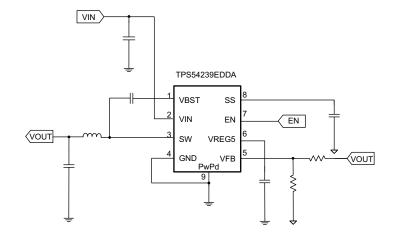
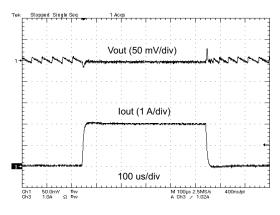


具有 Eco-Mode™ 的 4.5V 至 23V 输入, 2A 同步降压 SWIFT™ 转换器

查询样品: TPS54239E

特性


- D-CAP2™ 模式支持快速瞬态响应
- 低输出纹波,支持陶瓷输出电容器
- 宽泛的 V_{IN}输入电压范围: 4.5V 至 23V
- 输出电压范围: 0.76V 至 7.0V
- 高效率集成型场效应晶体管 (FET) 针对更低占空比应用进行了优化
 -140mΩ(高侧)与 70mΩ(低侧)
- 关断时的高效率,流耗不足 10µA
- 初始带隙参考的高精度
- 可调软启动
- 预偏置软启动
- 600kHz 开关频率 (f_{sw})
- 逐周期限流
- 自动跳跃 Eco-mode™ 为了在轻负载下实现高效率


应用范围

- 低电压系统的广泛应用
 - 数字电视电源
 - 高清 Blu-ray Disc™ 播放器
 - 网络家庭终端设备
 - 数字机顶盒 (STB)

说明

TPS54239E 是一款自适应接通时间 D-CAP2™ 模式同 步降压转换器。 TPS54239E 可帮助系统设计人员通过 一个低成本、低组件数、低待机电流解决方案来完成各 种终端设备电源总线调节器集。 TPS54239E 的主控制 环路采用 D-CAP2™ 模式控制,无需外部补偿组件便 可实现极快的瞬态响应。自适应接通时间控制支持较 高负载状态下的脉宽调制 (PWM) 模式与轻负载下的 Eco-mode™ 工作模式之间的无缝转换。 Eco-mode™ 使 TPS54239 能够在较轻负载条件下保持高效率。 TPS54239E 的专有电路还有助于该器件适应诸如高分 子有机半导体固体电容器 (POSCAP) 或特种聚合物电 容器 (SP-CAP) 等低等效串联电阻 (ESR) 输出电容器 以及超低 ESR 陶瓷电容器。 该器件的工作输入电压介 于 4.5V 至 23V VIN 输入之间。 输出电压可在 0.76V 与 7V 之间进行设定。此外,该器件还特有一个可调软 启动时间。 TPS54239E 采用 8 引脚 DDA 封装,并针 对 -40°C 到 85°C 的工作温度范围内的运行而设计。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

D-CAP2, Eco-mode are trademarks of Texas Instruments. Blu-ray Disc is a trademark of Blu-ray Disc Association.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION(1)

T _A	PACKAGE ⁽²⁾ (3)	ORDERABLE PART NUMBER	PIN	TRANSPORT MEDIA	
–40°C to 85°C	DDA	TPS54239EDDA	0	Tube	
-40°C 10 85°C	DDA	TPS54239EDDAR	0	Tape and Reel	

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (3) All package options have Cu NIPDAU lead/ball finish.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

		VAL	_UE		
		MIN	MAX	UNIT	
	VIN, EN	-0.3	25		
	VBST	-0.3	31		
	VBST (10 ns transient)	-0.3	33		
Input voltage range	VBST (vs SW)	-0.3	6.5	V	
	VFB, SS	-0.3	6.5		
	SW	-2	25		
	SW (10 ns transient)	-3	27		
Outside all and an area	VREG5	-0.3	6.5	.,	
Output voltage range	GND	-0.3	0.3	V	
Voltage from GND to thermal p	pad, V _{diff}	-0.2	0.2	V	
Flacture static dischause	Human Body Model (HBM)		2	kV	
Electrostatic discharge	Charged Device Model (CDM)		500	V	
Operating junction temperature, T _J		-40	150	°C	
Storage temperature, T _{stg}		-55	150		

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

	TUEDAMA METDIO(1)	TPS54239E	
	THERMAL METRIC ⁽¹⁾	DDA (8 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	46.2	
θ_{JCtop}	Junction-to-case (top) thermal resistance	53.9	
θ_{JB}	Junction-to-board thermal resistance	29.7	0000
ΨЈТ	Junction-to-top characterization parameter	10.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	29.6	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	6.6	

