$V_{(ENUV)} = 0V$, $V_{(OUT)} = 300$ mV (Sinking)	5	7	10	μ, ,

Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account separately.

⁽²⁾ The limits for these parameters are specified based on design and characterization data, and are not tested during production.

TEXAS INSTRUMENTS

Electrical Characteristics (continued)

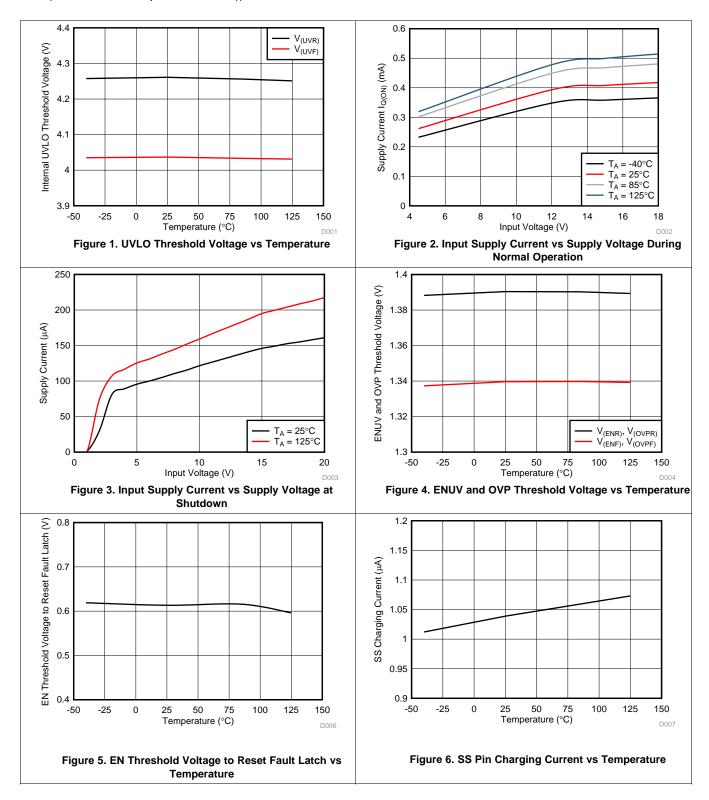
Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$, $4.5 \text{ V} \le \text{V}_{(\text{IN})} \le 18 \text{ V}$, $\text{V}_{(\text{EN UV})} = 2 \text{ V}$, $\text{V}_{(\text{OVP})} = 0 \text{ V}$, $\text{R}_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $\text{C}_{\text{SS}} = \text{OPEN}$, FLT = OPEN. Positive current into terminals. All voltages are referenced to GND (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
FAULT FLAG (F	AULT FLAG (FLT): ACTIVE LOW							
R _(FLT)	FLT Pull down Resistance	Device in fault condition, $V_{(ENUV)} = 0V$, $I_{(\overline{FLT})} = 100mA$	22	26	32	Ω		
I _(FLT)	FLT Input Leakage Current	Device not in fault condition, V _(FLT) = 0V, 18V	-0.5	0	0.5	μA		
THERMAL SHUT	DOWN (TSD)							
T _(TSD)	TSD Threshold, rising ⁽³⁾			155		°C		
T _(TSDhys)	TSD Hysteresis ⁽³⁾			20		°C		
		TPS25921L		LATCHED				
	Thermal fault: Latched or Auto Retry	TPS25921A		AUTO- RETRY				

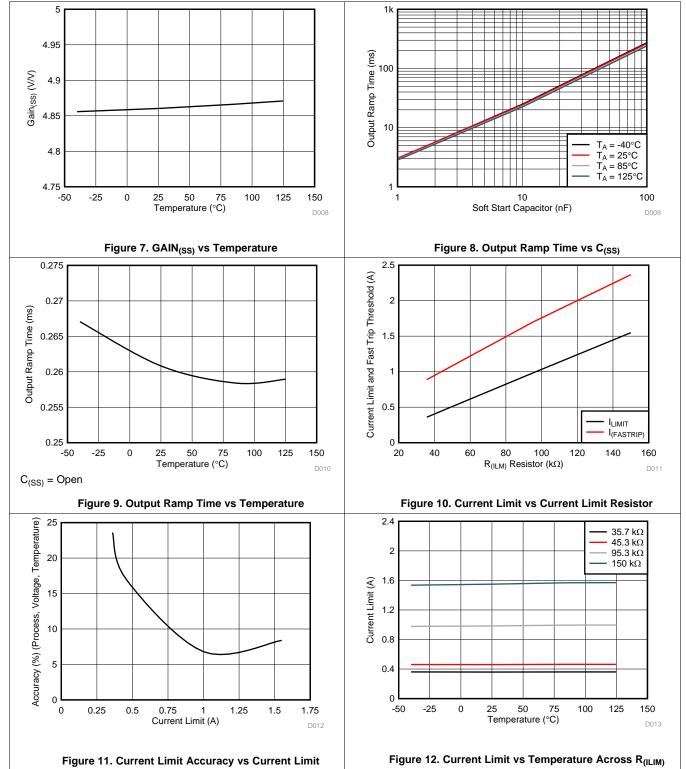
⁽³⁾ The limits for these parameters are specified based on design and characterization data, and are not tested during production.

7.6 Timing Requirements

Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C}$, $V_{(\text{IN})} = 12 \text{ V}$, $V_{(\text{EN UV})} = 2 \text{ V}$, $V_{(\text{OVP})} = 0 \text{ V}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $C_{\text{SS}} = 0$ OPEN, FLT = OPEN. Positive current into terminals. All voltages are referenced to GND (unless otherwise noted). Refer to Figure 26 for the timing diagrams

