
TMS470/570 Platform F035 Flash API Reference
Guide v1.09

User's Guide

Literature Number: SPNU493E
April 2012–Revised February 2014

Contents

1 Types, Structures, Enumerators, and Macros ... 5
1.1 Types ... 5
1.2 Structures .. 7
1.3 Enumerators ... 9
1.4 Macros .. 11

2 API Description ... 13
2.1 Pulse Size and Limits ... 13
2.2 Build Environment ... 13
2.3 API Include Files and Recommended Usage .. 14
2.4 API Defines and their Usage ... 14

3 API Functions ... 15
3.1 Fapi_CalculateParity() ... 15
3.2 Fapi_getApiVersion32() ... 15
3.3 Fapi_HardwareCalculateEcc() ... 16
3.4 Fapi_SetupFlashPump() .. 16
3.5 Feed_Watchdog_V() .. 17
3.6 Flash_Aux_Engr_U16() ... 17
3.7 Flash_Blank_B() ... 18
3.8 Flash_Compact_B() ... 19
3.9 Flash_EngInfo_V() ... 20
3.10 Flash_Erase_B() ... 20
3.11 Flash_Erase_Bank_B() ... 22
3.12 Flash_Erase_Sector_B() .. 23
3.13 Flash_Prog_Data_B() ... 24
3.14 Flash_PSA_Calc_U32() ... 25
3.15 Flash_PSA_Verify_B() .. 26
3.16 Flash_Read_V() .. 27
3.17 Flash_Sector_Select_V() ... 28
3.18 Flash_Start_Async_Command_B() .. 28
3.19 Flash_Start_Compact_B() .. 29
3.20 Flash_Start_Erase_B() .. 30
3.21 Flash_Start_Prog_B() ... 31
3.22 Flash_Status_U16() ... 31
3.23 Flash_Verify_Data_B() .. 35
3.24 Flash_Verify_Zeros_B() ... 36
3.25 Flash_Zeros_B() ... 37
3.26 get_timing() ... 38
3.27 get_presc_shift() ... 39
3.28 psa_u32() ... 39
3.29 setup_state_machine() .. 40
3.30 wait_delay() ... 41

2 Table of Contents SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com

4 Flash Delay Parameter Values ... 60
5 Recommended Flow Guidelines .. 61

5.1 New Devices from Factory .. 61
5.2 Using Flash_Erase_B() ... 61
5.3 Using Flash_Erase_Bank_B() .. 63
5.4 Using Flash_Erase_Sector_B() .. 65
5.5 Using Flash_Start_Erase_B() .. 66
5.6 Recommended Programming Flow .. 67

Appendix A Revision History .. 68

3SPNU493E–April 2012–Revised February 2014 Contents
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com

List of Figures
1 Using Flash_Erase_B() With Optional Preconditioning Disabled Flow... 62
2 Using Flash_Erase_B() Simple Flow ... 62
3 Using Flash_Erase_Bank_B() With Optional Preconditioning Disabled Flow 63
4 Using Flash_Erase_Bank_B() Simple Flow .. 64
5 Using Flash_Erase_Sector_B() Flow ... 65
6 Using Flash_Start_Erase_B() Flow ... 66
7 Recommended Programming Flow ... 67

List of Tables
1 Pulse Size and Limits ... 13
2 Stat Return Value Reference .. 44
3 FVREAD Value and Voltage ... 48
4 Example Flash Delay Parameter Values ... 60
5 API Version History ... 68
6 Document Revision History .. 68

4 List of Figures SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

User's Guide
SPNU493E–April 2012–Revised February 2014

TMS470/570 Platform F035 Flash API Reference Guide
v1.09

This reference guide documents the Application Programming Interface for Flash operations on the
TMS470/570 Platform F035 devices.

1 Types, Structures, Enumerators, and Macros

1.1 Types
The following types are defined in the Flash470.h header file.

1.1.1 UINT64
typedef unsigned long long int UINT64;

and is used for the following purpose:

UINT64 Unsigned 64 bit integer

1.1.2 UINT32
typedef unsigned long int UINT32;

and is used for the following purpose:

UINT32 Unsigned 32-bit integer

1.1.3 UINT16
typedef unsigned short int UINT16;

and is used for the following purpose:

UINT16 Unsigned 16-bit integer

1.1.4 UINT8
typedef unsigned char UINT8;

and is used for the following purpose:

UINT8 Unsigned 8 bit integer

5SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Types, Structures, Enumerators, and Macros www.ti.com

1.1.5 UBYTE
typedef unsigned char UBYTE;

and is used for the following purpose:

UBYTE Unsigned bye (8 bits wide)

1.1.6 INT64
typedef long long int INT64;

and is used for the following purpose:

INT64 Signed 64 bit integer

1.1.7 INT32
typedef long int INT32;

and is used for the following purpose:

INT32 Signed 32-bit integer

1.1.8 INT16
typedef short int INT16;

and is used for the following purpose

INT16 Signed 16-bit integer

1.1.9 INT8
typedef char INT8;

and is used for the following purpose:

INT8 Signed 8 bit integer

1.1.10 BOOL
typedef int BOOL;

and is used for the following purpose:

BOOL Boolean variable (1=TRUE, 0=FALSE)

1.1.11 FLASH_ARRAY_ST
typedef volatile UINT32 * FLASH_ARRAY_ST;

Therefore, a FLASH_ARRAY_ST is a volatile unsigned 32-bit integer array pointer. The control base
address of the Flash module is declared as a FLASH_ARRAY_ST so that writing to and reading from
registers is done in a volatile manner and all Flash control register offsets are defined as 32-bit offsets
from this base address in the F035.h header file.