(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range, (unless otherwise noted)

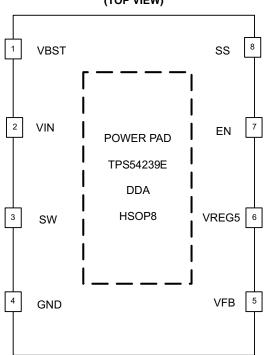
			MIN	MAX	UNIT
V_{IN}	Supply input voltage range		4.5	23	V
		VBST	-0.1	29	
		VBST (10 ns transient)	-0.1	32	
		VBST(vs SW)	-0.1	5.7	
		SS	-0.1	5.7	
V_{I}	Input voltage range	EN	-0.1	23	V
		VFB	-0.1	5.5	
		SW	-1.8	23	
		SW (10 ns transient)	-3	26	
		GND	-0.1	0.1	
Vo	Output voltage range	VREG5	-0.1	5.7	V
Io	Output Current range	I _{VREG5}	0	10	mA
T _A	Operating free-air temperature		-40	85	°C
TJ	Operating junction temperature		-40	150	°C

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range, V_{IN} = 12 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT		•			
I _{VIN}	Operating - non-switching supply current	V_{IN} current, $T_A = 25$ °C, $EN = 5$ V, $V_{FB} = 0.8$ V		600	1100	μΑ
I _{VINSDN}	Shutdown supply current	V _{IN} current, T _A = 25°C, EN = 0 V		3.0	10	μΑ
LOGIC TH	HRESHOLD		•			
V _{ENH}	EN high-level input voltage	EN	1.6			V
V _{ENL}	EN low-level input voltage EN				0.6	V
R _{EN}	EN pin resistance to GND	V _{EN} = 12 V	200	400	800	kΩ
V _{FB} VOLT	AGE AND DISCHARGE RESISTANCE				•	
	V threshold valence	$T_A = 25^{\circ}\text{C}$, $V_O = 1.05 \text{ V}$, $I_O = 10 \text{ mA}$, Eco-mode TM operation		772		mV
V _{FBTH}	V _{FB} threshold voltage	$T_A = 25$ °C, $V_O = 1.05$ V, continuous mode operation	749	765	781	mV
I _{VFB}	V _{FB} input current	V _{FB} = 0.8 V, T _A = 25°C		0	±0.1	μA
V _{REG5} OU	TPUT				•	
V _{VREG5}	V _{REG5} output voltage	T _A = 25°C, 6.0 V < V _{IN} < 23 V, 0 < I _{VREG5} < 5 mA	5.2	5.5	5.7	V
I _{VREG5}	Output current	V _{IN} = 6 V, V _{REG5} = 4.0 V, T _A = 25°C	20			mA
MOSFET						
R _{DS(on)h}	High side switch resistance	25°C, V _{BST} - SW = 5.5 V ⁽¹⁾		140		mΩ
R _{DS(on)I}	Low side switch resistance	25°C ⁽¹⁾		70		mΩ
CURREN	T LIMIT		*			
I _{ocl}	Current limit	L out = $2.2 \mu H^{(1)}$	2.5	3.1	4.6	Α
THERMAI	L SHUTDOWN		•			
_	The arrest object decine the seek old	Shutdown temperature (1)		165		۰.
T _{SDN}	Thermal shutdown threshold	Hysteresis ⁽¹⁾		40		°C
ON-TIME	TIMER CONTROL				•	
t _{ON}	On time	V _{IN} = 12 V, V _O = 1.05 V		160		ns
t _{OFF(MIN)}	Minimum off time	$T_A = 25^{\circ}C, V_{FB} = 0.7 V^{(1)}$		260	310	ns

⁽¹⁾ Not production tested.


ELECTRICAL CHARACTERISTICS (continued)

