TPS76515, TPS76525, TPS76527 TPS76528, TPS76530, TPS76533, TPS76550, TPS76501 ULTRA-LOW QUIESCIENT CURRENT 150-mA LOW-DROPOUT VOLTAGE REGULATORS

SLVS236 - AUGUST 1999

D PACKAGE (TOP VIEW)

NC/FB

PG

EN

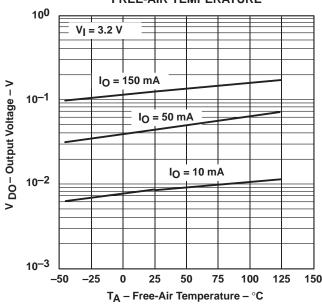
GND [] 3

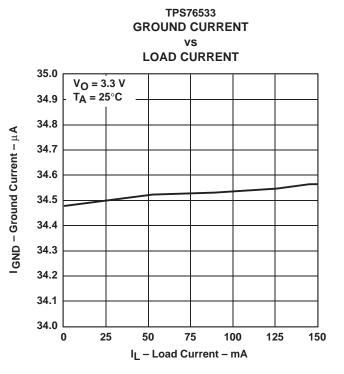
OUT

OUT

6 🛮 IN

5 | IN


- 150-mA Low-Dropout Voltage Regulator
- Available in 1.5-V, 1.8-V, 2.5-V, 2.7-V, 2.8-V, 3.0-V, 3.3-V, 5.0-V Fixed Output and Adjustable Versions
- Dropout Voltage to 85 mV (Typ) at 150 mA (TPS76550)
- Ultra-Low 35-μA Typical Quiescent Current
- 3% Tolerance Over Specified Conditions for Fixed-Output Versions
- Open Drain Power Good
- 8-Pin SOIC Package
- Thermal Shutdown Protection

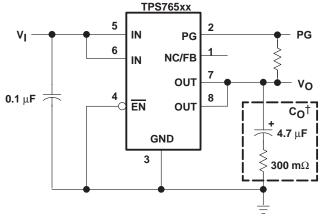

description

This device is designed to have an ultra-low quiescent current and be stable with a 4.7-μF capacitor. This combination provides high performance at a reasonable cost.

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 85 mV at an output current of 150 mA for the TPS76550) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (typically 35 μ A over the full range of output current, 0 mA to 150 mA). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to $\overline{\text{EN}}$ (enable) shuts down the regulator, reducing the quiescent current to less than 1 μ A (typ).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description (continued)

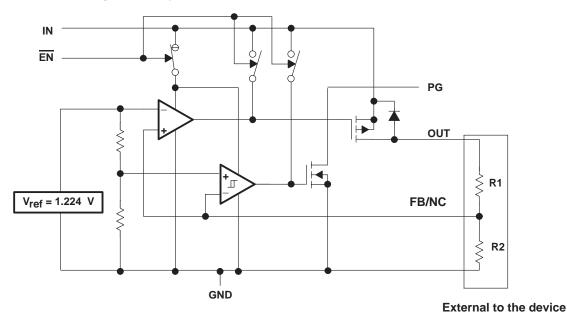

Power good (PG) is an active high output, which can be used to implement a power-on reset or a low-battery indicator.

The TPS765xx is offered in 1.5-V, 1.8-V, 2.5-V, 2.7-V, 2.8-V, 3.0-V, 3.3-V and 5.0-V fixed-voltage versions and in an adjustable version (programmable over the range of 1.25 V to 5.5 V). Output voltage tolerance is specified as a maximum of 3% over line, load, and temperature ranges. The TPS765xx family is available in 8 pin SOIC package.

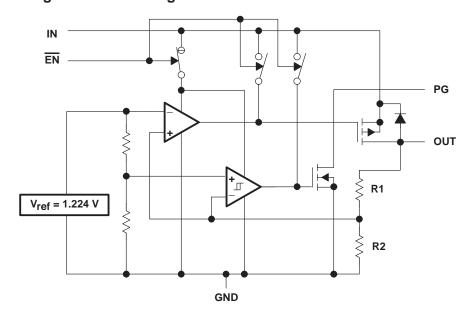
AVAILABLE OPTIONS

AVAILABLE OF HORO								
T .	OUTPUT VOLTAGE (V)	PACKAGED DEVICES						
TJ	ТҮР	SOIC (D)						
	5.0	TPS76550D						
	3.3	TPS76533D						
	3.0	TPS76530D						
	2.8	TPS76528D						
-40°C to 125°C	2.7	TPS76527D						
10 0 10 120 0	2.5	TPS76525D						
	1.8	TPS76518D						
	1.5	TPS76515D						
	Adjustable 1.25 V to 5.5 V	TPS76501D						

The TPS76501 is programmable using an external resistor divider (see application information). The D package is available taped and reeled. Add an R suffix to the device type (e.g., TPS76501DR).



[†] See application information section for capacitor selection details.