6 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com Types, Structures, Enumerators, and Macros

1.2 Structures

1.2.1 FLASH_STATUS_ST
The FLASH_STATUS_ST is used as a repository of information (pulse counts, PSA values, failing
addresses and data, and so forth) generated by a function in addition to the return value. A pointer to this
type of structure is passed to most functions, and the contents of each element of the structure are
dependent on the purpose of the function. The FLASH_STATUS_ST structure is declared as follows in the
flash470.h
typedef struct {

UINT32 stat1;
UINT32 stat2;
UINT32 stat3;
UINT32 stat4;

} FLASH_STATUS_ST;

The purpose of each element is as follows:

stat1 Statistic 1: Meaning depends upon function.
stat2 Statistic 2: Collects statistics on Flash
stat3 Statistic 3: operations such as the number of
stat4 Statistic 4: pulses applied, the worst case number of pulses, address,

and so forth

7SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Types, Structures, Enumerators, and Macros www.ti.com

1.2.2 FLASH_FSM_INFO_ST
The FLASH_FSM_INFO_ST structure is used to contain timing and CT values for the Flash State
Machine (FSM). Timings in this structure are to properly scaled according to the delay parameter (see
Section 4), and all values are written to the FSM using the setup_state_machine function. The function of
each element in the structure can be inferred from the comments below.
typedef struct {

UBYTE psetup; /* FSMPESETUP bits 15: 8 */
UBYTE esetup; /* FSMPESETUP bits 7: 0 */
UINT16 csetup; /* FSMCSETUP: V5STAT (bits 15:12)

* CmpctSetup (bits 11:0)
*/

UBYTE pvsetup; /* FSMPVEVSETUP bits 15:8 */
UBYTE evsetup; /* FSMPVEVSETUP bits 7:0 */
UINT16 cvsetup; /* FSMCVSETUP: Address/EXECUTEZ access time

* (bits 15:12)
* CmpctVerSetup (bits 11:0)
*/

UBYTE max_fosc_delay; /* Max allowed FOSC delay parameter */
UBYTE pvevaccess; /* FSMPVEVACCESS bits 7:0 */
UBYTE phold; /* FSMPCHOLD bits 15:8 */
UBYTE chold; /* FSMPCHOLD bits 7:0 */
UINT16 ehold; /* FSMEHOLD bits 15:0 */
UBYTE pvhold; /* FSMPVEVHOLD bits 15:8 */
UBYTE evhold; /* FSMPVEVHOLD bits 7:0 */
UINT16 pwidth; /* FSMPWIDTH bits 15:0 */
UINT16 cwidth; /* FSMCWIDTH bits 15:0 */
UINT32 ewidth; /* FSMEWIDTH bits 31:0 */
UINT16 vwlcmpctct; /* FSMVWLCMPCTCT bits 11:0 */
UINT16 maxpp; /* FSMMAXPP: Start VNV CT (bits 15:12)

* Max Prog Pulses (bits 11:0)
*/

UINT16 maxep; /* FSMMAXEP: Stop VNV CT (bits 15:12)
* Max Erase Pulses (bits 11:0)
*/

UINT16 maxcp; /* FSMMAXCP: Step VNV CT (bits 15:12)
* Max Cmpct Pulses (bits 11:0)
*/

UINT32 vhvct1; /* FSMVVHCT1 bits 31:0 */
UINT16 vhvct2; /* FSMVVHCT2 bits 11:0 */
UINT16 vreadct; /* FSMVREADCT bits 3:0 */
UINT16 vppct; /* FSMVPPCT bits 15:0 */
UINT16 vwlct; /* FSMVWLCT bits 15:4 */
UINT32 chksum; /* 32 bit checksum for structure */

} FLASH_FSM_INFO_ST;

8 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com Types, Structures, Enumerators, and Macros

1.3 Enumerators

1.3.1 FLASH_CORE
The FLASH_CORE type is an enumeration of the available banks that can be used in the Flash module.
In F035, up to eight banks are supported, but the number of banks in a given Flash module are device
dependent.
typedef enum {

FLASH_CORE0 /* Bank 0 selected */
FLASH_CORE1 /* Bank 1 selected */
FLASH_CORE2 /* Bank 2 selected */
FLASH_CORE3 /* Bank 3 selected */
FLASH_CORE4 /* Bank 4 selected */
FLASH_CORE5 /* Bank 5 selected */
FLASH_CORE6 /* Bank 6 selected */
FLASH_CORE7 /* Bank 7 selected */

} FLASH_CORE;

1.3.2 FLASH_SECT
This type is an enumeration of the sector that can be chosen in a specified bank of the Flash module. In
TMS570Px F035, sixteen sectors (numbered 0-15) are supported.
typedef enum {

FLASH_SECT0 /* Sector 0 selected */
FLASH_SECT1 /* Sector 1 selected */

.

.

.
FLASH_SECT15 /* Sector 15 selected */

} FLASH_SECT;

1.3.3 FAPI_CORE_SELECTOR
This enumeration is used to indicate which core the user is addressing when one or more cores exist on a
device.
typedef enum
{

FAPI_MASTER_CORE, // Master Core
FAPI_SLAVE_CORE0 // First Slave Core

} FAPI_CORE_SELECTOR;

1.3.4 FAPI_WRITE_SIZE
This enumeration is used to indicate what Flash write size is supported by the device.
typedef enum
{

FAPI_WRITE_16BIT,
FAPI_WRITE_32BIT

} FAPI_WRITE_SIZE;

9SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Types, Structures, Enumerators, and Macros www.ti.com

1.3.5 FAPI_ERROR_CODE
This enumeration defines the error codes that can be returned by functions.
typedef enum
{

// Function completed successfully
FAPI_ERROR_CODE_SUCCESS,
// Generic Function Fail code
FAPI_ERROR_CODE_FAIL,

// State machine polling never returned ready and timed out
FAPI_ERROR_CODE_STATE_MACHINE_TIMEOUT,
// Returned if OTP checksum does not match expected value
FAPI_ERROR_CODE_OTP_CHECKSUM_MISMATCH,
// Returned if the Calculated RWAIT value exceeds 15
FAPI_ERROR_CODE_INVALID_DELAY_VALUE,
// Returned if the specified core does not exist
FAPI_ERROR_CODE_INVALID_CORE,

// Returned if address is not properly aligned on 32-bit boundary
FAPI_ERROR_CODE_UNALIGNED_32BIT,

// Returned if address is not properly aligned on 64-bit boundary
FAPI_ERROR_CODE_UNALIGNED_64BIT,
// Returned if address is not properly aligned on 128-bit boundary
FAPI_ERROR_CODE_UNALIGNED_128BIT,
// Returned if length of data/array is invalid
FAPI_ERROR_CODE_INVALID_DATA_LENGTH

} FAPI_ERROR_CODE;

10 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com Types, Structures, Enumerators, and Macros

1.4 Macros

1.4.1 FAPI_GET_WRITE_SIZE

FAPI_GET_WRITE_SIZE(oFlash This macro returns the FAPI_WRITE_SIZE based on the Flash write
Control) size supported by the device.

1.4.2 Parity and ECC Address Translation
The following macros are included to simplify calculation of the appropriate Parity and ECC address from
a given main Flash address a.