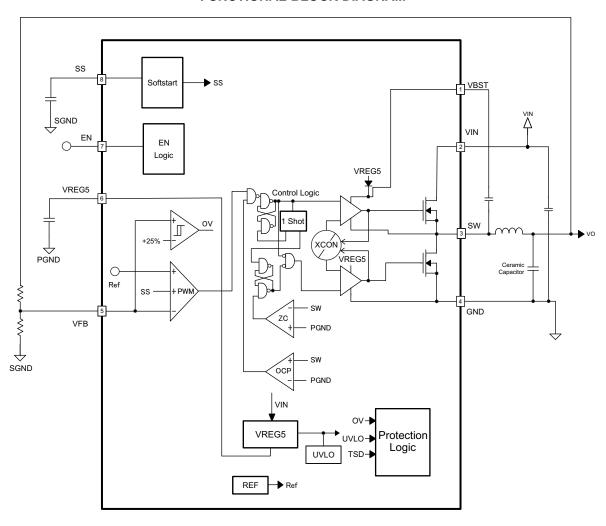
over operating free-air temperature range, V_{IN} = 12 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SOFT ST	ART					
I _{SSC}	SS charge current	V _{SS} = 1.0 V	4.2	6.0	7.8	μΑ
I _{SSD}	SS discharge current	V _{SS} = 0.5 V	0.8	1.5		mA
HICCUP A	AND OVERVOLTAGE PROTECTION					
V _{OVP}	Output OVP threshold	OVP Detect (L>H)		125%		
V _{UVP}	Output Hiccup threshold	Hiccup detect (H>L)		65%		
T _{UVPDEL}	Output Hiccup delay	to Hiccup state		6		μs
T _{UVPEN}	Output Hiccup Enable delay	Relative to soft-start time		x1.7		
UVLO						
111/1/0	LIV/I O there also also	Wake up V _{REG5} voltage	3.45	3.75	4.05	\ /
UVLO	UVLO threshold	Hysteresis V _{REG5} voltage	G5 voltage 0.17 0.33		0.47	V

DEVICE INFORMATION

DDA PACKAGE (TOP VIEW)

PIN FUNCTIONS


P	IN	DESCRIPTION
NAME	NO.	DESCRIPTION
VBST	1	Supply input for the high-side FET gate drive circuit. Connect 0.1µF capacitor between VBST and SW pins. An internal diode is connected between VREG5 and VBST.
VIN	2	Input voltage supply pin.
SW	3	Switch node connection between high-side NFET and low-side NFET.
GND	4	Ground pin. Power ground return for switching circuit. Connect sensitive SS and VFB returns to GND at a single point.
VFB	5	Converter feedback input. Connect to output voltage with feedback resistor divider.

PIN FUNCTIONS (continued)

PIN		DESCRIPTION
NAME	NO.	DESCRIPTION
VREG5 6		$5.5~V$ power supply output. A capacitor (typical $0.47~\mu F$) should be connected to GND. VREG5 is not active when EN is low.
EN	7	Enable input control. EN is active high and must be pulled up to enable the device.
SS	8	Soft-start control. An external capacitor should be connected to GND.
Exposed Thermal Pad	Back side	Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be connected to GND.

FUNCTIONAL BLOCK DIAGRAM

OVERVIEW

The TPS54239E is a 2-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs. It operates using D-CAP2™ mode control. The fast transient response of D-CAP2™ control reduces the output capacitance required to meet a specific level of performance. Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and special polymer types.

DETAILED DESCRIPTION

PWM Operation

The main control loop of the TPS54239E is an adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2™ mode control. D-CAP2™ mode control combines constant on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.

At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot is set by the converter input voltage, VIN, and the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2TM mode control.

PWM Frequency and Adaptive On-Time Control

TPS54239E uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The TPS54239E runs with a pseudo-constant frequency of 600 kHz by using the input voltage and output voltage to set the on-time one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the output voltage; therefore, when the duty ratio is VOUT/VIN, the frequency is constant.

Auto-Skip Eco-Mode™ Control

The TPS54239E is designed with Auto-Skip Eco-modeTM to increase light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load current further decreases the converter run into discontinuous conduction mode. The on-time is kept almost the same as is was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. The transition point to the light load operation $I_{OUT(LL)}$ current can be calculated in Equation 1

$$I_{OUT(LL)} = \frac{1}{2 \cdot L \cdot fsw} \cdot \frac{\left(V_{IN} - V_{OUT}\right) \cdot V_{OUT}}{V_{IN}} \tag{1}$$

Soft Start and Pre-Biased Soft Start

The soft start function is adjustable. When the EN pin becomes high, $6 \mu A$ current begins charging the capacitor which is connected from the SS pin to GND. Smooth control of the output voltage is maintained during start up. The equation for the slow start time is shown in Equation 2. VFB voltage is 0.765 V and SS pin source current is $6 \mu A$.

$$t_{SS}(ms) = \frac{C_{SS}(nF) \times V_{REF} \times 1.1}{I_{SS}(\mu A)} = \frac{C_{SS}(nF) \times 0.765 \times 1.1}{6}$$
 (2)

The TPS54239E contains a unique circuit to prevent current from being pulled from the output during startup if the output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start becomes greater than feedback voltage V_{FB}), the controller slowly activates synchronous rectification by starting the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a cycle-by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This scheme prevents the initial sinking of the pre-bias output, and ensure that the out voltage (V_O) starts and ramps up smoothly into regulation and the control loop is given time to transition from pre-biased start-up to normal mode operation.