Figure 1. Typical Application Configuration for Fixed Output Options

functional block diagram—adjustable version

functional block diagram—fixed-voltage version

TPS76515, TPS76518, TPS76525, TPS76527 TPS76528, TPS76530, TPS76533, TPS76550, TPS76501 ULTRA-LOW QUIESCIENT CURRENT 150-mA LOW-DROPOUT VOLTAGE REGULATORS

SLVS236 - AUGUST 1999

Terminal Functions - SOIC Package

TERMIN	IAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
EN	4	I	Enable input
FB/NC	1	I	Feedback input voltage for adjustable device (no connect for fixed options)
GND	3		Regulator ground
IN	5	I	Input voltage
IN	6	I	Input voltage
OUT	7	0	Regulated output voltage
OUT	8	0	Regulated output voltage
PG	2	0	PG output

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Input voltage range [‡] , V _I	—0.3 V to 16.5 V
Peak output current	Internally limited
Continuous total power dissipation	
Operating virtual junction temperature range, T _J	40°C to 125°C
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURES

PACKAGE	AIR FLOW (CFM)	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
D	0	568 mW	5.68 mW/°C	312 mW	227 mW	
	250	904 mW	9.04 mW/°C	497 mW	361 mW	

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, V _I ☆	2.7	10	V
Output voltage range, VO	1.2	5.5	V
Output current, IO (Note 1)	0	150	mA
Operating virtual junction temperature, T _J (Note 1)	-40	125	°C

★ To calculate the minimum input voltage for your maximum output current, use the following equation: V_I(min) = V_O(max) + V_{DO}(max load).
NOTE 1: Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

[‡] All voltage values are with respect to network terminal ground.

TPS76515, TPS76525, TPS76527 TPS76528, TPS76530, TPS76533, TPS76550, TPS76501 ULTRA-LOW QUIESCIENT CURRENT 150-mA LOW-DROPOUT VOLTAGE REGULATORS

SLVS236 - AUGUST 1999

electrical characteristics over recommended operating free-air temperature range, V_i = V_{O(typ)} + 1 V, I_O = 10 μ A, EN = 0 V, C_O = 4.7 μ F (unless otherwise noted)

PARAMETER		TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT	
	TPS76501	$5.5 \text{ V} \ge \text{V}_{\text{O}} \ge 1.25 \text{ V},$	T _J = 25°C		٧o			
	11 370301	$5.5 \text{ V} \ge \text{V}_{\text{O}} \ge 1.25 \text{ V},$	$T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	0.97V _O		1.03V _O		
	TPS76515	T _J = 25°C,	$2.7 \text{ V} < \text{V}_{1N} < 10 \text{ V}$		1.5			
	11 370313	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C},$	$2.7 \text{ V} < \text{V}_{1N} < 10 \text{ V}$	1.455		1.545		
	TPS76518	$T_J = 25^{\circ}C$,	2.8 V < V _{IN} < 10 V		1.8			
	11 370310	$T_J = -40^{\circ}C \text{ to } 125^{\circ}C,$	$2.8 \text{ V} < \text{V}_{1N} < 10 \text{ V}$	1.746		1.854		
	TPS76525	T _J = 25°C,	3.5 V < V _{IN} < 10 V		2.5			
	11 370323	$T_J = -40^{\circ}C \text{ to } 125^{\circ}C,$	3.5 V < V _{IN} < 10 V	2.425		2.575		
Output voltage (10 μA to 150 mA load)	TPS76527	T _J = 25°C,	3.7 V < V _{IN} < 10 V		2.7		V	
(see Note 2)	11 070327	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C},$		2.619		2.781	v	
	TPS76528	$T_J = 25^{\circ}C$,	$3.8 \text{ V} < \text{V}_{1N} < 10 \text{ V}$		2.8			
	11 070320	$T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C},$	3.8 V < V _{IN} < 10 V	2.716		2.884		
	TPS76530	T _J = 25°C,	$4.0 \text{ V} < \text{V}_{1N} < 10 \text{ V}$		3.0			
	11 370330	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C},$	$4.0 \text{ V} < \text{V}_{1N} < 10 \text{ V}$	2.910		3.090		
	TPS76533	T _J = 25°C,	4.3 V < V _{IN} < 10 V		3.3			
	17370555	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C},$	4.3 V < V _{IN} < 10 V	3.201		3.399		
	TPS76550	T _J = 25°C,	6.0 V < V _{IN} < 10 V		5.0			
	117370330	$T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C},$	6.0 V < V _{IN} < 10 V	4.850		5.150		
Quiescent current (GND current) EN = 0V, (see Note 2)		$10 \mu\text{A} < I_{\text{O}} < 150 \text{mA},$	T _J = 25°C		35		μΑ	
		$I_O = 150 \text{ mA},$	$T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			50	μΑ	
Output voltage line regulation (ΔV (see Notes 2 and 3)	′O/VO)	$V_0 + 1 V < V_1 \le 10 V$	$T_J = 25^{\circ}C$		0.01		%/V	
Load regulation		$I_O = 10 \mu\text{A}$ to 150 mA			0.3%			
Output noise voltage		BW = 300 Hz to 50 kF $C_O = 4.7 \mu F$,	lz, T _J = 25°C		200		μVrms	
Output current Limit		V _O = 0 V			0.8	1.2	Α	
Thermal shutdown junction temper	erature				150		°C	
Chandley average		EN = V _I ,	$T_J = 25^{\circ}C$, 2.7 V < V _I < 10 V		1		μΑ	
Standby current		$\overline{EN} = V_{I},$	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ 2.7 V < V _I < 10 V			10	μΑ	
FB input current	TPS76501	FB = 1.5 V			2		nA	
High level enable input voltage				2.0			V	
Low level enable input voltage						0.8	V	
Power supply ripple rejection (see	e Note 2)	f = 1 kHz, I _O = 10 μA,	$C_{O} = 4.7 \mu\text{F},$ $T_{J} = 25^{\circ}\text{C}$		63		dB	
Minimum input volta	ige for valid PG	I _O (PG) = 300μA			1.1		V	
Trip threshold voltage	ge	V _O decreasing		92		98	%Vo	
PG Hysteresis voltage	·				0.5		%Vo	
Output low voltage		Measured at V_O $V_I = 2.7 V_o$	I _{O(PG)} = 1mA		0.15	0.4	V	
<u> </u>		V _(PG) = 5 V	J(. J)			1	μΑ	
Leakage current								
Leakage current Input current (EN)		EN = 0 V		-1	0	1		