PAR_ADDR_TRANS_U32 (a) Translate UINT32 * pointer 'a' to corresponding Parity Flash address
PAR_ADDR_TRANS_U16 (a) Translate UINT16 * pointer 'a' to corresponding Parity Flash address
PAR_ADDR_TRANS_U8 (a) Translate UBYTE * pointer 'a' to corresponding Parity Flash address
ECC_ADDR_TRANS_U32 (a) Translate UINT32 * pointer 'a' to corresponding ECC Flash address
ECC_ADDR_TRANS_U16 (a) Translate UINT16 * pointer 'a' to corresponding ECC Flash address
ECC_ADDR_TRANS_U8 (a) Translate UBYTE * pointer 'a' to corresponding ECC Flash address
COTP_PAR_TRANS_U32 (a) Translate UINT32 * pointer 'a' to corresponding COTP Parity Flash

address
COTP_PAR_TRANS_U16 (a) Translate UINT16 * pointer 'a' to corresponding COTP Parity Flash

address
COTP_PAR_TRANS_U8 (a) Translate UBYTE * pointer 'a' to corresponding COTP Parity Flash

address
TIOTP_PAR_TRANS_U32 (a) Translate UINT32 * pointer 'a' to corresponding TIOTP Parity Flash

address
TIOTP_PAR_TRANS_U16 (a) Translate UINT16 * pointer 'a' to corresponding TIOTP Parity Flash

address
TIOTP_PAR_TRANS_U8 (a) Translate UBYTE * pointer 'a' to corresponding TIOTP Parity Flash

address
COTP_ECC_TRANS_U32 (a) Translate UINT32 * pointer 'a' to corresponding COTP ECC Flash

address
COTP_ECC_TRANS_U16 (a) Translate UINT16 * pointer 'a' to corresponding COTP ECC Flash

address
COTP_ECC_TRANS_U8 (a) Translate UBYTE * pointer 'a' to corresponding COTP ECC Flash

address
TIOTP_ECC_TRANS_U32 (a) Translate UINT32 * pointer 'a' to corresponding TIOTP ECC Flash

address
TIOTP_ECC_TRANS_U16 (a) Translate UINT16 * pointer 'a' to corresponding TIOTP ECC Flash

address
TIOTP_ECC_TRANS_U8 (a) Translate UBYTE * pointer 'a' to corresponding TIOTP ECC Flash

address

11SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Types, Structures, Enumerators, and Macros www.ti.com

1.4.3 Flash_Prog_B
This macro makes a call to Flash_Prog_Data_B() by predefining the command parameter as
CMND_PROG_DATA_MAIN. For additional information, see the description for Flash_Prog_Data_B().
#define Flash_Prog_B(m_start,m_buff,m_length,m_core,m_delay,m_cntl,m_status)\

Flash_Prog_Data_B(m_start,
m_buff,
m_length,

m_core,
m_delay,
m_cntl,
m_status,
m_length,
CMND_PROG_DATA_MAIN)

1.4.4 Flash_Verify_B
This macro makes a call to Flash_Verify_Data_B(). For additional information, see the description for
Flash_Verify_Data_B().
#define Flash_Verify_B(m_start,m_buff,m_length,m_core,m_cntl,m_status)\

Flash_Verify_Data_B(m_start,
m_buff,
m_length,

m_core,
m_cntl,
m_status,
m_length)

1.4.5 OTP_Prog_B
This macro makes a call to Flash_Prog_Data_B() by predefining the command parameter as
CMND_PROG_DATA_COTP. For additional information, see the description for Flash_Prog_Data_B().
#define OTP_Prog_B(m_start,m_buff,m_length,m_core,m_delay,m_cntl,m_status)\

Flash_Prog_Data_B(m_start,
m_buff,
m_length,

m_core,
m_delay,
m_cntl,
m_status,
m_length,
CMND_PROG_DATA_COTP)

12 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Description

2 API Description
The F035 Flash API is a library of routines which, when called with the proper parameters in the proper
sequence, erases, programs or verifies Flash memory on the TMS470 family of Texas Instruments
microcontrollers These routines must be run in a privileged mode (mode other than user) to allow access
to the Flash control registers. Interrupts must be disabled during execution of API functions. Aborts during
execution of API functions may leave the flash in an indeterminate state. The API internally adjusts the
RWAIT value accordingly so that the Flash Oscillator frequency (Fosc) does not exceed the frequency
configured by the max_fosc_delay element programmed to the TI OTP when the Flash State Machine is
being utilized.

2.1 Pulse Size and Limits

NOTE: The values shown in Table 1 are the current target values for these parameters, but these
values can be overridden in the TI OTP on per Flash bank basis as needed depending on
the performance of a given device.

Table 1. Pulse Size and Limits
Operation Pulse Length Maximum Number of Pulses
Program 6us 200

Erase 5ms 4095
Compact 500us 2000

2.2 Build Environment
The current version of the Flash API library was built with version 4.4.11 of the Texas Instruments
TMS470 C compiler using TIABI object format (pf035a_api_tiabi.lib), EABI object format
(pf035a_api_eabi.lib) and EABI object format compiled with vfp option (pf035a_api_eabi_vfp.lib). The
functions are written in C in 16-bit instruction mode.

The following defines and options are common to all libraries:
Defines: PLATFORM, FLASH_API_VERSION=12h, F035a, FLASH_API_TECH_ID=0x13010000,
FLASH_API_MAJOR_VERSION=1, FLASH_API_MINOR_VERSION=4, F035_4MB_WRAPPER

Options: -o2 -al -mt --issue_remarks --c_src_interlist

The following compiler options were used in addition to the common compiler options to create the TIABI
compiled Flash API library pf035a_api_tiabi.lib:
-mv4
--abi=tiabi
--symdebug:coff

NOTE: The deprecated library name of this version is still available – pf035a_api.lib.

The following compiler options were used in addition to the common compiler options to create the EABI
compiled Flash API library pf035a_api_eabi.lib:
-mv4
--abi=eabi
--symdebug:none

The following compiler options were used in addition to the common compiler options to create the EABI
vfp compiled Flash API library pf035a_api_eabi_vfp.lib:
-mv7r4
--float_support=VFPv3D16
--abi=eabi
--symdebug:none

13SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Description www.ti.com

2.3 API Include Files and Recommended Usage
The Flash API includes several header files to be included when using these functions in customers code.
They are as follows:

f035.h -- This contains definitions for the F035 process Flash devices. This defines the F035
that is used by the flash470.h include file and, therefore, should be included first.

flash470.h – This is the main include file that contains the API function definitions, structures, and
macros.