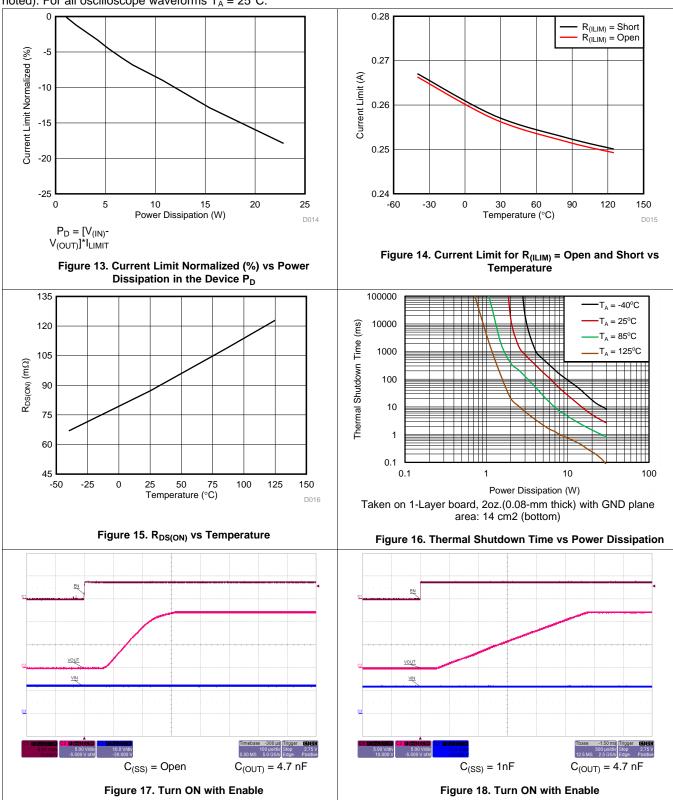

			MIN	TYP	MAX	UNIT
ENABLE AN	D UNDERVOLTAGE LOC	KOUT (ENUV) INPUT				
t _{OFF(dly)}	Turn Off delay	ENUV ↓ to V _(OUT) ↓		8		μs
		ENUV \uparrow to $V_{(OUT)} = 1V$, $C_{(SS)} = OPEN$		96		
$t_{ON(dly)}$	Turn-On delay	ENUV \uparrow to V _(OUT) = 1V, C _(SS) > 0.39nF, [C(dVdT) in nF]		14.5 + 0.5 x (70p + C _(SS))		μs
OVERVOLTA	AGE PROTECTION (OVP)	INPUT				
t _{OVP(dly)}	OVP Disable delay	OVP↑ to V _(OUT) ↓		8		μs
SOFT STAR	T: OUTPUT RAMP CONTI	ROL (SS)				
	Output ramp time	ENUV \uparrow to $V_{(OUT)}$ = 11.7 V, with $C_{(SS)}$ = open , $C_{(OUT)}$ = 2.2 μF	0.2	0.26	0.33	
t _{SS}		ENUV \uparrow to V _(OUT) = 11.7 V, with C _(SS) = 1 nF, C _(OUT) = 2.2 μ F	2.1	3	3.6	ms
CURRENT L	IMIT PROGRAMMING (IL	IM)				
t _{FASTRIP(dly)}	Fast-Trip comparator delay	I _(OUT) > I _(FASTRIP)		3		μs
THERMAL S	HUT DOWN (TSD)					
	Retry Delay after TSD	TPS25921A Only, V _(IN) = 12 V		150		ms
t _{TSD(dly)}	recovery, $T_J < [T_{(TSD)} - 20^{\circ}C]$	TPS25921A Only, V _(IN) = 4.5 V		100		ms

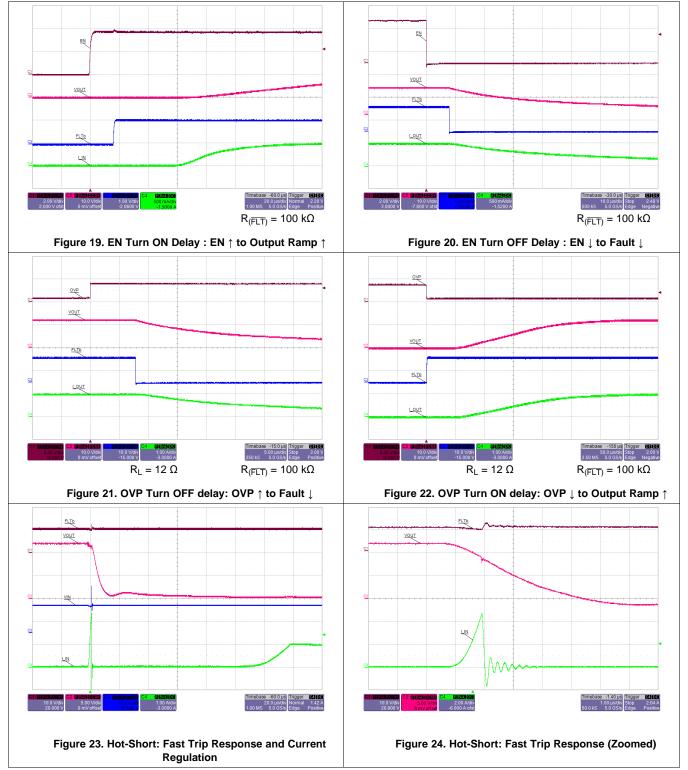
ZHCSCQ0-AUGUST 2014 www.ti.com.cn


7.7 Typical Characteristics

Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C}$, $V_{(\text{IN})} = 12 \text{ V}$, $V_{(\text{EN UV})} = 2 \text{ V}$, $V_{(\text{OVP})} = 0 \text{ V}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $C_{(\text{OUT})} = 2.2 \text{ }\mu\text{F}$, $C_{\text{SS}} = \text{OPEN}$, FLT = OPEN. Positive current into terminals. All voltages referenced to GND (unless otherwise noted). For all oscilloscope waveforms $T_A = 25$ °C.

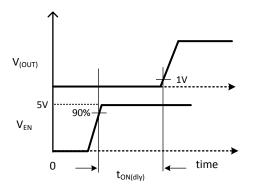
Typical Characteristics (continued)

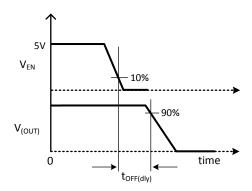

Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$, $V_{(IN)} = 12 \text{ V}$, $V_{(EN\ UV)} = 2 \text{ V}$, $V_{(OVP)} = 0 \text{ V}$, $R_{(ILIM)} = 95.3 \text{ k}\Omega$, $R_{(OUT)} = 2.2 \text{ }\mu\text{F}$, $R_{SS} = R_{SS} = R_$

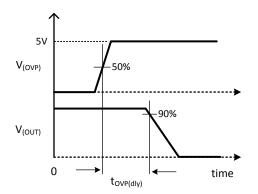

Typical Characteristics (continued)

Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C}$, $V_{(\text{IN})} = 12 \text{ V}$, $V_{(\text{EN UV})} = 2 \text{ V}$, $V_{(\text{OVP})} = 0 \text{ V}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $R_{(\text{OUT})} = 2.2 \text{ } \mu\text{F}$, $R_{(\text{SS})} = 0 \text{ PEN}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $R_{(\text{OUT})} = 2.2 \text{ } \mu\text{F}$, $R_{(\text{SS})} = 0 \text{ PEN}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $R_{(\text{OUT})} = 2.2 \text{ } \mu\text{F}$, $R_{(\text{SS})} = 0 \text{ PEN}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$, $R_{(\text{OUT})} = 2.2 \text{ } \mu\text{F}$, $R_{(\text{ILIM})} = 95.3 \text{ k}\Omega$

Typical Characteristics (continued)


Conditions (unless otherwise noted) are $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$, $V_{(IN)} = 12 \text{ V}$, $V_{(EN\ UV)} = 2 \text{ V}$, $V_{(OVP)} = 0 \text{ V}$, $R_{(ILIM)} = 95.3 \text{ k}\Omega$, $R_{(OUT)} = 2.2 \text{ }\mu\text{F}$, $R_{SS} = R_{SS} = R_$





ZHCSCQ0 - AUGUST 2014 www.ti.com.cn

8 Parametric Measurement Information

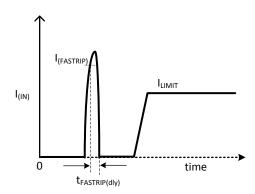
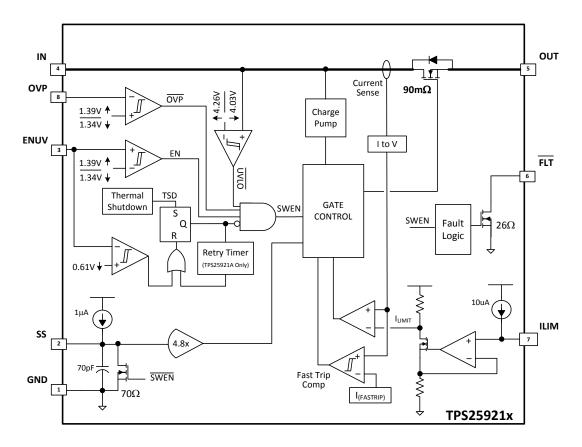


Figure 25. Timing Diagrams

9 Detailed Description

9.1 Overview


TPS25921 is a smart eFuse with enhanced built-in protection circuitry. It provides robust protection for all systems and applications powered from 4.5 V to 18 V.