NOTE: 2. Minimum IN operating voltage is 2.7 V or $V_{O(typ)}$ + 1 V, whichever is greater. Maximum IN voltage 10 V.

TPS76515, TPS76518, TPS76525, TPS76527 TPS76528, TPS76530, TPS76533, TPS76550, TPS76501 ULTRA-LOW QUIESCIENT CURRENT 150-mA LOW-DROPOUT VOLTAGE REGULATORS SLVS236 - AUGUST 1999

electrical characteristics over recommended operating free-air temperature range, $V_i = V_{O(tv_D)} + 1 \text{ V}$, $I_O = 10 \text{ }\mu\text{A}$, $\overline{\text{EN}} = 0 \text{ V}$, $C_O = 4.7 \text{ }\mu\text{F}$ (unless otherwise noted) (continued)

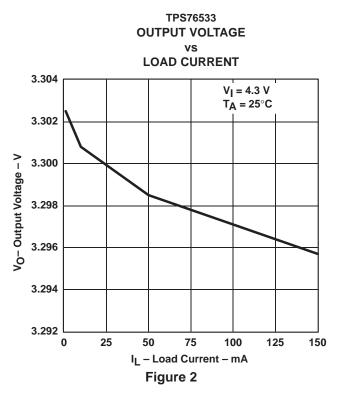
PARAMETER	TEST (MIN	TYP	MAX	UNIT		
	TPS76528	I _O = 150 mA,	T _J = 25°C		190		
	15370020	I _O = 150 mA,	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			330	
	TPS76530	I _O = 150 mA,	T _J = 25°C		160		
Dropout voltage		I _O = 150 mA,	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			280	mV
(See Note 4)		I _O = 150 mA,	T _J = 25°C		140		IIIV
		I _O = 150 mA,	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			240	
	TPS76550	I _O = 150 mA,	T _J = 25°C		85		
	15370000	I _O = 150 mA,	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			150	

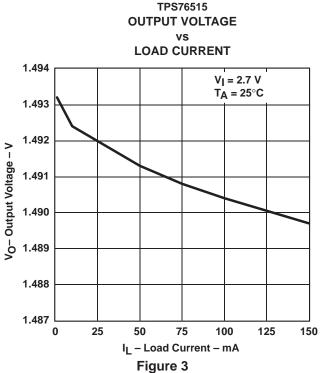
NOTES: 3. If $V_0 \le 1.8 \text{ V}$ then $V_{imin} = 2.7 \text{ V}$, $V_{imax} = 10 \text{ V}$:

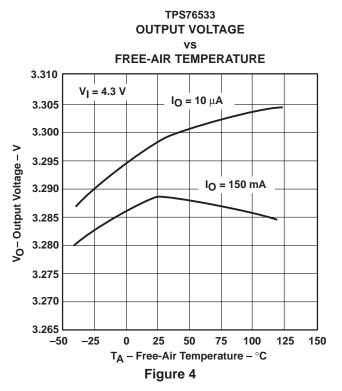
Line Reg. (mV) =
$$(\%/V) \times \frac{V_O(V_{imax} - 2.7 \text{ V})}{100} \times 1000$$

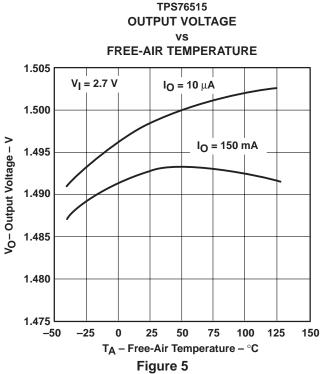
If $V_0 \ge 2.5 \text{ V}$ then $V_{imin} = V_0 + 1 \text{ V}$, $V_{imax} = 10 \text{ V}$:

Line Reg. (mV) =
$$(\%/V) \times \frac{V_O(V_{imax} - (V_O + 1 V))}{100} \times 1000$$

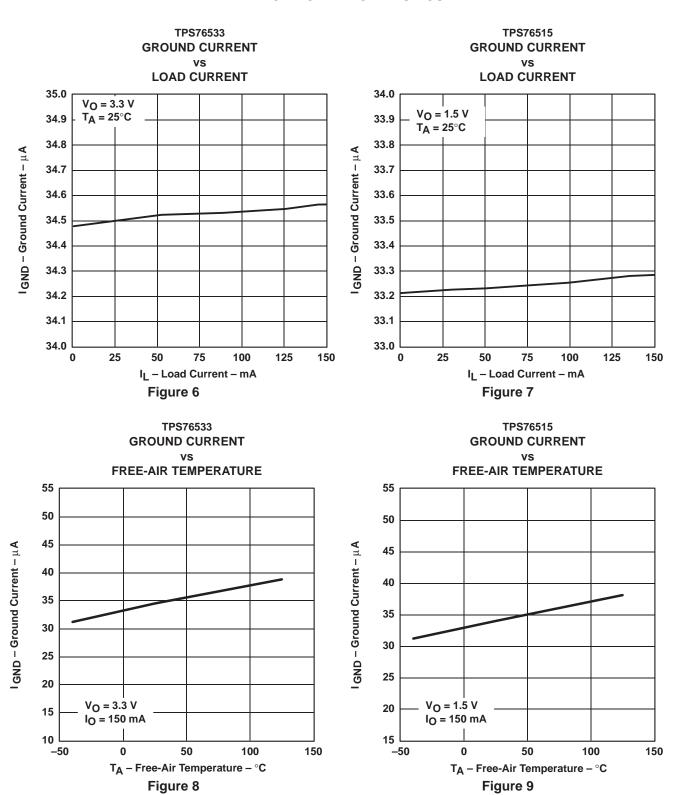

 IN voltage equals V_O(Typ) – 100 mV; TPS76501 output voltage set to 3.3 V nominal with external resistor divider. TPS76515, TPS76518, TPS76525, and TPS76527 dropout voltage limited by input voltage range limitations (i.e., TPS76530 input voltage needs to drop to 2.9 V for purpose of this test).

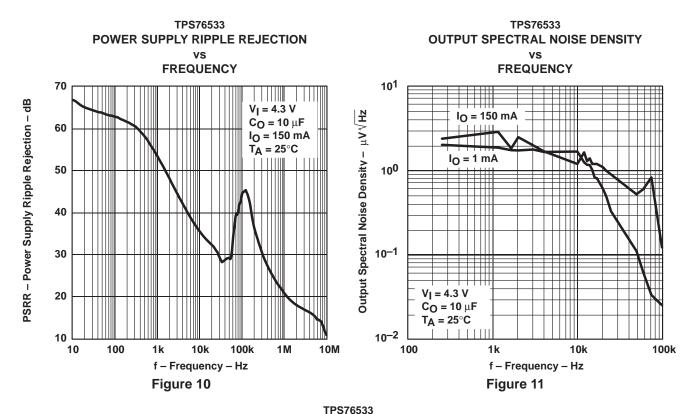

Table of Graphs


		FIGURE
Output valtage	vs Load current	2, 3
Output voltage	vs Free-air temperature	4, 5
Ground current	vs Load current	6, 7
Ground current	vs Free-air temperature	8, 9
Power supply ripple rejection	vs Frequency	10
Output spectral noise density	vs Frequency	11
Output impedance	vs Frequency	12
Dropout voltage	vs Free-air temperature	13, 14
Line transient response		15, 17
Load transient response		16, 18
Output voltage	vs Time	19
Dropout voltage	vs Input voltage	20
Equivalent series resistance (ESR)	vs Output current	21 – 24
Equivalent series resistance (ESR)	vs Added ceramic capacitance	25, 26