Flash470ErrorD This contains the error code return values. This file is already included by flash470.h
efines.h – and, therefore, does not need to be explicitly included.

2.4 API Defines and their Usage
The Flash API includes makes use of several defines to determine specific sections of code to use. They
are as follows:

PLATFORM – This defines that the device is a Platform architecture. This should be defined before
referencing the f035.h include file.

DUALCPU – This is not used by this API and should not be defined. It is there for backwards
capability in flash470.h for F05 architectures.

F035 – This defines the Flash Technology used by the API. This is already defined in the
f035.h include file.

F05/F10 – These are defines for other Flash Technologies and exist for backwards compatibility.
They must not be defined in the user’s code.

F035_4MB_WR This defines the Flash Wrapper technology the API and other code is compiled for.
APPER – This is defined by default in the f035.h include file.
F035_16MB_W This is maintained for backwards capability with older Flash Wrapper technologies. It
RAPPER – must not be defined in the user’s code.

14 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3 API Functions

3.1 Fapi_CalculateParity()
[calculate Flash Parity]
FAPI_ERROR_CODE Fapi_CalculateParity(UINT32 *pu32Start,

UINT16 *pu16ParityData,
UINT32 u32Length

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Pointer to the location in Flash where the Parity will

be calculated. The address of this pointer is used
for the address portion of the Parity calculation
routine.

pu16ParityData UINT16 * Pointer to buffer where Parity data is stored.
u32Length UINT32 Number of 32-bit words for which Parity is

calculated. The value of length is required to be
multiples of 4.

Return Value
This function returns an FAPI_ERROR_CODE value of either FAPI_ERROR_CODE_SUCCESS for a
valid operation or FAPI_ERROR_CODE_FAIL due to:
1. Fails if “u32Length” is not a multiple of 4

Description
This function calculates Parity for a device. The user must provide a data buffer where the newly
calculated Parity bits are stored. This data can then be programmed in Flash using the usual programming
method. The number of elements in the "pu16ParityData" buffer must be equal to the number of 32-bit
words of data, "u32Length" for which the Parity is calculated.

3.2 Fapi_getApiVersion32()
[get 32bit BCD API version and Tech ID]
UINT32 Fapi_getApiVersion32(void)

Parameters
None

Return Value
Unsigned 32-bit integer (UINT32)

Description
This function returns the programming algorithm version number in BCD (Binary Coded Decimal) notation
and Tech ID code. For example, the number 0x0007 represents version 0.07 and the Tech ID code is
listed below.
0xAABBCCDD

AA = Tech
01 -> F10

02 -> F05
12 -> Platform F05
03 -> F035
13 -> Platform F035

BB = Revision
00 -> original
01 -> A
02 -> B

15SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

CC = Major Version
DD = Minor Version

3.3 Fapi_HardwareCalculateEcc()
[calculate ECC using R4 core]
FAPI_ERROR_CODE Fapi_HardwareCalculateEcc(UINT32 *pu32Start,

UINT16 *pu16EccData,
UINT32 u32Length,
FLASH_ARRAY_ST oFlashControl

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Pointer to the location in Flash where the Parity will

be calculated. The address of this pointer is used
for the address portion of the ECC calculation
routine. This address needs to be aligned on a 128-
bit boundary.

pu16EccData UINT16 * Pointer to buffer where ECC data is stored.
u32Length UINT32 Number of 32-bit words for which ECC is

calculated. The "pu16EccData" buffer size needs to
be "u32Length number of 16-bit words. The value
of length is required to be multiples of 4.

oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the
Flash region resides.

Return Value
This function returns an FAPI_ERROR_CODE value of either FAPI_ERROR_CODE_SUCCESS for a
valid operation or FAPI_ERROR_CODE_FAIL due to:
1. Fails if “u32Length” is not a multiple of 4
2. Fails if “pu32Start” is not aligned on a 128-bit boundary

Description
This function calculates ECC for a device that utilizes the R4 ECC encoding scheme. This function takes
advantage of the F035 Flash wrapper ECC calculation logic to optimize performance. Proper ECC is
calculated on the data located at "pu32Start". Since the R4 ECC encoding scheme includes address, the
data for which the ECC is calculated must already be programmed at the desired location. This routine
does not work on a data buffer that is located in RAM. The user must provide a data buffer where the
newly calculated ECC bits are stored. This data can then be programmed in Flash using the usual
programming method. The number of elements in the "pu16ECCData" buffer must be equal to the number
of 32-bit words of data, "u32Length" for which ECC is calculated.

3.4 Fapi_SetupFlashPump()
[Select the correct Flash Pump with multiple Flash Wrappers]
FAPI_ERROR_CODE Fapi_SetupFlashPump(FAPI_CORE_SELECTOR oCoreSelector)

Parameters

Parameter Type Purpose
oCoreSelector FAPI_CORE_SELECTOR Specifies which core to switch the Flash Pump

to on multi core devices.

16 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Return Value
This function returns an FAPI_ERROR_CODE value of either FAPI_ERROR_CODE_SUCCESS for a
valid operation or FAPI_ERROR_CODE_INVALID_CORE if the core specified in oCoreSelector is invalid.

Description
This function sets up the Flash Pump to the core specified by the user on devices that have multiple cores
using a System Slave module. The user must be careful when calling other Flash Functions that the delay
value matches the core selected.

3.5 Feed_Watchdog_V()
[prevents AWD and DWD watchdog resets]
void Feed_Watchdog_V();

Parameters
None

Return Value
None

Description
The purpose of this function is to allow feeding a watchdog during the program or erase functions or any
function that performs a busy-wait on the Flash State Machine or some other time-consuming operation.
This function can be replaced by a user defined watchdog function or a null function that returns without
doing anything. The default function provided in the API library feeds the analog watchdog (AWD) and the
Digital Watchdog (DWD). This function is called at least every 200 µs. This function cannot be executed
from the bank that is being programmed or erased. The following functions call Feed_Watchdog_V():

Flash_Blank_B() Flash_Read_V() Flash_Vt_Verify_Data_B()
Flash_Erase_Sector_B() Flash_Verify_Data_B() Flash_PSA_Vt_Verify_B()
exec_pulse() Flash_PSA_Verify_B() Flash_Prog_Wide_B()
Flash_Prog_Data_B() verify_read()
Flash_PSA_Calc_U32() Flash_Vt_Read_V()

3.6 Flash_Aux_Engr_U16()
[reads the 16-bit auxiliary engineering ID]
UINT16 Flash_Aux_Engr_U16(UINT16 *address,

FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
address UINT16 * Pointer to the location in the TI engineer row to be

read
cntl FLASH_ARRAY_ST Pointer to Flash array control register structure

Return Value
This function returns an unsigned 16-bit value read from the specified address of the TI engineering row.