Current Protection

The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW pin and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the high-side FET switch, the switch current increases at a linear rate determined by V_{IN} , V_{OUT} , the on-time and the output inductor value. During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current lout. The TPS54239E constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time. If the measured voltage is above the voltage proportional to the current limit, an internal counter is incremented per each SW cycle and the converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over current condition exists for 7 consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing the available output current. When a switching cycle occurs where the switch current is not above the lower OCL threshold, the counter is reset and the OCL limit is returned to the higher value.

There are some important considerations for this type of over-current protection. The load current one half of the peak-to-peak inductor current higher than the over-current threshold. Also when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output voltage to fall. When the VFB voltage becomes lower than 65% of the target voltage, the UVP comparator detects it. After 6µs detecting the UVP voltage, device will shut down and restart after 7 times SS period for Hiccup.

When the over current condition is removed, the output voltage returns to the regulated value. This protection is non-latching.

Over Voltage Protection

TPS54239E detects over voltage conditions by monitoring the feedback voltage (VFB). This function is enabled after approximately 1.7 x times the soft start time.

When the feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high and both the high-side MOSFET driver and the low-side MOSFET driver turn off. This function is non-latch operation.

UVLO Protection

Undervoltage lock out protection (UVLO) monitors the voltage of the V_{REG5} pin. When the V_{REG5} voltage is lower than UVLO threshold voltage, the TPS54239E is shut off. This protection is non-latching.

Thermal Shutdown

TPS54239E monitors the temperature of itself. If the temperature exceeds the threshold value (typically 165°C), the device is shut off. This is non-latch protection.

NSTRUMENTS

TYPICAL CHARACTERISTICS

VIN = 12 V, $T_A = 25$ °C (unless otherwise noted).

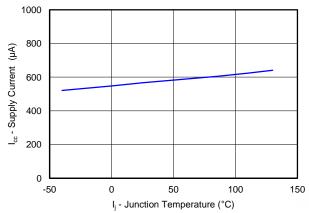
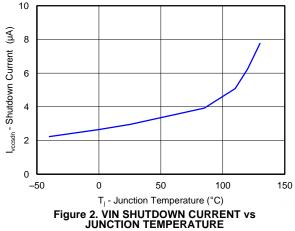



Figure 1. VIN CURRENT vs JUNCTION TEMPERATURE

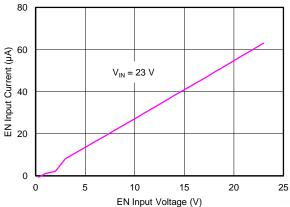


Figure 3. EN CURRENT vs EN VOLTAGE

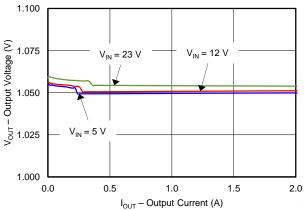


Figure 4. 1.05-V OUTPUT VOLTAGE vs OUTPUT CURRENT

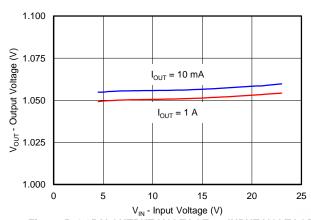


Figure 5. 1.05-V OUTPUT VOLTAGE vs INPUT VOLTAGE

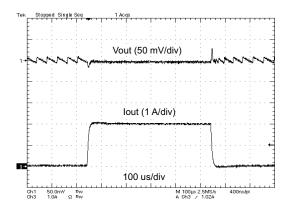


Figure 6. 1.05-V, LOAD TRANSIENT RESPONSE

TYPICAL CHARACTERISTICS

 $VIN = 12 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted).