SLVS236 – AUGUST 1999

TYPICAL CHARACTERISTICS




TYPICAL CHARACTERISTICS

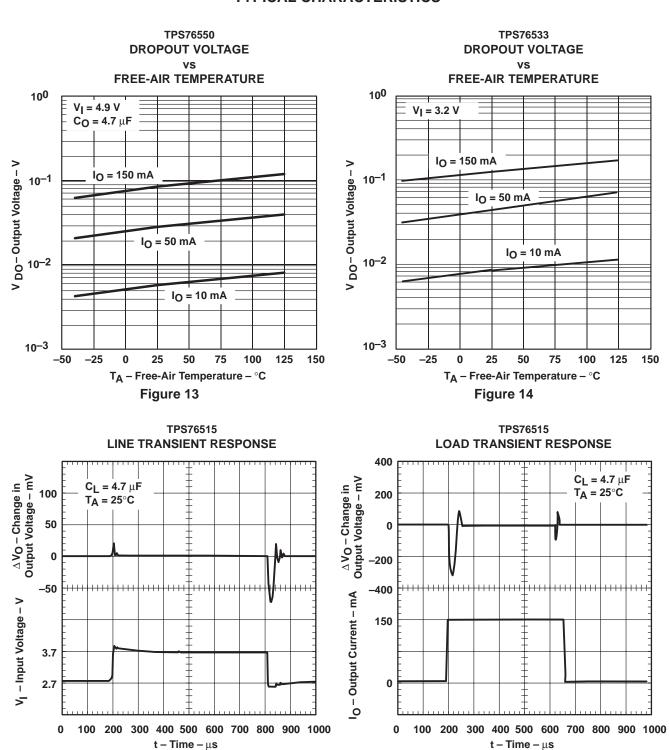
SLVS236 - AUGUST 1999

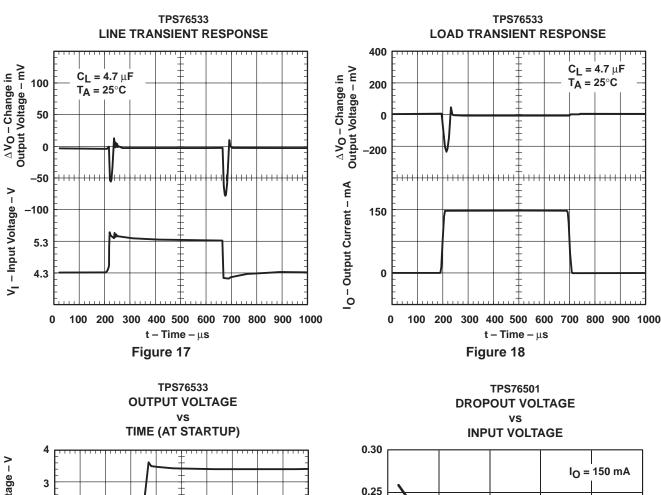
TYPICAL CHARACTERISTICS

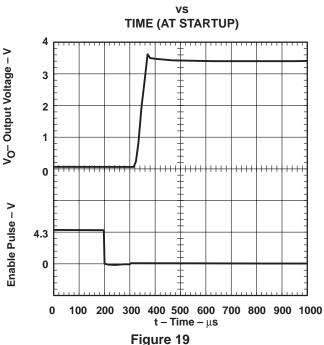
OUTPUT IMPEDANCE FREQUENCY 101 $V_{|} = 4.3 V$ $C_O = 10 \mu F$ T_A = 25°C $Z_{o}-$ Output Impedance $-\Omega$ 100 $I_0 = 1 \text{ mA}$ 10-1 I_O = 150 mA 10-2 10 100 10k 100k 1M f - Frequency - Hz

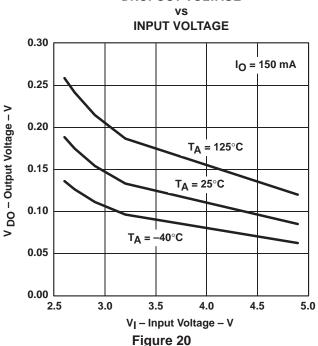
Figure 12

TYPICAL CHARACTERISTICS

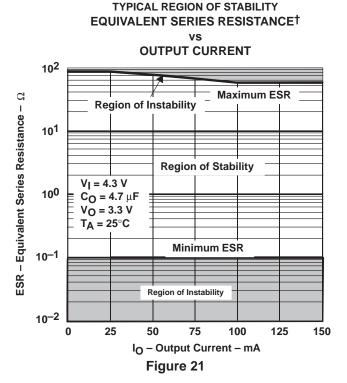


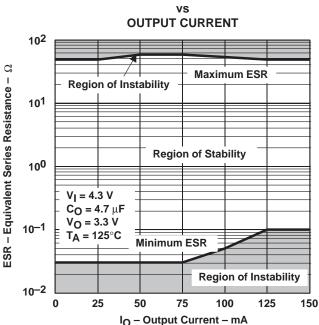



Figure 15

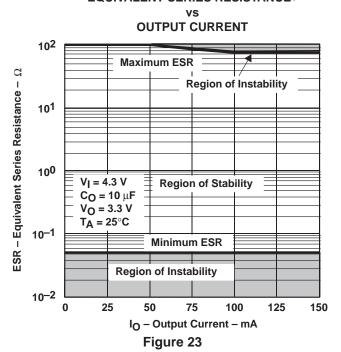

Figure 16

SLVS236 – AUGUST 1999

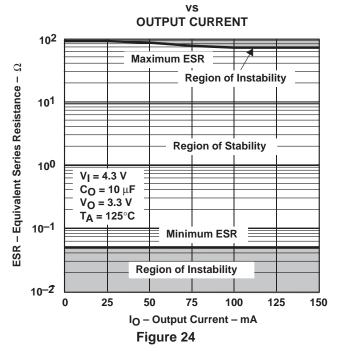

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS



TYPICAL REGION OF STABILITY


EQUIVALENT SERIES RESISTANCE†

TYPICAL REGION OF STABILITY **EQUIVALENT SERIES RESISTANCE**[†]

TYPICAL REGION OF STABILITY **EQUIVALENT SERIES RESISTANCE**[†]

Figure 22

[†] Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to Co.