Description
This function can be used to read one 16-bit value from the TI engineering row.

17SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.7 Flash_Blank_B()
[blank checks a given region of Flash]
BOOL Flash_Blank_B(UINT32 *pu32Start,

UINT32 u32Length,
FLASH_CORE oFlashCore,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *oFlashStatus

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Pointer to the first word in Flash that will be blank-

checked
u32Length UINT32 * Number of 32-bit words to be blank-checked
oFlashCore FLASH_CORE Bank select (0-7) of region of Flash being blank

checked
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash region resides
oFlashStatus FLASH_STATUS_ST * Pointer to status structure for storing statistical

information. Note that word length must be passed
to the Flash_Blank_B function via the status.stat1
element:
status.stat1=128 => No Parity and ECC
status.stat1=132 => Include Parity bits
status.stat1=144 => Include ECC bits

NOTE: This function must be executed from RAM.

This function calls Feed_Watchdog_V() that also must be executed from RAM.

Return Value
This function returns a boolean value. Pass = 1 = Region is blank, Fail = 0 = Region is not blank (a
location that reads as something other than 0xFFFFFFFF was found). If the function returns Fail, the
following values are stored in the FLASH_STATUS_ST structure:

stat1 Address of first non-blank location
stat2 Data read at first non-blank location
stat3 Value of compare data (always 0xFFFFFFFF)
stat4 Mode in which first fail occurred. This value should be FSPRD_RDM1 (see f035.h

listing), which indicates the region did not read as blank in read margin 1 mode.

Description
This function verifies that the Flash has been properly erased by using the read-margin 1 mode starting
from the address passed in the parameter “start”. “length” words are read, starting at the starting address.
The area specified for blank check must be within a single bank specified by “core”. If the array contains
multiple banks, Flash_Blank_B must be called separately for each bank to be blank checked. Regions
may cross sector boundaries, as long as the sectors all reside in the same bank. The user must also
specify via the status.stat1 parameter whether to also blank check the corresponding parity and ECC bits
for the given main Flash address range. For more details, see the table above.

18 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.8 Flash_Compact_B()
[compact sector using Flash state machine]
BOOL Flash_Compact_B(UINT32 *pu32Start,

FLASH_CORE oFlashCore,
FLASH_SECT oFlashSector,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *oFlashStatus
);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in the Flash sector that will

be compacted (the first address in the sector)
oFlashCore FLASH_CORE Bank select (0-7) of sector being compacted
oFlashSector FLASH_SECTOR Sector select (0-15) of sector being compacted
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash region resides.
oFlashStatus FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

Return Value
This function returns a boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure:

stat1 Not used
stat2 Final value of MSTAT register (see Section 3.22 for description of MSTAT register)
stat3 Total number of compaction pulses executed for all sticks.
stat4 Maximum number of compaction pulses for any one stick (One stick = 16 columns)

Description
This function adjusts depleted (over-erased) Flash memory bits in the target sector so they are not in
depletion. This function only performs compaction on the target sector, so compaction of N sectors
requires N calls to Flash_Compact_B() with each call having the proper core, start, and cntl address
information passed to it.

19SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.9 Flash_EngInfo_V()
[retrieve lot, wafer, X, Y, flowchk information from OTP]
void Flash_EngInfo_V(UINT32 *start,

FLASH_ARRAY_ST cntl,
FLASH_ENGR_INFO_ST *info
);

Parameters

Parameter Type Purpose
start UINT32 * Pointer to the first word in the Flash array (first

bank, first sector)
cntl FLASH_ARRAY_ST Flash Control Base address of module where

the Flash region resides
info FLASH_ENGR_INFO_ST * Pointer to a structure that is the same size as a

FLASH_STATUS_ST, but is laid out differently
for the purpose of continuing engineering
information.

Return Value
The following values are stored in the FLASH_ENGR_INFO_ST structure. The numbers (except
FlowCheck, which is binary) are in BCD format.
#define DevID AsicId /* Left for Backwards Compatibility */

typedef struct
{

UINT32 AsicId;
UINT32 LotNo;
UINT16 FlowCheck;
UINT16 WaferNo;
UINT16 Xcoord;
UINT16 Ycoord;

} FLASH_ENGR_INFO_ST;

Description
This function reads data stored in the Engineering row of the Flash and returns the parameters specified
above. All values (except FlowCheck) are stored in Binary Coded Decimal (BCD) format (if LotNo =
0x07123456, then the actual lot number should be interpreted as decimal 7123456). FlowCheck is a
binary value whose lower 8 bits are used internally by TI to track whether a device has passed each
required test step during production testing.

3.10 Flash_Erase_B()
BOOL Flash_Erase_B(UINT32 *pu32Start,

UINT32 u32Length,
FLASH_CORE oFlashCore,
FLASH_SECT oFlashSector,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *oFlashStatus
);

20 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in the Flash sector that will

be erased. Note: This must correspond to the first
address in the sector.

u32Length UINT32 Number of 32-bit words in the sector
oFlashCore FLASH_CORE Bank select (0-7) of sector being erased
0FlashSector FLASH_SECTOR Sector select (0-31) of sector being erased
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides
oFlashStatus FLASH_STATUS_ST * Pointer to status structure for storing statistical

information
Note: Determining a sector is blank using
Flash_Blank_B is insufficient to make sure a sector
is sufficiently erased, especially if a previous erase
was interrupted by a power glitch or some other
user intervention, because Flash_Blank_B is
unable to detect depleted bits or bits that are
marginal to a read margin 1 read.
To assure a sector is adequately erased, erase
must be performed on the sector (regardless of the
contents).
If the sector has already been determined to be
blank using Flash_Blank_B prior to erase, the
status → stat1 element can be initialized to
0x12345678 prior to calling Flash_Erase_B to
disable preconditioning and speed up erase. Non-
blank sectors by default should have the value of
status → stat1 initialized to 0x00000000 (or some
value other than 0x12345678) to make sure
preconditioning is enabled during erase. For more
information, see Recommended Erase Flows in
Section 5.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure:

stat1 Maximum number of compaction pulses for any one stick (16 columns)
stat2 Status register value (for description, see Flash_Erase_Status_U16)
stat3 Number of pulses applied to erase all locations
stat4 Total number of compaction pulses

Description
This function is used to apply programming, erase and compaction pulses to the targeted sector until it is
completely erased, and to collect pulse count information. This function is unique from
Flash_Erase_Sector_B() in that it allows for the disabling of preconditioning during erase (see the above
Parameters table). The length parameter and sector numbers are only provided to maintain the same
interface as the F10 API, as they are ignored by the function. The F035 Flash State Machine only requires
a correct core and start address value to correctly erase a sector. See Section 5.2 for recommended
Erase flow guidelines.

21SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.11 Flash_Erase_Bank_B()
BOOL Flash_Erase_Bank_B(UINT32 *pu32Start,

UINT32 u32Length,
FLASH_CORE oFlashCore,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *oFlashStatus
);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in the Flash bank that will be

erased. Note: This must correspond to the first
address in the bank.

u32Length UINT32 Number of 32-bit words in the bank
oFlashCore FLASH_CORE Bank select (0-7) of bank being erased
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where Flash

bank resides
oFlashStatus FLASH_STATUS_ST * Pointer to status structure for storing statistical

information
Note: Determining a bank is blank using
Flash_Blank_B is insufficient to make sure a bank
is sufficiently erased, especially if a previous erase
was interrupted by a power glitch or some other
user intervention, because Flash_Blank_B is
unable to detect depleted bits or bits that are
marginal to a read margin 1 read.
To assure a bank is adequately erased, erase must
be performed on the bank (regardless of the
contents).
If the bank has already been determined to be
blank using Flash_Blank_B prior to erase, the
status → stat1 element can be initialized to
0x12345678 prior to calling Flash_Erase_Bank_B
to disable preconditioning and speed up erase.
Non-blank banks by default should have the value
of status → stat1 initialized to 0x00000000 (or
some value other than 0x12345678) to make sure
preconditioning is enabled during erase. For more
information, see Recommended Erase Flows in
Section 5.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure:

stat1 Maximum number of compaction pulses for any one stick (16 columns)
stat2 Status register value (for description, see Flash_Erase_Status_U16)
stat3 Number of pulses applied to erase all locations
stat4 Total number of compaction pulses

22 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Description
This function is used to apply programming, erase and compaction pulses to the targeted bank until it is
completely erased, and to collect pulse count information. This function is unique from
Flash_Erase_Sector_B() and similar to Flash_Erase_B in that it allows for the disabling of preconditioning
during erase (see the above Parameters table). The length parameter is ignored by the function. The F035
Flash State Machine only requires a correct core and start address value to correctly erase a bank. For
recommended Erase Bank flow guidelines, see Section 5.3.

3.12 Flash_Erase_Sector_B()
[erases entire sector with precondition]
BOOL Flash_Erase_Sector_B(UINT32 *pu32Start,

UINT32 u32Length,
FLASH_CORE oFlashCore,
FLASH_SECT oFlashSector,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in the Flash sector that will

be erased. Note: This must correspond to the first
address in the sector.

u32Length UINT32 Number of 32-bit words in the sector
oFlashCore FLASH_CORE Bank select (0-7) of sector being erased
0FlashSector FLASH_SECTOR Sector select (0-31) of sector being erased (actual

value is ignored)
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0.

Description
This function erases a sector. Preconditioning is enabled by default and cannot be disabled, as is possible
using Flash_Erase_B or Flash_Erase_Bank_B. The length parameter and sector number are not used in
F035. For recommended Erase Sector flow guidelines, see Section 5.4.

23SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.13 Flash_Prog_Data_B()
[program data to any Flash using FSM]
BOOL Flash_Prog_Data_B (UINT32 *pu32Start,

UINT32 *pu32Buffer,
UINT32 u32Length,
FLASH_CORE oFlashCore,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *poFlashStatus,
UINT32 u32BufferLength,
UINT16 u16Command

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in Flash that will be

programmed
pu32Buffer UINT32 * Pointer to the starting address of a buffer with data

to program
u32Length UINT32 Number of 32-bit words to program
oFlashCore FLASH_CORE Bank select (0-7) of region being programmed
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides
oFlashStatus FLASH_STATUS_ST * Pointer to status structure for storing statistical

information
U32BufferLength UINT32 Cyclic buffer used to program the Flash. The buffer

will be repeatedly programmed into Flash in the
amount of buflen until length is reached.

u16Command UINT16 Programming command to pass to state machine.
Allowed values are (see F035.h):
CMND_PROG_DATA_MAIN
CMND_PROG_CBIT_MAIN
CMND_PROG_DATA_COTP
CMND_PROG_CBIT_COTP
Any other values cause the function to return a fail.
Note that OTP address translation is performed
when commands to program the Customer OTP
are issued.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure:

stat1 If programming failed, address of first failing location
stat2 If programming failed, data at first failing location
stat3 If programming failed, the last MSTAT value, otherwise the total number of pulses

applied to program all locations
stat4 Maximum number of pulses required to program a single location

24 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Description
This function programs the Flash from the starting address “start” for “length” 32-bit words. This function
only programs the Flash; it does not erase the Flash array first. The user code must make sure that the
areas to be programmed are already erased before calling this routine. The Flash_Erase_Sector_B or
Flash_Erase_B functions can be used to erase an entire sector. For more details on programming flow
guidelines, See Section 5.6.

The program routine programs the data that is stored in the buffer pointed to “buff”. Care must be taken to
make sure that the data to be programmed does not cross a bank boundary.

3.14 Flash_PSA_Calc_U32()
[calculates PSA for given Flash region]
UINT32 Flash_PSA_Calc_U32(UINT32 *start,

UINT32 length,
UINT32 psa_seed,
UINT32 mode,
FLASH_CORE core,
FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be read
length UINT32 Number of 32-bit words to read.
psa_seed UINT32 The initial value of the PSA calculation. If this is the

first region being read, then this value should be
0x00000000. If this region is a continuation of a
previous region, then the resulting PSA of the
previous region should be used as the seed value.

mode UINT32 The read mode in which to do the PSA calculation
0 - Normal read mode
1 - Read Margin 0 mode
2 - Read Margin 1 mode

core FLASH_CORE Bank select (0-7) of region being read
cntl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash region resides

NOTE: This function must be executed from RAM.

This function calls Feed_Watchdog_V() and psa_u32() that also must be executed from
RAM.

Return Value
This function returns an unsigned 32-bit integer that is the computed PSA value.

25SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

Description
This function uses the PSA_U32 function to calculate a 32 bit PSA checksum in the given read mode for a
given region of Flash defined by the start address and length in 32-bit words. The seed value for the PSA
calculation is provided by the psa_seed value.