For hot-plug-in boards, the device provides in-rush current control and programmable output ramp-rate. TPS25921 integrates overcurrent and short circuit protection. The precision overcurrent limit helps to minimize over design of the input power supply, while the fast response short circuit protection immediately isolates the load from input when a short circuit is detected. The device allows the user to program the overcurrent limit threshold between 0.4 A and 1.6 A via an external resistor. The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault for downstream system. Its threshold accuracy of 3% ensures tight supervision of bus, eliminating the need for a separate supply voltage supervisor chip. TPS25921 is designed to protect systems such as White Goods, STBs, DTVs, Smart Meters and Gas Analyzers.

The additional features include:

- Over temperature protection to safely shutdown in the event of an overcurrent event
- · Fault reporting for brown-out and overvoltage faults
- · A choice of latched or automatic restart mode

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Enable and Adjusting Undervoltage Lockout (UVLO)

The ENUV pin controls the ON/OFF state of the internal FET. A voltage $V_{(ENUV)} < V_{(ENF)}$ on this pin turns off the internal FET, thus disconnecting IN from OUT.

Toggling the ENUV pin below $V_{(ENF_RST)}$ resets the TPS25921L that has latched off due to a fault condition. The internal de-glitch delay on ENUV falling edge is kept low for quick detection of power failure. For applications where a higher de-glitch delay on ENUV is desired, or when the supply is particularly noisy, it is recommended to use an external filter capacitor from the ENUV terminal to GND.

The undervoltage lockout threshold can be programmed by using an external resistor divider from the supply IN terminal to the ENUV terminal to GND as shown in Figure 26. When an undervoltage or input power fail event is detected, the internal FET is quickly turned off, and FLT is asserted. If the undervoltage lockout function is not needed, the ENUV pin should be connected to the IN terminal. The ENUV terminal should not be left floating.

TPS25921 also implements internal undervoltage lockout (UVLO) circuitry on the IN pin. The device gets disabled when the IN terminal voltage falls below internal UVLO Threshold V_(UVF).

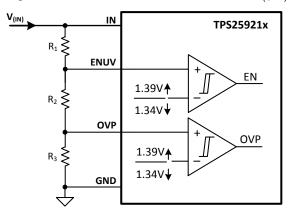


Figure 26. UVLO and OVP Thresholds Set By R₁, R₂ and R₃

9.3.2 Overvoltage Protection (OVP)

TPS25921 incorporates circuits to protect the system during overvoltage conditions. A resistor divider, connected from the supply to OVP terminal to GND (as shown in Figure 26), programs the overvoltage threshold. A voltage more than $V_{(OVPR)}$ on the OVP pin turns off the internal FET and protects the downstream load. This pin should be tied to GND when not used.

9.3.3 Hot Plug-in and In-Rush Current Control

TPS25921 is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot" power source. This limits the voltage sag on the backplane's supply voltage and prevents unintended resets of the system power. A slew rate controlled startup (SS) also helps to eliminate conductive and radiated interference. An external capacitor from the SS pin to GND defines the slew rate of the output voltage at power-on (as shown in Figure 27). The equation governing slew rate at start-up is shown in Equation 1:

TEXAS INSTRUMENTS

Feature Description (continued)

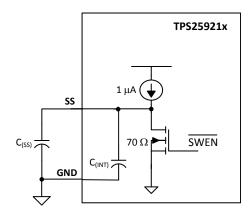


Figure 27. Output Ramp Up Time t_{dVdT} is Set by $C_{(dVdT)}$

$$I_{(SS)} = \frac{(C_{(SS)} + C_{(INT)})}{Gain_{(SS)}} \times \frac{dV_{(OUT)}}{dt}$$
(1)

Where:

• $I_{(SS)} = 1 \mu A \text{ (typical)}$

dV(OUT)

- dt = Desired output slew rate
- GAIN_(SS) = $\Delta V_{(OUT)}/\Delta V_{(SS)}$ gain = 4.85

The total ramp time (t_{SS}) of $V_{(OUT)}$ for 0 to $V_{(IN)}$ can be calculated using Equation 2:

$$t_{SS} = 20.6 \times 10^4 \times V_{(IN)} \times (C_{(SS)} + 0.07)$$
 (2)

The inrush current, I(INRUSH) can be calculated as

$$I_{(INRUSH)} = C_{(OUT)} \times \frac{V_{(IN)}}{t_{SS}}$$
(3)

The SS pin can be left floating to obtain a predetermined slew rate (t_{SS}) on the output. When terminal is left floating, the device sets an internal ramp rate of ~50V/ms for output ($V_{(OUT)}$) ramp.

Figure 36 and Figure 37 illustrate the inrush current control behavior of the device. For systems where load is present during start-up, the current never exceeds the overcurrent limit set by $R_{(ILIM)}$ resistor for the application. For defining appropriate charging time/rate under different load conditions, refer to the Setting Output Voltage Ramp time (t_{SS}) section.

9.3.4 Overload and Short Circuit Protection:

At all times load current is monitored by sensing voltage across an internal sense resistor. During overload events, current is limited to the current limit (I_{LIMIT}) programmed by $R_{(ILIM)}$ resistor

$$I_{LIMIT} = 10.73 \times 10^{-3} \times R_{(ILIM)} - 0.018$$
 (4)

$$R_{\text{(ILIM)}} = \frac{I_{\text{LIMIT}} + 0.018}{10.73 \times 10^{-3}} \tag{5}$$

- I_{LIMIT} is overload current limit in Ampere
- R_(ILIM) is the current limit programming resistor in kΩ

TPS25921 incorporates two distinct overcurrent protection levels: the current limit (I_{LIMIT}) and the fast-trip threshold ($I_{(FASTRIP)}$). The fast trip and current limit operations are shown in Figure 28.

Bias current on ILIM pin directly controls current-limiting behavior of the device, and PCB routing of this node must be kept away from any noisy (switching) signals.

Feature Description (continued)

9.3.4.1 Overload Protection

For overload conditions, the internal current-limit amplifier regulates the output current to I_{LIMIT} . The output voltage droops during current limit regulation, resulting in increased power dissipation in the device. If the device junction temperature reaches the thermal shutdown threshold $(T_{(TSD)})$, the internal FET is turned off. Once in thermal shutdown, The TPS25921L version stays latched off, whereas TPS25921A commences an auto-retry cycle $t_{TSD(dly)}$ ms after $T_J < [T_{(TSD)} - 20^{\circ}C]$. During thermal shutdown, the fault pin \overline{FLT} pulls low to signal a fault condition. Figure 40 and Figure 41 illustrate overload behavior.

9.3.4.2 Short Circuit Protection

During a transient short circuit event, the current through the device increases very rapidly. As current-limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip comparator, with a threshold $I_{(FASTRIP)}$. When the current through the internal FET exceeds $I_{(FASTRIP)}$ ($I_{(OUT)} > I_{(FASTRIP)}$), this comparator shuts down the pass device within 3 μ s and terminates the rapid short-circuit peak current. The $I_{(FASTRIP)}$ threshold is dependent on programmed overload current limit and function of $R_{(ILIM)}$. See Equation 6 for the calculation.

$$I_{(FASTRIP)} = 1.42 \times 10^{-2} \times R_{(ILIM)} + 0.36$$

where

- I_(FASTRIP) is fast trip current limit in Ampere
- $R_{(ILIM)}$ is the current limit resistor in $k\Omega$

(6)

The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device attempts to turn back on normally, allowing the current-limit loop to regulate the output current to I_{LIMIT}. Then, device behaves similar to overload condition. Figure 42 through Figure 44 illustrate the behavior of the system when the current exceeds the fast-trip threshold.