SLVS236 - AUGUST 1999

TYPICAL CHARACTERISTICS

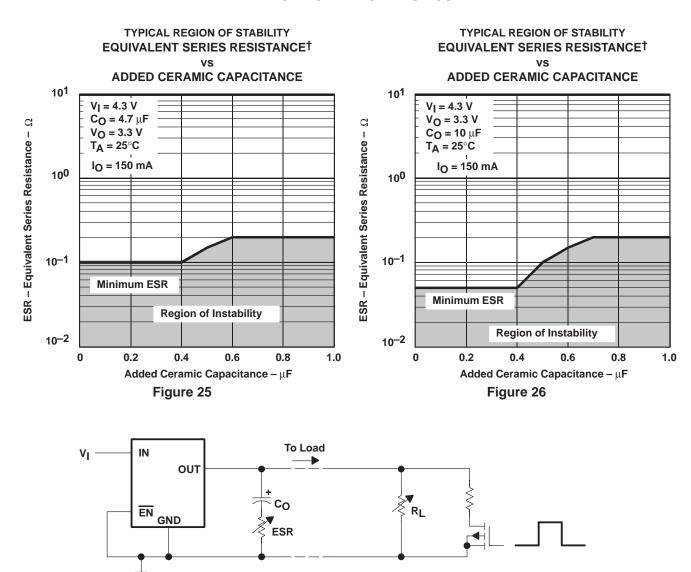


Figure 27. Test Circuit for Typical Regions of Stability (Figures 20 through 23) (Fixed Output Options)

[†] Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to Co.

Obsolete Devices: TPS76501, TPS76525, TPS76528

TPS76515, TPS76518, TPS76525, TPS76527 TPS76528, TPS76530, TPS76533, TPS76550, TPS76501 ULTRA-LOW QUIESCIENT CURRENT 150-mA LOW-DROPOUT VOLTAGE REGULATORS SLVS236 - AUGUST 1999

APPLICATION INFORMATION

The TPS765xx family includes eight fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V, and 5.0 V), and an adjustable regulator, the TPS76501 (adjustable from 1.25 V to 5.5 V).

device operation

The TPS765xx features very low quiescent current, which remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator ($I_B = I_C/\beta$). The TPS765xx uses a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariable over the full load range.

Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in I_B to maintain the load. During power up, this translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS765xx quiescent current remains low even when the regulator drops out, eliminating both problems.

The TPS765xx family also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 1 μ A (typ). If the shutdown feature is not used, $\overline{\text{EN}}$ should be tied to ground. Response to an enable transition is quick; regulated output voltage is reestablished in typically 160 μ s.

minimum load requirements

The TPS765xx family is stable even at zero load; no minimum load is required for operation.

FB - pin connection (adjustable version only)

The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option . The output voltage is sensed through a resistor divider network to close the loop as it is shown in Figure 29. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize/avoid noise pickup is essential.

external capacitor requirements

An input capacitor is not usually required; however, a ceramic bypass capacitor (0.047 μ F or larger) improves load transient response and noise rejection if the TPS765xx is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

Like all low dropout regulators, the TPS765xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 4.7 μ F and the ESR (equivalent series resistance) must be between 300-m Ω and 20- Ω . Capacitor values 4.7 μ F or larger are acceptable, provided the ESR is less than 20 Ω . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described previously.

SLVS236 – AUGUST 1999

APPLICATION INFORMATION

external capacitor requirements (continued)

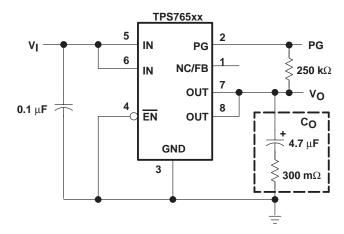
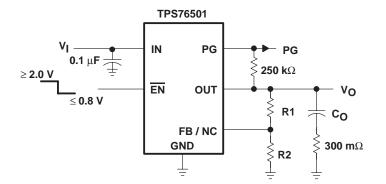


Figure 28. Typical Application Circuit (Fixed Versions)

programming the TPS76501 adjustable LDO regulator

The output voltage of the TPS76501 adjustable regulator is programmed using an external resistor divider as shown in Figure 29. The output voltage is calculated using:


$$V_{O} = V_{ref} \times \left(1 + \frac{R1}{R2}\right) \tag{1}$$

Where

 $V_{ref} = 1.224 \text{ V typ (the internal reference voltage)}$

Resistors R1 and R2 should be chosen for approximately 7- μ A divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 k Ω to set the divider current at 7 μ A and then calculate R1 using:

$$R1 = \left(\frac{V_{O}}{V_{ref}} - 1\right) \times R2 \tag{2}$$

OUTPUT VOLTAGE PROGRAMMING GUIDE

OUTPUT VOLTAGE	R1	R2	UNIT
2.5 V	174	169	kΩ
3.3 V	287	169	kΩ
3.6 V	324	169	kΩ
4.0 V	383	169	kΩ
5.0 V	523	169	kΩ

Figure 29. TPS76501 Adjustable LDO Regulator Programming

APPLICATION INFORMATION

power-good indicator

The TPS765xx features a power-good (PG) output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator.