This function can be used for checking all of the Flash on a device in a read margin mode against a single
PSA value. Set the seed to zero for the calculation on the first region and then provide the result of the
first region calculation as the seed for the calculation of the next region. Compare the result of the final
region's calculation against the known PSA value for the entire flash.

NOTE: Bank boundaries must not be crossed by any single region

3.15 Flash_PSA_Verify_B()
[fast verify of Flash using PSA]
BOOL Flash_PSA_Verify_B(UINT32 *start,

UINT32 length,
UINT32 psa,
FLASH_CORE core,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash which will be

verified
length UINT32 * Number of 32-bit words to be verified using PSA
psa UINT32 The expected PSA value against which the actual

PSA values will be compared
core FLASH_CORE Bank select (0-7) of region being read
cntl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash region resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

NOTE: This function must be executed from RAM.

This function calls Feed_Watchdog_V() and psa_u32() that also must be executed from
RAM.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure:

stat1 Actual PSA for read-margin 0
stat2 Actual PSA for read-margin 1
stat3 Actual PSA for normal read
stat4 Unused

26 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Description
This function verifies proper programming by using normal read, read-margin 0, read-margin 1 modes,
and generating a 32 bit PSA checksum for the data in the region in each mode. Verification starts from the
start address “start” and checks “length” words from the start address. The area specified for PSA verify
must be within the bank specified by “core” and the control register should be passed in as “cntl”.

3.16 Flash_Read_V()
[read contents of Flash region to buffer]
void Flash_Read_V(UINT32 *start,

UINT32 *buff,
UINT32 length,
UINT32 mode,
FLASH_CORE core,
FLASH_ARRAY_ST *cntl
);

Parameters

Parameter Type Purpose
start UINT32 * Pointer to the first word in Flash that will be read
buff UINT32 * Pointer to the buffer in RAM where the read data

will be copied
length UINT32 Number of 32-bit words to be read
mode UINT32 Mode in which to read

0 = Normal Read mode
1 = Read Margin 0 mode
2 = Read Margin 1 mode
All other values => Normal read mode

core FLASH_CORE Bank select (0-7) of bank within which customer
OTP sector resides

cntl FLASH_ARRAY_ST Flash Control Base address of Flash module

NOTE: This function must be executed from RAM.

This function calls Feed_Watchdog_V() that also must be executed from RAM.

Return Value
This function does not return any value, but "length" words starting at address "buff" will be written with
data from Flash.

Description
This function will read data stored in the Flash in the given mode and copy it to successive locations
pointed to by "buffer".

27SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.17 Flash_Sector_Select_V()
[sector erase, prog, compact enable]
void Flash_Sector_Select_V(FLASH_CORE core,

FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
core FLASH_CORE Bank select (0-7) of sectors to be selected
cntl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides

Return Value
This function has no return value.

Description
This function is called by all functions that attempt erase or programing within Flash sectors, but is
generally not called except from within other functions. The purpose of this function is to allow only certain
sections of a bank to be programmed or erased. This function can be replaced by a user-defined function
that disables programming and erases certain sectors. The default function provided in the API library
enables all sectors of all banks. This function may be executed from the bank that is being programmed or
erased.

3.18 Flash_Start_Async_Command_B()
[issue command to FSM]
BOOL Flash_Start_Async_Command_B(UINT32 *pu32Start,

UINT16 u16Command,
UINT32 u32Data,

FLASH_ARRAY_ST oFlashControl
);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in Flash sector that the

specified command operates on
u16Command UINT16 Command to be sent to the F035 State machine
u32Data UINT32 Commands appropriate data to send to the F035

state machine after the command is issued
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides

Return Value
This function always returns a Boolean value of Pass = 1.

Description
This function is used to cause the Flash State Machine to execute a specified command. This function
returns immediately and does not check on the status of the executed command. u32Data is typecast to
the appropriate size depending on the device supporting either 32-bit or 16-bit writes.

28 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.19 Flash_Start_Compact_B()
[issue compaction command to FSM]
BOOL Flash_Start_Compact_B(UINT32 *start,

FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in the Flash sector that is to

be compacted
core FLASH_CORE Bank select (0-7) of sector being compacted
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
cntl FLASH_ARRAY_ST Flash Control Base address of module where Flash

sector resides

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. A failure indicates that the delay value was too
large (see Section 4).

Description
This function is used to start the compaction of a sector. Either the Flash_Compact_Status_U16() (that
calls Flash_Status_U16) or the Flash_Status_U16() function can be directly used to determine when the
compaction is complete. This function allows the user to perform some other tasks while the state
machine is performing compaction such as feeding a watchdog or servicing the peripherals. No attempts
should be made to read from Flash locations in the same bank as the sector being compacted until the
compaction completes. For an example implementation of Flash_Start_Compact_B, see Section 3.30.5,
Flash_Compact_Status_U16. For recommended Erase flow guidelines, see Section 5.2 - Section 5.5.

29SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.20 Flash_Start_Erase_B()
[issue erase command to FSM]
BOOL Flash_Start_Erase_B(UINT32 *start,

FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in the Flash sector that is to

be erased
core FLASH_CORE Bank select (0-7) of sector being erased
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
cntl FLASH_ARRAY_ST Flash Control Base address of module where Flash

sector resides

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. A failure indicates that the delay value was too
large (see Section 4).

Description
This function is used to start the erase of a sector. Either the Flash_Erase_Status_U16() (that calls
Flash_Status_U16) or Flash_Status_U16() functions can be directly used to determine when the erase is
complete. These functions allow the user to perform some other tasks, such as feeding a watchdog, while
a sector is being erased. No attempts should be made to read from Flash locations in the same bank as
the sector being erased until the erase completes. This function does not support the disabling of
preconditioning. For an example implementation of Flash_Start_Erase_B, see Section 3.30.7,
Flash_Erase_Status_U16(). For recommended Start Erase flow guidelines, see Section 5.5.

30 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.21 Flash_Start_Prog_B()
[issue erase command to FSM]
BOOL Flash_Start_Prog_B(UINT32* pu32Start,

UINT32 pu32Data,
FLASH_CORE oFlashCore,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in the Flash sector that is to

be programmed
pu32Data 32-bit data to be programmed
oFlashCore FLASH_CORE Bank select (0-7) of sector being erased
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides

Return Value
This functions returns TRUE if Flash_Start_Async_Command_B is run properly.