9.3.4.3 Start-Up with Short on Output

During start-up into a short circuit current is limited to I_{LIMIT} . Figure 45 and Figure 46 illustrate start-up with a short on the output. This feature helps in quick fault isolation and hence ensures stability of the DC bus.

9.3.4.4 Constant Current Limit Behavior during Overcurrent Faults

When power dissipation in the internal FET [$P_D = (V_{(IN)} - V_{(OUT)}) \times I_{(OUT)}$] > 2 W, there is a ~1 to 20 % thermal fold back in the current limit value so that the regulated current drops from I_{LIMIT} to I_{OS} . Eventually, the device shuts down due to over temperature.

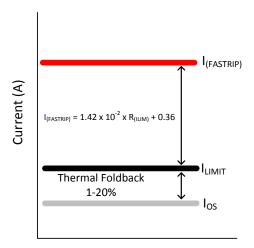


Figure 28. Overcurrent Protection Levels

ZHCSCQ0 - AUGUST 2014 www.ti.com.cn

TEXAS INSTRUMENTS

Feature Description (continued)

9.3.5 FAULT Response

The \overline{FLT} open-drain output is asserted (active low) during undervoltage, overvoltage and thermal shutdown conditions. The \overline{FLT} signal remains asserted until the fault condition is removed and the device resumes normal operation. During thermal shutdown, TPS25921L version stays latched off, whereas TPS25921A commences an auto-retry cycle $t_{TSD(dly)}$ millisecond after $T_J < [T_{(TSD)} - 20^{\circ}C]$. For TPS25921L, thermal fault latch can be reset by cycling the ENUV pin below $V_{(ENF\ RST)}$ threshold. A nuisance fast trip does not trigger fault.

Connect FLT with a pull up resistor to Input or Output voltage rail. FLT may be left open or tied to ground when not used.

9.3.6 IN, OUT and GND Pins

The IN pin should be connected to the power source. A ceramic bypass capacitor close to the device from IN to GND is recommended to alleviate bus transients. The recommended operating voltage range is 4.5 V - 18 V.

The OUT pin should be connected to the load. V_(OUT) in the ON condition, is calculated using the Equation 7

$$V_{(OUT)} = V_{(IN)} - \left(R_{DS(ON)} \times I_{(OUT)}\right)$$
(7)

where, R_{DS(ON)} is the ON resistance of the internal FET.

GND terminal is the most negative voltage in the circuit and is used as a reference for all voltage reference unless otherwise specified.

9.3.7 Thermal Shutdown:

Internal over temperature shutdown disables/turns off the FET when $T_J > 155^{\circ}\text{C}$ (typical). The TPS25921L version latches off the internal FET, whereas TPS25921A commences an auto-retry cycle $t_{TSD(dly)}$ milliseconds after T_J drops below $[T_{(TSD)} - 20^{\circ}\text{C}]$. During the thermal shutdown, the fault pin \overline{FLT} is pulled low to signal a fault condition.

9.4 Device Functional Modes

9.4.1 Shutdown Control

The internal FET and hence the load current can be remotely switched off by taking the ENUV pin below its 1.34 V threshold with an open collector or open drain device as shown in Figure 29. Upon releasing the ENUV pin the device turns on with soft-start cycle.

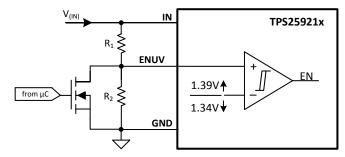


Figure 29. Shutdown Control

9.4.2 Operational Overview of Device Functions

The Table 1 below elucidates the device functionality for various conditions

Table 1. Operational Overview of Device Functions

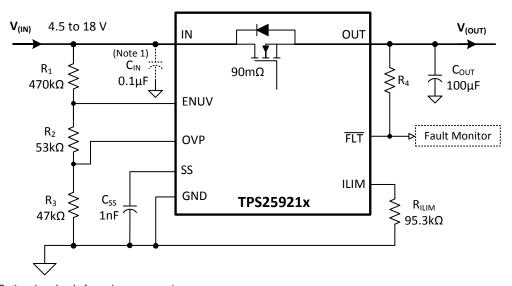
Device	TPS25921
	Inrush ramp controlled by capacitor at SS pin
Start Up	Inrush limited to I _{LIMIT} level as set by R _(ILIM)
	If $T_J > T_{(TSD)}$ device shuts off
	Current is limited to I _(LIM) level as set by R _(ILIM)
	Power dissipation increases as V _(IN) - V _(OUT) grows
Overcurrent Response	Device turns off when $T_J > T_{(TSD)}$
	'L' Version remains off
	'A' Version will attempt restart $t_{TSD(dly)}$ ms after $T_J < [T_{(TSD)} -20^{\circ}C]$
Short-Circuit Response	Fast shut off when I _(LOAD) > I _(FASTRIP)
Short-Circuit Response	Quick restart and current limited to I_{LIMIT} , follows standard startup cycle

TEXAS INSTRUMENTS

10 Applications and Implementation

10.1 Application Information

The TPS25921x is a smart eFuse. It is typically used for Hot-Swap and Power rail protection applications. It operates from 4.5 V to 18 V with programmable current limit, overvoltage and undervoltage protection. The device aids in controlling the in-rush current and provides precise current limiting during overload conditions for systems such as White Goods, Set-Top-Box, DTVs, Gaming Consoles, SSDs/HDDs and Smart Meters. The device also provides robust protection for multiple faults on the sub-system rail.


The following design procedure can be used to select component values for the device.

Alternatively, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. Additionally, a spreadsheet design tool *TPS25921 Design Calculator* is available on web folder.

This section presents a simplified discussion of the design process.

10.2 Typical Application

10.2.1 Precision Current Limiting and Protection for White Goods

(1) C_{IN} : Optional and only for noise suppression.

Figure 30. Typical Application Schematics: eFuse for White Goods

10.2.1.1 Design Requirements

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE			
Input voltage range, V _(IN)	12 V			
Undervoltage lockout set point, V _(UV)	8 V			
Overvoltage protection set point , V _(OV)	17 V			
Load at Start-Up , R _{L(SU)}	24 Ω			
Current limit, I _{LIMIT}	1 A			
Load capacitance , C _(OUT)	100 μF			
Maximum ambient temperatures , T _A	85°C			

ZHCSCQ0-AUGUST 2014 www.ti.com.cn

10.2.1.2 Detailed Design Procedure

The following design procedure can be used to select component values for the TPS25921A and TPS25921L.

10.2.1.2.1 Step by Step Design Procedure

To begin the design process a few parameters must be decided upon. The designer needs to know the following:

- Normal input operation voltage
- Maximum output capacitance
- Maximum current Limit
- Load during start-up
- Maximum ambient temperature of operation

This design procedure below seeks to control the junction temperature of device under both static and transient conditions by proper selection of output ramp-up time and associated support components. The designer can adjust this procedure to fit the application and design criteria.

10.2.1.2.2 Programming the Current-Limit Threshold: R(ILIM) Selection

The $R_{(II | IM)}$ resistor at the ILIM pin sets the over load current limit, this can be set using Equation 5.

$$R_{\text{(ILIM)}} = \frac{1 + 0.018}{10.73 \times 10^{-3}} = 94.8 \text{ k}\Omega$$
(8)

Choose closest standard value: 95.3 kΩ, 1% standard value resistor.