regulator protection

The TPS765xx PMOS-pass transistor has a built-in back diode that conducts reverse currents when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS765xx also features internal current limiting and thermal protection. During normal operation, the TPS765xx limits output current to approximately 0.8 A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 150°C(typ), thermal-protection circuitry shuts it down. Once the device has cooled below 130°C(typ), regulator operation resumes.

power dissipation and junction temperature

Specified regulator operation is assured to a junction temperature of 125° C; the maximum junction temperature should be restricted to 125° C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_{D} , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using the following equation:

$$P_{D(max)} = \frac{T_J max - T_A}{R_{\theta, IA}}$$

Where

T_Imax is the maximum allowable junction temperature

 $R_{\theta JA}$ is the thermal resistance junction-to-ambient for the package, i.e., 176°C/W for the 8-terminal SOIC

T_A is the ambient temperature.

The regulator dissipation is calculated using:

$$P_D = (V_I - V_O) \times I_O$$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TPS76501D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76501
TPS76501D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76501
TPS76501DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76501
TPS76501DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76501
TPS76515D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76515
TPS76515D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76515
TPS76518D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76518
TPS76518D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76518
TPS76518DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76518
TPS76518DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76518
TPS76525D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76525
TPS76525D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76525
TPS76528D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76528
TPS76528D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76528
TPS76533D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76533
TPS76533D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76533
TPS76533DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76533
TPS76533DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76533
TPS76550D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76550
TPS76550D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76550
TPS76550DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76550
TPS76550DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	76550

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

PACKAGE OPTION ADDENDUM

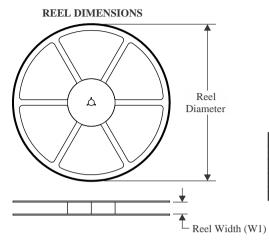
www.ti.com 11-Nov-2025

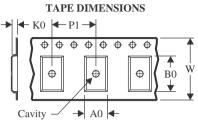
(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

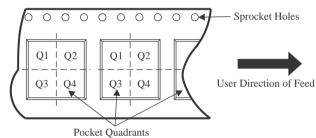
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

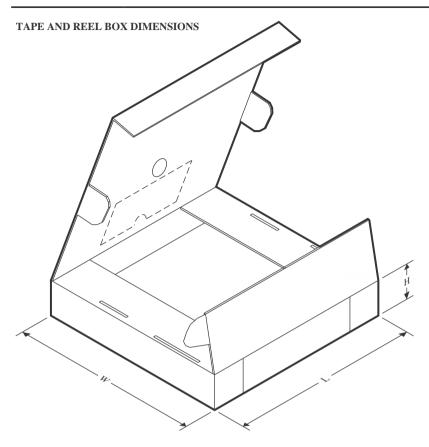
PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

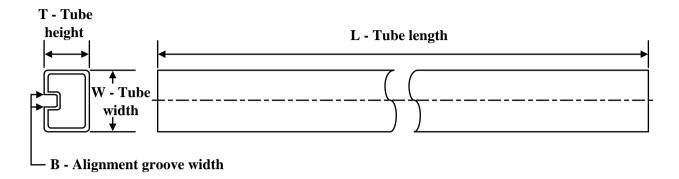
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS76501DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS76518DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS76533DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS76550DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 18-Aug-2025