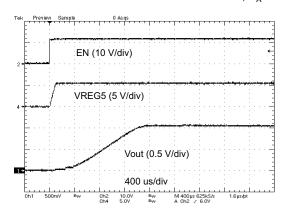


Figure 7. START-UP WAVE FORM

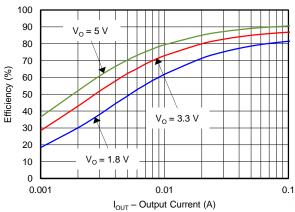


Figure 9. LIGHT LOAD EFFICIENCY vs OUTPUT CURRENT

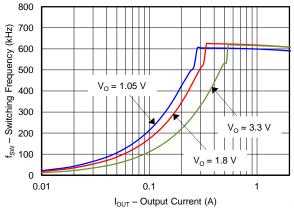


Figure 11. SWITCHING FREQUENCY vs OUTPUT CURRENT

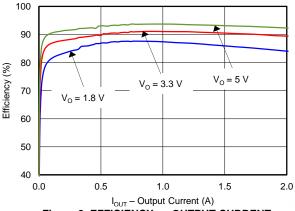


Figure 8. EFFICIENCY vs OUTPUT CURRENT

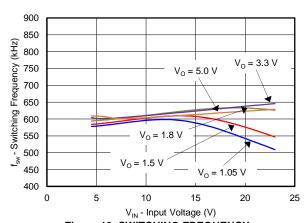


Figure 10. SWITCHING FREQUENCY vs INPUT VOLTAGE (I_O = 1 A)

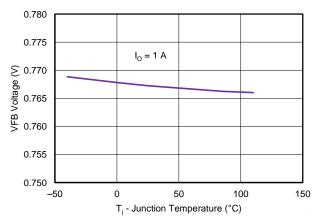
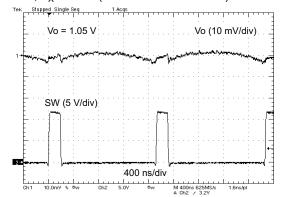



Figure 12. VFB VOLTAGE vs JUNCTION TEMPERATURE ($I_0 = 1 \text{ A}$)

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS (continued)

VIN = 12 V, $T_A = 25$ °C (unless otherwise noted).

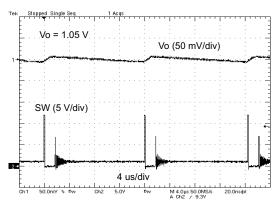


Figure 14. VOLTAGE RIPPLE AT OUTPUT ($I_0 = 30 \text{ mA}$)

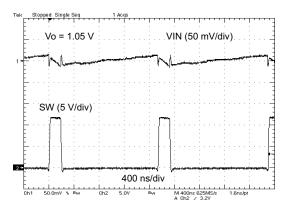


Figure 15. VOLTAGE RIPPLE AT INPUT ($I_0 = 2 A$)

DESIGN GUIDE

Step-By-Step Design Procedure

To begin the design process, the user must know a few application parameters:

- Input voltage range
- Output voltage
- Output current
- Output voltage ripple
- Input voltage ripple

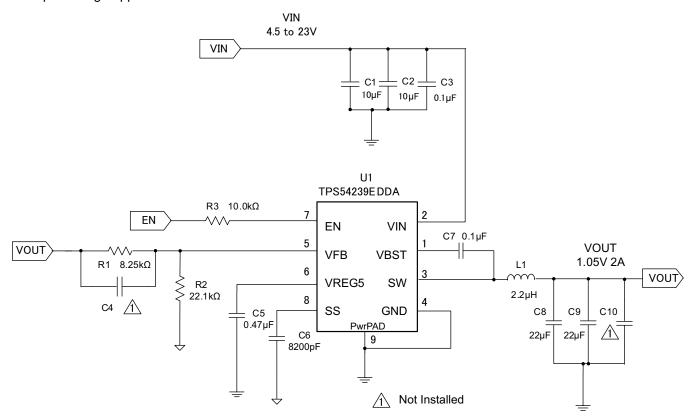


Figure 16. Shows the schematic diagram for this design example.

Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use 1% tolerance or better divider resistors. Start by using Equation 3 to calculate V_{OUT} .

To improve efficiency at light loads consider using larger value resistors, high resistance is more susceptible to noise, and the voltage errors from the VFB input current are more noticeable.

$$V_{OUT} = 0.765 \times \left(1 + \frac{R1}{R2}\right)$$
 (3)

Output Filter Selection

The output filter used with the TPS54239E is an LC circuit. This LC filter has double pole at:

$$F_{P} = \frac{1}{2\pi \sqrt{L_{OUT} \times C_{OUT}}}$$
(4)

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the TPS54239E. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a −40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that reduces the gain roll off to −20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole of Equation 4 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 1