10.2.1.2.3 Undervoltage Lockout and Overvoltage Set Point

The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using the external voltage divider network of R₁, R₂ and R₃ as connected between IN, ENUV, OVP and GND pins of the device. The values required for setting the undervoltage and overvoltage are calculated solving Equation 9 and Equation 10.

$$V_{(OVPR)} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{(OV)}$$
 (9)

$$V_{(ENR)} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{(UV)}$$
(10)

For minimizing the input current drawn from the power supply $\{I_{(R_123)} = V_{(IN)}/(R_1 + R_2 + R_3)\}$, it is recommended to use higher values of resistance for R₁, R₂ and R₃.

However, leakage currents due to external active components connected to the resistor string can add error to these calculations. So, the resistor string current, I_(R123) must be chosen to be 20x greater than the leakage current expected.

From the device electrical specifications, $V_{(OVPR)}=1.40~V$ and $V_{(ENR)}=1.40~V$. For design requirements, $V_{(OV)}$ is 17 V and $V_{(UV)}$ is 8 V. To solve the equation, first choose the value of $R_3=47~k\Omega$ and use Equation 9 to solve for $(R_1 + R_2) = 523.71 \text{ k}\Omega$. Use Equation 10 and value of $(R_1 + R_2)$ to solve for $R_2 = 52.88 \text{ k}\Omega$ and finally $R_1 = 470.83$

Using the closest standard 1% resistor values gives $R_1 = 470 \text{ k}\Omega$, $R_2 = 53 \text{ k}\Omega$, and $R_3 = 47 \text{ k}\Omega$.

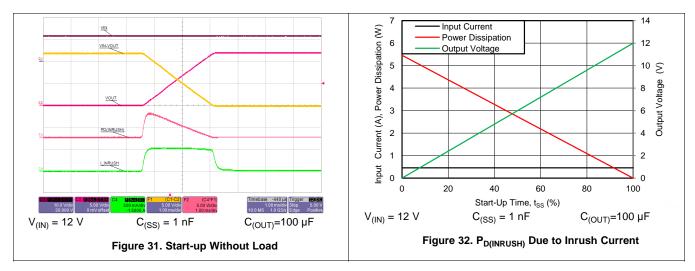
The power failure threshold is detected on the falling edge of supply. This threshold voltage is 4% lower than the rising threshold, V_(UV). This is calculated using Equation 11.

$$V_{(PFAIL)} = 0.96 \times V_{(UV)} \tag{11}$$

Power fail threshold set is: 7.68 V

10.2.1.2.4 Setting Output Voltage Ramp time (tss)

For a successful design, the junction temperature of device should be kept below the absolute-maximum rating during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.


The ramp-up capacitor $C_{(SS)}$ needed is calculated considering the two possible cases:

ZHCSCQ0 - AUGUST 2014 www.ti.com.cn

TEXAS INSTRUMENTS

10.2.1.2.4.1 Case1: Start-up Without Load: Only Output Capacitance C_(OUT) Draws Current During Start-up

During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and the power dissipated decreases as well. Typical ramp-up of output voltage $V_{(OUT)}$ with inrush current limit of 0.5A and power dissipated in the device during start-up is shown in Figure 31. The average power dissipated in the device during start-up is equal to area of triangular plot (red curve in Figure 32) averaged over t_{SS} .

For TPS25921 device, the inrush current is determined as,

$$I = C \times \frac{dV}{dT} = > I_{(INRUSH)} = C_{(OUT)} \times \frac{V_{(IN)}}{t_{SS}}$$
(12)

Power dissipation during start-up is:

$$P_{D(INRUSH)} = 0.5 \times V_{(IN)} \times I_{(INRUSH)}$$
(13)

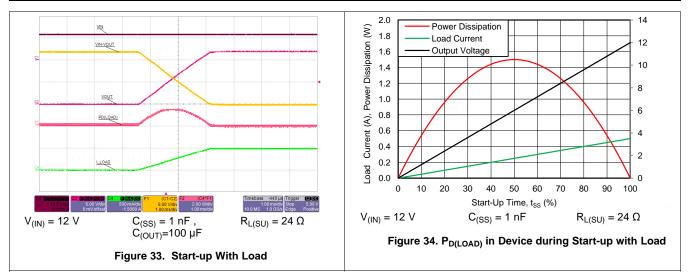
Equation 13 assumes that load does not draw any current until the output voltage has reached its final value.

10.2.1.2.4.2 Case 2: Start-up With Load: Output Capacitance C_(OUT) and Load Draws Current During Start-up

When load draws current during the turn-on sequence, there will be additional power dissipated. Considering a resistive load $R_{L(SU)}$ during start-up, load current ramps up proportionally with increase in output voltage during t_{SS} time. Typical ramp-up of output voltage, load current and power dissipation in the device is shown in Figure 33 and power dissipation with respect to time is plotted in Figure 34. The additional power dissipation during start-up phase is calculated as follows.

$$(V_{I} - V_{O})(t) = V_{(IN)} \times \left(1 - \frac{t}{t_{SS}}\right)$$

$$(14)$$


$$I_{L}(t) = \left(\frac{V_{(IN)}}{R_{L(SU)}}\right) \times \frac{t}{t_{SS}}$$
(15)

Where $R_{L(SU)}$ is the load resistance present during start-up. Average energy loss in the internal FET during charging time due to resistive load is given by:

$$W_{t} = \int_{0}^{tss} V_{(IN)} x \left(1 - \frac{t}{tss}\right) x \left(\frac{V_{(IN)}}{R_{L(SU)}} x \frac{t}{tss}\right) dt$$
 (16)

ZHCSCQ0-AUGUST 2014 www.ti.com.cn

On solving Equation 16 the average power loss in the internal FET due to load is:

$$P_{D(LOAD)} = \left(\frac{1}{6}\right) \times \frac{V^2(IN)}{R_L(SU)}$$
(17)

Total power dissipated in the device during startup is:

$$P_{D(STARTUP)} = P_{D(INRUSH)} + P_{D(LOAD)}$$
 (18)

Total current during startup is given by:

$$I_{(STARTUP)} = I_{(INRUSH)} + I_{L}(t)$$
(19)

If $I_{(STARTUP)} > I_{LIMIT}$, the device limits the current to I_{LIMIT} and the current limited charging time is determined by:

$$t_{SS(current-limited)} = C_{(OUT)} \times R_{L(SU)} \times \left[\frac{I_{(LIMIT)}}{I_{(INRUSH)}} - 1 + LN \left(\frac{I_{(INRUSH)}}{I_{(LIMIT)} - \frac{V_{(IN)}}{R_{L(SU)}}} \right) \right]$$

$$(20)$$

The power dissipation, with and without load, for selected start-up time should not exceed the shutdown limits as shown in Figure 35.

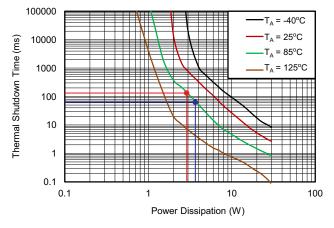



Figure 35. Thermal Shutdown Limit Plot

For the design example under discussion,

Select ramp-up capacitor $C_{(SS)} = 1nF$, using Equation 2.

$$t_{SS} = 20.6 \times 10^4 \times 12 \times (1 + 0.07) = 2.64 \text{ ms}$$
 (21)

TEXAS INSTRUMENTS

The inrush current drawn by the load capacitance ($C_{(OUT)}$) during ramp-up using Equation 3.

$$I_{(INRUSH)} = (100 \times 10^{-6}) \times \left(\frac{12}{2.64 \times 10^{-3}}\right) = 0.454 \text{ A}$$
(22)

The inrush Power dissipation is calculated, using Equation 13.

$$P_{D(INRUSH)} = 0.5 \times 12 \times 0.454 = 2.72 \text{ W}$$
 (23)

For 2.72 W of power loss, the thermal shut down time of the device should not be less than the ramp-up time $t_{\rm SS}$ to avoid the false trip at maximum operating temperature. From thermal shutdown limit graph Figure 35 at $T_{\rm A} = 85^{\circ}{\rm C}$, for 2.72 W of power the shutdown time is ~170 ms. So it is safe to use 2.64 ms as start-up time without any load on output.