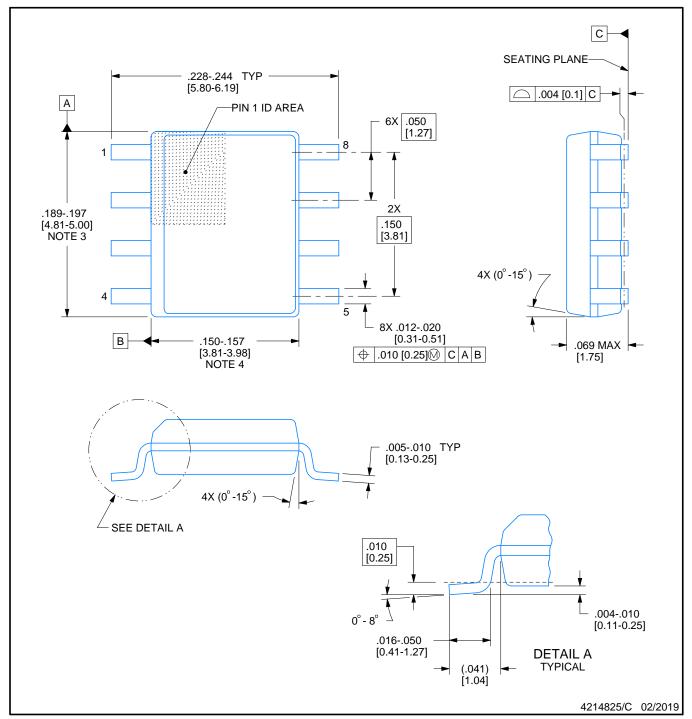

*All dimensions are nominal

Device	Package Type	Package Drawing	g Pins SPQ Length (mm) Width (Width (mm)	Height (mm)					
TPS76501DR	SOIC	D	8	2500	350.0	350.0	43.0				
TPS76518DR	SOIC	D	8	2500	350.0	350.0	43.0				
TPS76533DR	SOIC	D	8	2500	350.0	350.0	43.0				
TPS76550DR	SOIC	D	8	2500	350.0	350.0	43.0				

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2025

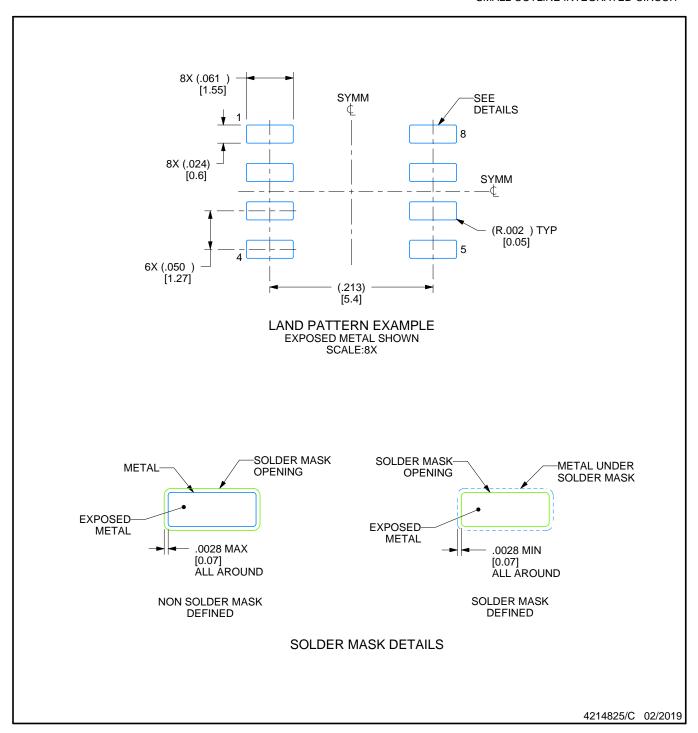
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TPS76501D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76501D.A	D	SOIC	8	75	505.46	6.76	3810	4
TPS76515D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76515D.A	D	SOIC	8	75	505.46	6.76	3810	4
TPS76518D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76518D.A	D	SOIC	8	75	505.46	6.76	3810	4
TPS76525D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76525D.A	D	SOIC	8	75	505.46	6.76	3810	4
TPS76528D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76528D.A	D	SOIC	8	75	505.46	6.76	3810	4
TPS76533D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76533D.A	D	SOIC	8	75	505.46	6.76	3810	4
TPS76550D	D	SOIC	8	75	505.46	6.76	3810	4
TPS76550D.A	D	SOIC	8	75	505.46	6.76	3810	4

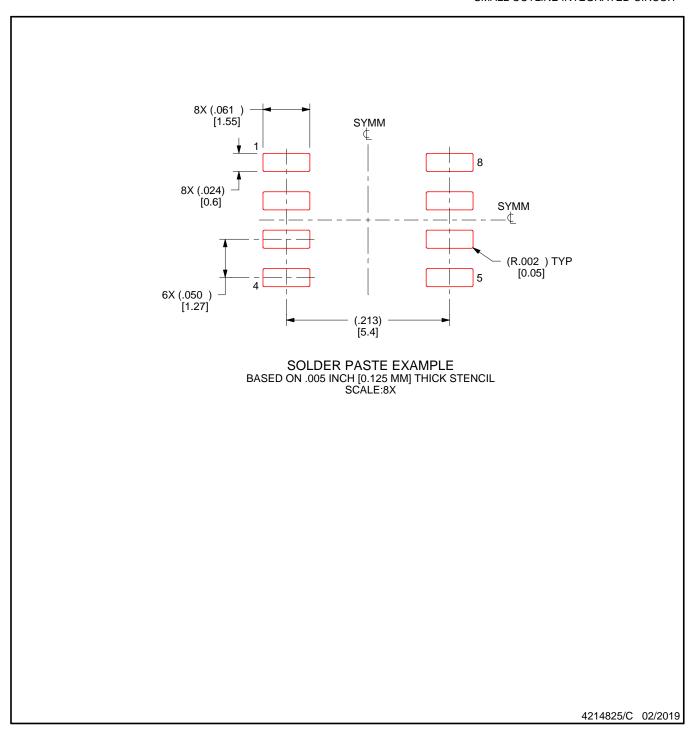
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025