Output	R1 (kΩ)				C4 (pF) ⁽¹⁾			L1 (µH)		C8 + C9 +	- C10 (μF)
Voltage (V)		R2 (kΩ)	Min	Тур	Max	Min	Тур	Max	Min	Max	
1	6.81	22.1	5	150	220	1.5	2.2	4.7	22	68	
1.05	8.25	22.1	5	150	220	1.5	2.2	4.7	22	68	
1.2	12.7	22.1	5		100	1.5	2.2	4.7	22	68	
1.5	21.5	22.1	5		68	1.5	2.2	4.7	22	68	
1.8	30.1	22.1	5		22	2.2	3.3	4.7	22	68	
2.5	49.9	22.1	5		22	2.2	3.3	4.7	22	68	
3.3	73.2	22.1	5		22	2.2	3.3	4.7	22	68	
5	124	22.1	5		22	3.3		4.7	22	68	
6.5	165	22.1	5		22	3.3		4.7	22	68	

Table 1. Recommended Component Values

(1) Optional

Since the DC gain is dependent on the output voltage, the required inductor value increases as the output voltage increases. Additional phase boost can be achieved by adding a feed forward capacitor (C4) in parallel with R1. The amount of available phase boost is dependent on the output voltage. Higher output voltages will allow greater phase boost.

The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 5, Equation 6 and Equation 7. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 600 kHz for f_{SW} .

Use 600 kHz for f_{SW} . Make sure the chosen inductor is rated for the peak current of Equation 6 and the RMS current of Equation 7.

$$II_{P-P} = \frac{V_{OUT}}{V_{IN(MAX)}} \times \frac{V_{IN(MAX)} - V_{OUT}}{L_O \times f_{SW}}$$
(5)

$$II_{PEAK} = I_O + \frac{II_{P-P}}{2} \tag{6}$$

$$I_{LO(RMS)} = \sqrt{I_0^2 + \frac{1}{12}II_{P-P}^2}$$
(7)

For this design example, the calculated peak current is 2.38 A and the calculated RMS current is 2.01 A. The inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5 A and an RMS current rating of 4.3 A. For high current designs, TDK SPM6530T-4R7M 4.7µH is also recommended. The SPM6530 series has a higher current rating than the CLF7045 series.

The capacitor value and ESR determines the amount of output voltage ripple. The TPS54239E is intended for use with ceramic or other low ESR capacitors. Recommended values range from 22µF to 68µF. Use Equation 8 to determine the required RMS current rating for the output capacitor.

$$I_{\text{Co(RMS)}} = \frac{V_{\text{OUT}} \times (V_{\text{IN}} - V_{\text{OUT}})}{\sqrt{12} \times V_{\text{IN}} \times L_{\text{O}} \times f_{\text{SW}}}$$
(8)

For this design two TDK C3216X5R0J226M 22 μ F output capacitors are used. The typical ESR is 2 m Ω each. The calculated RMS current is 0.22 A and each output capacitor is rated for 4A.

Input Capacitor Selection

The TPS54239E requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10 μ F is recommended for the decoupling capacitor. An additional 0.1 μ F capacitor from pin 2 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage.

Bootstrap Capacitor Selection

A 0.1 μ F. ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is recommended to use a ceramic capacitor.

VREG5 Capacitor Selection

A 0.47 μ F. ceramic capacitor must be connected between the VREG5 to GND pin for proper operation. It is recommended to use a ceramic capacitor.

THERMAL INFORMATION

This 8-pin DDA package incorporates an exposed thermal pad that is designed to be directly to an external heartsick. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be used as a heartsick. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heartsick structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the exposed thermal pad and how to use the advantage of its heat dissipating abilities, see the Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD™ Made Easy, Texas Instruments Literature No. SLMA004.

The exposed thermal pad dimensions for this package are shown in the following illustration.

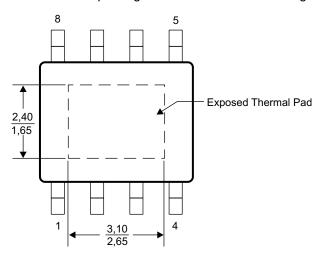


Figure 17. Thermal Pad Dimensions

TEXAS INSTRUMENTS

LAYOUT CONSIDERATIONS

- 1. Keep the input switching current loop as small as possible.
- 2. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the feedback pin of the device.
- 3. Keep analog and non-switching components away from switching components.
- 4. Make a single point connection from the analog ground to power ground.
- 5. Do not allow switching current to flow under the device.
- 6. Keep the pattern lines for VIN and PGND broad.
- 7. Exposed pad of device must be connected to PGND with solder.
- 8. VREG5 capacitor should be placed near the device, and connected to PGND.
- 9. Output capacitor should be connected to a broad pattern of the PGND.
- 10. Voltage feedback loop should be as short as possible, and preferably with ground shield.
- 11. Lower resistor of the voltage divider which is connected to the VFB pin should be tied to analog ground trace.
- 12. Providing sufficient via is preferable for VIN, SW and PGND connection.
- 13. VIN input bypass capacitor and VIN high frequency bypass capacitor must be placed as near as possible to the device.
- 14. Performance based on four layer printed circuit board.