Considering the start-up with load 24 Ω , the additional power dissipation, when load is present during start up is calculated, using Equation 17.

$$P_{D(LOAD)} = \left(\frac{1}{6}\right) \times \left(\frac{12 \times 12}{24}\right) = 1 \text{ W}$$
 (24)

The total device power dissipation during start up is:

$$P_{D(STARTUP)} = 2.72 + 1 = 3.72 \text{ W}$$
 (25)

From thermal shutdown limit graph at $T_A = 85^{\circ}$ C, the thermal shutdown time for 3.72 W is close to 60 ms. It is safe to have 30% margin to allow for variation of system parameters such as load, component tolerance, and input voltage. So it is well within acceptable limits to use the 1 nF capacitor with start-up load of 24 Ω .

If there is a need to decrease the power loss during start-up, it can be done with increase of $C_{(SS)}$ capacitor.

To illustrate, choose $C_{(SS)} = 4.7 \text{ nF}$ as an option and recalculate:

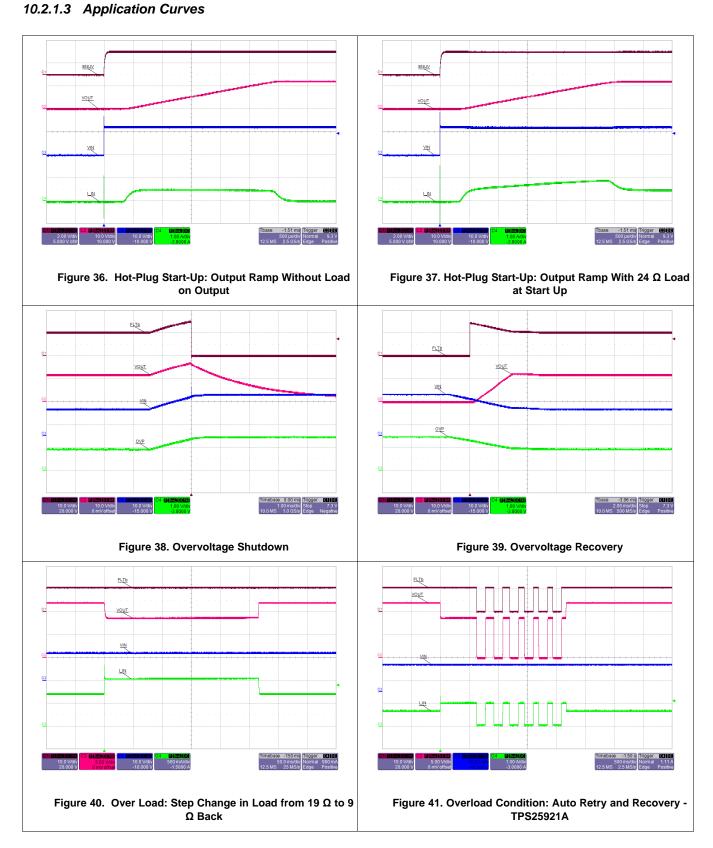
$$t_{SS} = 20.6 \times 10^4 \times 12 \times (4.7 + 0.07) = 11.8 \text{ ms}$$
 (26)

$$I_{(INRUSH)} = (100 \times 10^{-6}) \times \left(\frac{12}{11.8 \times 10^{-3}}\right) = 0.102 \text{ A}$$
(27)

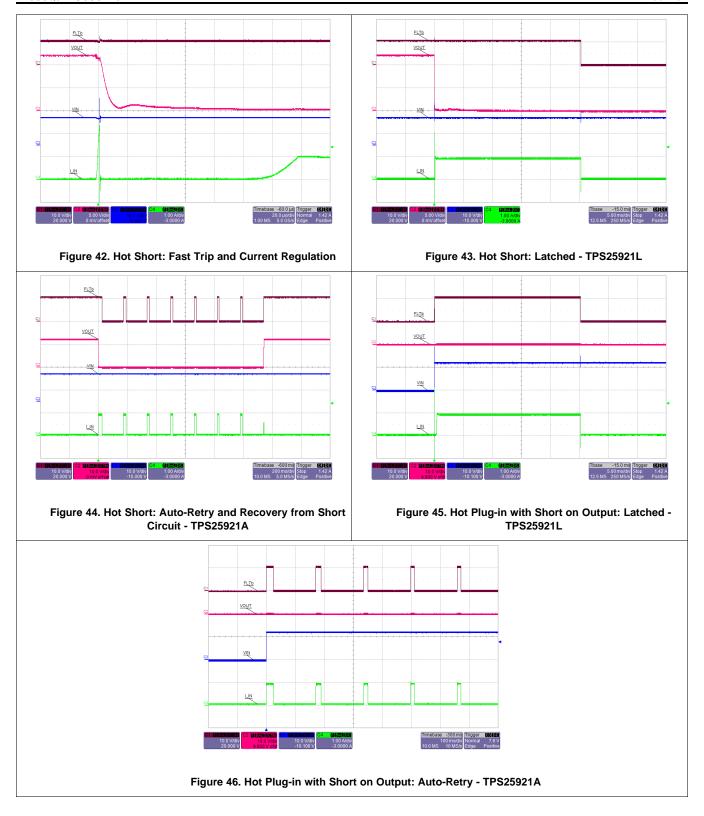
$$P_{D(INRUSH)} = 0.5 \times 12 \times 0.102 = 0.61 \text{ W}$$
 (28)

$$P_{D(LOAD)} = \left(\frac{1}{6}\right) \times \left(\frac{12 \times 12}{24}\right) = 1 \text{ W}$$
 (29)

$$P_{D(STARTUP)} = 0.61 + 1 = 1.61 \text{ W}$$
 (30)


From thermal shutdown limit graph at $T_A = 85$ °C, the shutdown time for 1.61 W power dissipation is ~1000 ms, which increases the margins further for shutdown time and ensures successful operation during start up and steady state conditions.

The spreadsheet tool available on the web can be used for iterative calculations.


10.2.1.2.5 Support Component Selections - R4 and CIN

Reference to application schematics, R_4 is required only if $\overline{\text{FLT}}$ is used; The resistor serves as pull-up for the open-drain output driver. The current sunk by this pin should not exceed 100 mA (refer to the *Absolute Maximum Ratings* table). C_{IN} is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise. Where acceptable, a value in the range of 0.001 μF to 0.1 μF is recommended for $C_{\text{(IN)}}$.

11 System Examples

The TPS25921 provides a simple solution for current limiting, inrush current control and supervision of power rails for wide range of applications operating at 4.5 V to 18 V and delivering up to 1.5 A.

11.1 Protection and Current Limiting for Primary-Side Regulated Power Supplies

Primary side regulated power supplies and adapters are dominant today in many of the applications such as Smart-phones, Portable hand-held devices, White Goods, Set-Top-Box and Gaming consoles. These supplies provide efficient, low cost and low component count solutions for power needs ranging from 5W to 30W. But, these come with drawbacks of

- No secondary side protection for immediate termination of critical faults such as short circuit and over voltage
- Do not provide precise current limiting for overload transients
- Have poor output voltage regulation for sudden change in AC input voltages triggering output overvoltage condition

Many of the above applications require precise output current limiting and secondary side protection, driving the need for current sensing in the secondary side. This needs additional circuit implementation using precision operational amplifiers. This increases the complexity of the solution and also results in sensing losses The TPS25921 with its integrated low-ohmic N-channel FET provides a simple and efficient solution. Figure 47 shows the typical implementation using TPS25921.

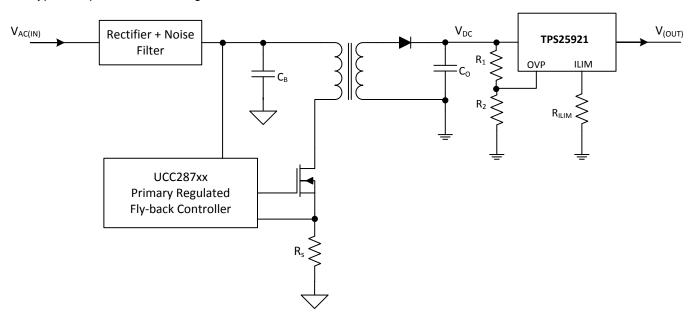


Figure 47. Current Limiting and Protection for AC-DC Power Supplies

During short circuit conditions, the internal fast comparator of TPS25921 turns OFF the internal FET in less than 3 μ s (typical) as soon as current exceeds $I_{(FASTRIP)}$, set by the current limit $R_{(ILIM)}$ resistor. The OVP comparator with 3% precision helps in quick isolation of the load from the input when inputs exceeds the set $V_{(OVPR)}$

Figure 42 and Figure 38 shows short circuit and overvoltage response waveforms of implementation using TPS25921. In addition to above, the TPS25921 provides inrush current limit when output is hot-plugged into any of the system loads.

11.2 Precision Current Limiting in Intrinsic Safety Applications

Intrinsic safety (IS) is becoming prominent need for safe operation of electrical and electronic equipment in hazardous areas. Intrinsic safety requires that equipment is designed such that the total amount of energy available in the apparatus is simply not enough to ignite an explosive atmosphere. The energy can be electrical, in the form of a spark, or thermal, in the form of a hot surface.

This calls for precise current limiting and precision shutdown of the circuit for over voltage conditions ensuring that set voltage and current limits are not exceeded for wide operating temperature range and variable environmental conditions. Applications such as Gas Analyzers, Medical equipment (such as electrocardiographs), Portal Industrial Equipment, Cabled Power distribution systems and hand-held motor operated tools need to meet these critical safety standards.

The TPS25921 device can be used as simple protection solution for each of the internal rails. Figure 48 shows the typical implementation using TPS25921.

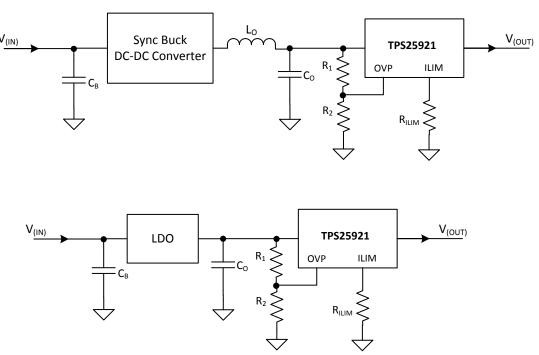


Figure 48. Precision current Limit and Protection of Internal Rails

ZHCSCQ0-AUGUST 2014 www.ti.com.cn

11.3 Smart Load Switch

A smart load switch is a series FET used for switching of the load (resistive or inductive). It also provides protection during fault conditions. Typical discrete implementation is shown in Figure 49. Discrete solutions have higher component count and require complex circuitry to implement each of the protection fault needs.

TPS25921 can be used as a smart power switch for applications ranging from 4.5 V to 18 V. TPS25921 provides programmable soft start, programmable current limits, over-temperature protection, a fault flag, and undervoltage lockout.

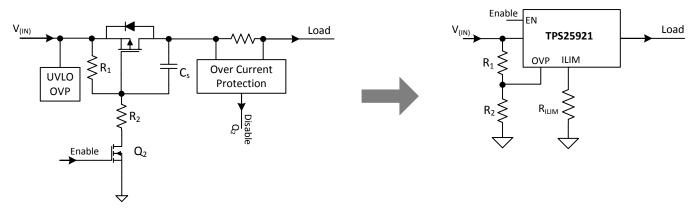


Figure 49. Smart Load Switch Implementation

Figure 49 shows typical implementation and usage as load switch. This configuration can be used for driving a solenoid and FAN control. It is recommended to use a freewheeling diode across the load when load is highly inductive.

Figure 50 shows load switching waveforms using TPS25921 for 12 V Bus

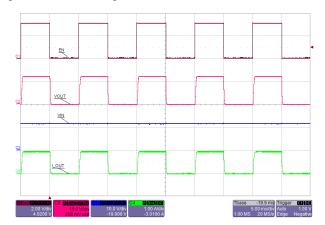


Figure 50. Smart Load Switch (100 Hz Operation)

TEXAS INSTRUMENTS

12 Power Supply Recommendations

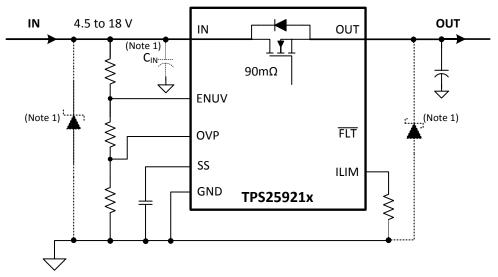
The device is designed for supply voltage range of 4.5 V \leq V_{IN} \leq 18 V. If the input supply is located more than a few inches from the device an input ceramic bypass capacitor higher than 0.1 μ F is recommended. Power supply should be rated higher than the current limit set to avoid voltage droops during over current and short-circuit conditions.

12.1 Transient Protection

In case of short circuit and over load current limit, when the device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the input or output of the device. Such transients can exceed the *Absolute Maximum Ratings* of the device if steps are not taken to address the issue.

Typical methods for addressing transients include

- · Minimizing lead length and inductance into and out of the device
- Using large PCB GND plane
- Schottky diode across the output to absorb negative spikes
- A low value ceramic capacitor ($C_{(IN)} = 0.001 \, \mu\text{F}$ to 0.1 μF) to absorb the energy and dampen the transients. The approximate value of input capacitance can be estimated with Equation 31.


$$V_{\text{SPIKE}(\text{Absolute})} = V_{\text{(IN)}} \times I_{\text{(LOAD)}} \times \sqrt{\frac{L_{\text{(IN)}}}{C_{\text{(IN)}}}}$$
(31)

Where:

- V_(IN) is the nominal supply voltage
- I_(LOAD) is the load current,
- L_(IN) equals the effective inductance seen looking into the source
- C_(IN) is the capacitance present at the input

Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from exceeding the *Absolute Maximum Ratings* of the device.

The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is shown in Figure 51.

(1) Optional components needed for suppression of transients

Figure 51. Circuit Implementation With Optional Protection Components

12.2 Output Short-Circuit Measurements

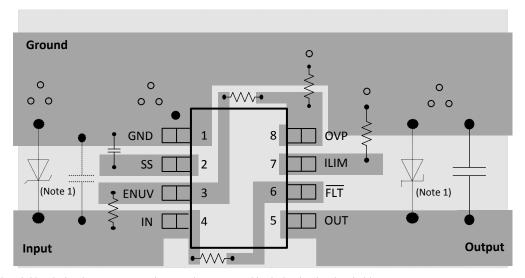
It is difficult to obtain repeatable and similar short-circuit testing results. Source bypassing, input leads, circuit layout and component selection, output shorting method, relative location of the short, and instrumentation all contribute to variation in results. The actual short itself exhibits a certain degree of randomness as it microscopically bounces and arcs. Care in configuration and methods must be used to obtain realistic results. Do not expect to see waveforms exactly like those in the data sheet; every setup differs.