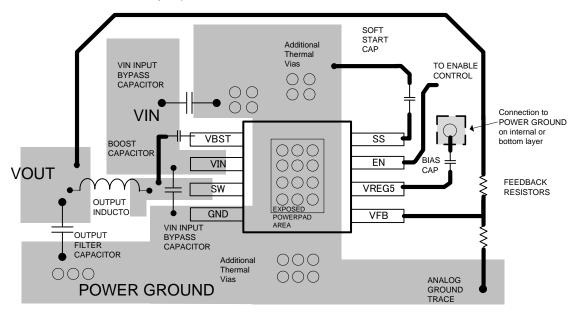


Figure 18. PCB Layout

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

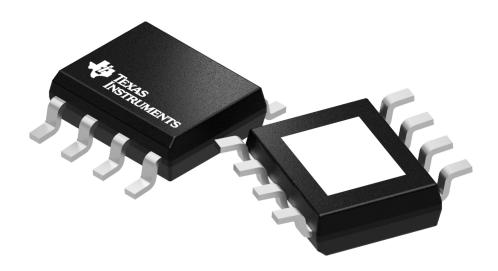
Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TPS54239EDDA	Active	Production	SO PowerPAD (DDA) 8	75 TUBE	Yes	NIPDAU SN	Level-2-260C-1 YEAR	-40 to 85	54239E
TPS54239EDDA.A	Active	Production	SO PowerPAD (DDA) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	54239E
TPS54239EDDAR	Active	Production	SO PowerPAD (DDA) 8	2500 LARGE T&R	Yes	NIPDAU SN	Level-2-260C-1 YEAR	-40 to 85	54239E
TPS54239EDDAR.A	Active	Production	SO PowerPAD (DDA) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	54239E

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4202561/G

DDA (R-PDSO-G8)

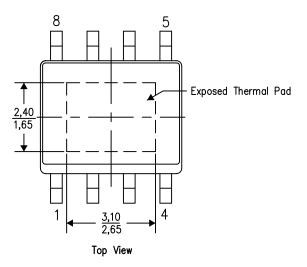
PowerPAD ™ PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. This package complies to JEDEC MS-012 variation BA

PowerPAD is a trademark of Texas Instruments.

DDA (R-PDSO-G8)


PowerPAD™ PLASTIC SMALL OUTLINE

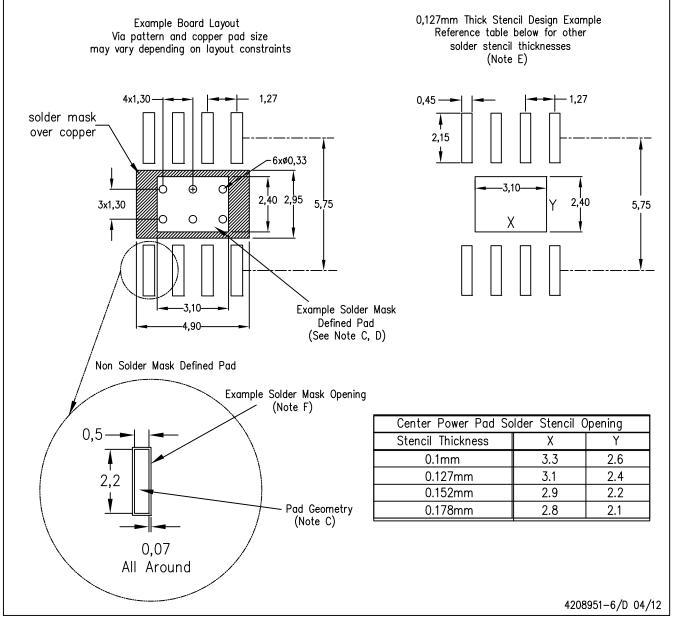
THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

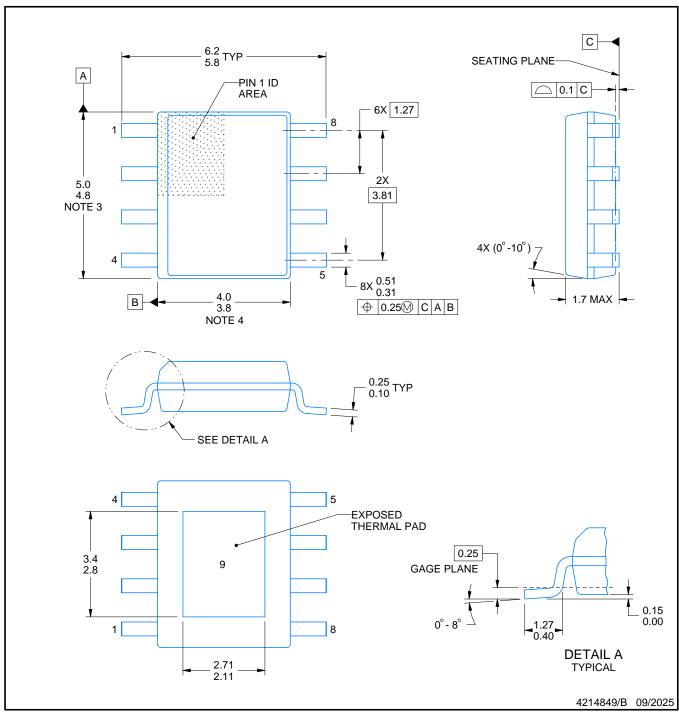

4206322-6/L 05/12

NOTE: A. All linear dimensions are in millimeters

DDA (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

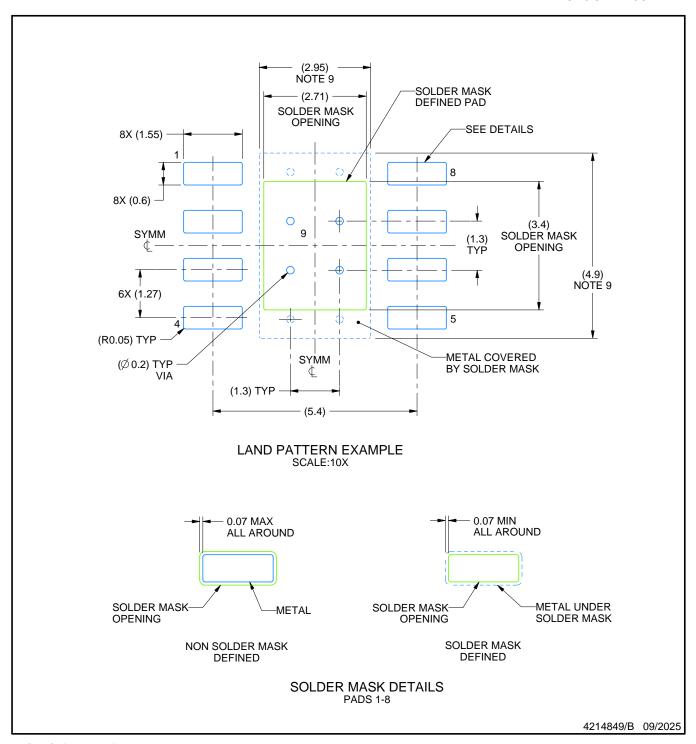
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

PLASTIC SMALL OUTLINE

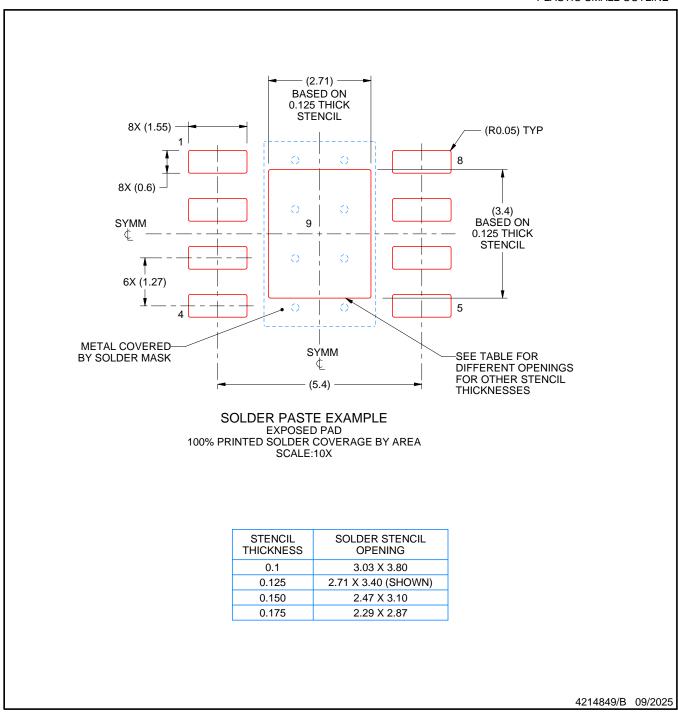
NOTES:


PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MS-012.

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月