TEXAS INSTRUMENTS

13 Layout

13.1 Layout Guidelines

 For all applications, a 0.01-uF or greater ceramic decoupling capacitor is recommended between IN terminal and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be eliminated/minimized.


- The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care
 must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the
 GND terminal of the IC. See Figure 52 for a PCB layout example.
- High current carrying power path connections should be as short as possible and should be sized to carry at least twice the full-load current.
- The GND terminal must be tied to the PCB ground plane at the terminal of the IC. The PCB ground should be
 a copper plane or island on the board.
- Locate all TPS25921x support components: R_(ILIM), C_{SS}, and resistors for FLT, ENUV and OVP, close to their connection pin. Connect the other end of the component to the GND pin of the device with shortest trace length.
- The trace routing for the R_{ILIM} and C_{SS} components to the device should be as short as possible to reduce parasitic effects on the current limit and soft start timing. These traces should not have any coupling to switching signals on the board.
- OVP and ENUV signal traces should be routed with sufficient spacing from FLT signal trace, to avoid spurious coupling of FLT switching, during fault conditions.
- Protection devices such as TVS, snubbers, capacitors, or diodes should be placed physically close to the
 device they are intended to protect, and routed with short traces to reduce inductance. For example, a
 protection Schottky diode is recommended to address negative transients due to switching of inductive loads,
 and it should be physically close to the OUT pins.
- Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been shown to produce good results and is intended as a guideline.

13.2 Layout Example

Top layer

Bottom Layer: GND plane (Optional)

O Via to top layer ground plane (only for two layer board)

(1) Optional: Needed only to suppress the transients caused by inductive load switching.

Figure 52. Board Layout

14 器件和文档支持

14.1 相关链接

以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买 链接。

Table 3. 相关链接

部件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
TPS25921A	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
TPS25921L	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

14.2 Trademarks

14.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

15 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对 本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS25921AD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921A
TPS25921AD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921A
TPS25921ADR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921A
TPS25921ADR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921A
TPS25921ADRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921A
TPS25921ADRG4.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921A
TPS25921LD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921L
TPS25921LD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921L
TPS25921LDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921L
TPS25921LDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921L
TPS25921LDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921L
TPS25921LDRG4.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25921L

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

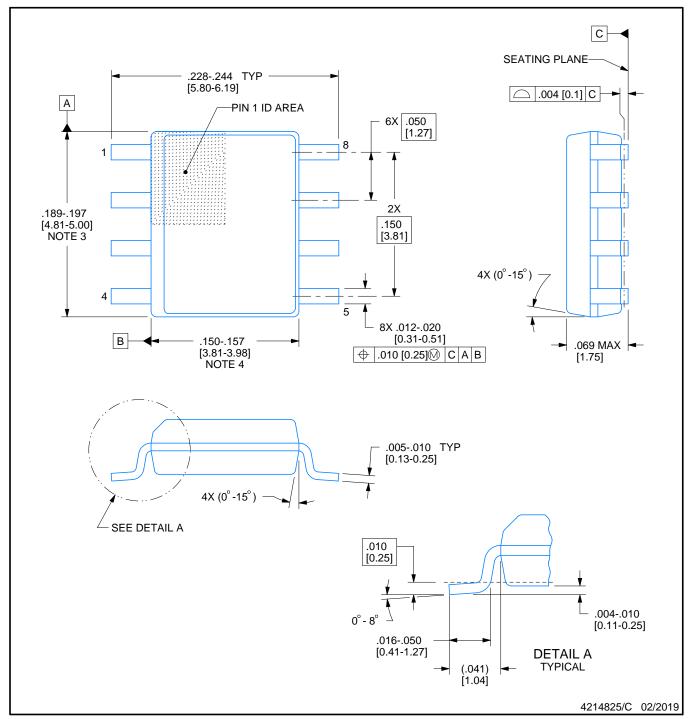
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

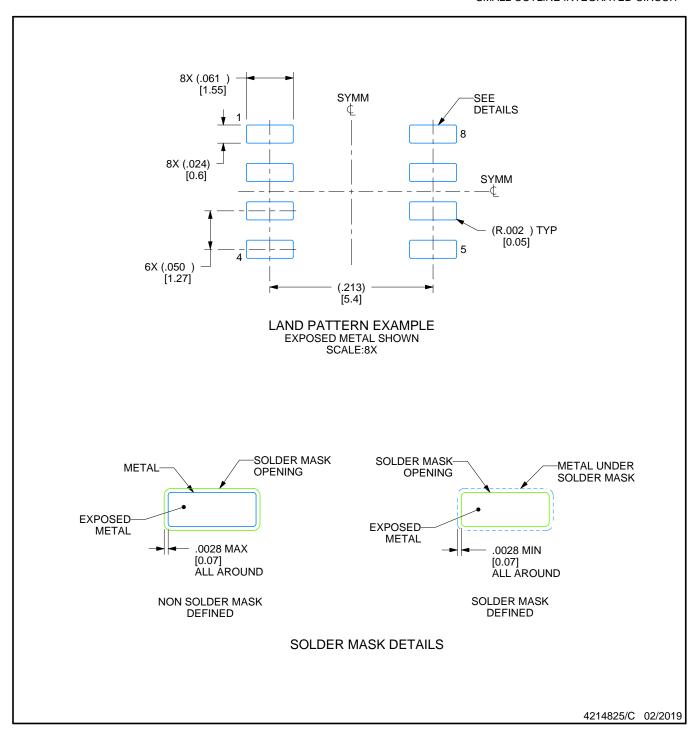
PACKAGE OPTION ADDENDUM


www.ti.com 10-Nov-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

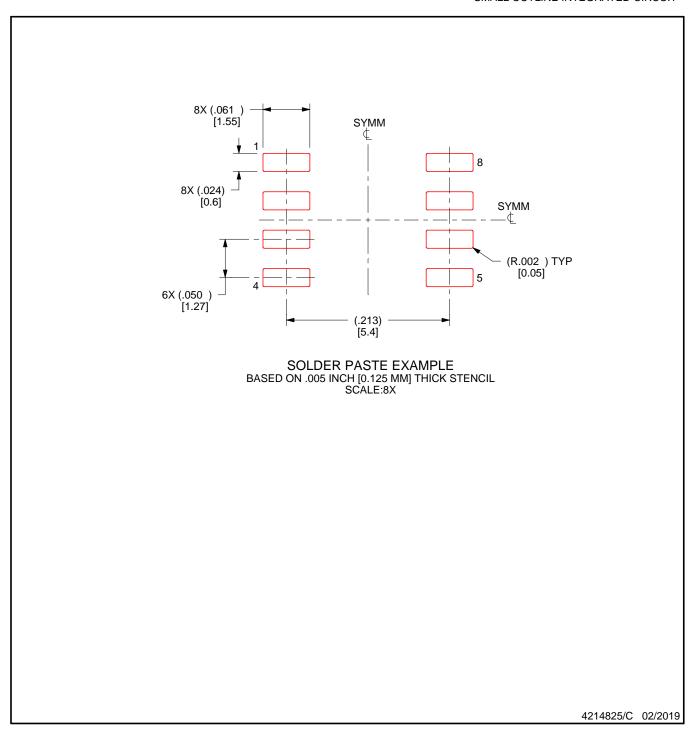
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月