Description
This function is used to initiate the Flash State Machine to start the programming of a 32-bit data at the
address pointed to by start. This function returns immediately. The user has to use Flash_Status_U16 in
order to determine if the programming occurred successfully.

3.22 Flash_Status_U16()
[retrieve current FSM status]
UINT16 Flash_Status_U16(FLASH_ARRAY_ST cntl);

Parameters

Parameter Type Purpose
cntl FLASH_ARRAY_ST Flash Control Base address of module whose

status is being checked

Return Value
This function returns a 16-bit value that defines the status of the program and erase state machine.

31-15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reser INVD CSTA VSTA ESUS PSUS SLOCILA DBT PGV PCV EV CV BUSY ERS PGMved AT T T P P K

Bits 31-15 Reserved - Read values are 0. Writes have no effect.

31SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

Bit 14 ILA - Illegal Address
When set, indicates that an illegal address is detected. Three conditions can
set illegal address flag.
1. Writing to a hole (un-implemented logical address space) within a Flash bank
2. Writing to an address location to an un-implemented Flash space
3. Input address for write is decoded to select a different bank from the bank ID register

Bit 13 DBF - Disturbance Test Fail
When set, indicates that a disturbance is detected when Program Sector
command is issued during disturbance test mode. Disturbance is created
when an un-selected bit is programmed to 0 when programming a selected
bit. The sets this flag when it compares the unselected bits to 1s and fails.

Bit 12 PGV - Program Verify
When set, indicates that a word is not successfully programmed after the
maximum allowed number of program pulses are given for program operation.

Bit 11 PCV - Precondition verify
When set, indicates that a sector is not successfully preconditioned (pre-
erased) after the maximum allowed number of program pulses are given for
precondition operation for any applied command such as Erase Sector
command. During Precondition verify command, this flag is set immediately if
a Flash bit is found to be 1. If Precondition Terminate Enable bit is cleared
then PCV is not set when preconditioning fails. Setting Precondition Terminate
Enable bit allows FSM to terminate the command immediately if precondition
operation fails during any type of erase commands.

Bit 10 EV - Erase verify
When set, indicates that a sector is not successfully erased after the
maximum allowed number of erase pulses are given for erase operation.
During Erase verify command, this flag is set immediately if a bit is found to
be 0.

Bit 9 CV - Compact Verify
When set, indicates that a sector contains one or more bits in depletion after
the maximum allowed number of compaction pulses are given for compact
operation. During compact verify command, this flag is set immediately if a bit
is found to be 1.

Bit 8 Busy - Busy
When set, this bit indicates that a program, erase, or suspend operation is
being processed.

32 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Bit 7 ERS - Erase Active
When set this bit indicates that the Flash module is actively performing an
erase operation. This bit is set when erasing starts and is cleared when
erasing is complete. It is also cleared when the erase is suspended and set
when the erase resumes.

Bit 6 PGM - Program Active
When set this bit indicates that the Flash module is currently performing a
program operation. This bit is set when programming starts and is cleared
when programming is complete. It is also cleared when programming is
suspended and set when programming resumes.

Bit 5 INVDAT - Invalid Data
When set, this bit indicates that the user attempted to program a “1” where a
“0” was already present. This bit is cleared by the Clear Status command.

Bit 4 CSTAT - Command Status
When set, this bit informs the host that the program, erase, or validate sector
command failed and the command was stopped. This bit is cleared by the
Clear Status command.

Bit 3 5VSTAT - VDD5V Status
When set, this bit indicates if the 5.0 V power supply dipped below the lower
limit allowable during a program or erase operation. This bit is cleared by the
Clear Status command.

Bit 2 ESUSP - Erase Suspend
When set, this bit indicates that the Flash module has received and processed
an erase suspend command. This bit remains set until the erase resume
command has been issued.

Bit 1 PSUSP - Program Suspend
When set, this bit indicates that the Flash module has received and processed
a program suspend command. This bit remains set until the program resume
command has been issued.

Bit 0 SLOCK - Sector Lock Status
When set, this bit indicates that the operation was halted because the target
sector was locked for erasing and programming either by the sector protect bit
or by write protection key logic. This bit is cleared by the Clear Status
command.

33SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

Description
This function is used to check the status of a Flash State Machine command operation started by
Flash_Start_Compact_B, FLash_Start_Erase_B, or Flash_Start_Command_B. These functions allow the
user to perform some other tasks, such as feeding a watchdog, while a sector is being operated on by the
state machine. No attempts should be made to read from Flash locations in the same bank as the sector
being operated on by the state machine until the command completes (indicated by BUSY going back to
0). Once the BUSY bit is low, indicating command completion, it is recommended to flag a failure if any
other status bits read as anything other than 0.

Example Function Usage
UINT16 result;
if (Flash_Start_Compact_B (start, core, delay, cntl)
{

// feed watchdog while BUSY is high
while ((result=Flash_Status_U16(cntl))&0x100)
{

Feed_Watchdog_V();
}
if (result!=0) // fail if any other bits set
{

compact_fail();
}

}
else
{

compact_start_fail();
}

34 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.23 Flash_Verify_Data_B()
[verify Flash against 'cyclical' buffer]
BOOL Flash_Verify_Data_B(UINT32 *start,

UINT32 *buff,
UINT32 length,
FLASH_CORE core,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status,
UINT32 buflen
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash to be verified
buff UINT32 * Pointer to the starting address of the buffer with

data to verify against
length UINT32 Number of 32-bit words to be verified
core FLASH_CORE Bank select (0-7) of region being read
cntl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash region resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information
buflen UINT32 Length of cyclical data buffer in 32-bit words

NOTE: This function must be executed from RAM.

This function calls Feed_Watchdog_V() that also must be executed from RAM.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing verify
stat2 Data at first location failing verify
stat3 Data expected at failing address
stat4 Value of 0 means normal read failure, 1 means read margin zero failure, and 2

means read margin one failure

Description
This function verifies proper programming by using normal read, read-margin 0, and read-margin 1
modes. Verification starts from the start address “start” and checks “length” words from the start address.
The parameter 'buflen' is used to allow for a cyclical data buffer. This means that 'buflen' number 32-bit
words starting at the location pointed to by 'buff' are repeatedly used to verify the data until length number
of 32-bit words have been verified.

The area specified for verify must be within the bank specified by “core” and the control register should be
passed in as “cntl”. The verify routine compares the data stored in the Flash to the data stored in the
buffer pointed to by “buffer”.

35SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.24 Flash_Verify_Zeros_B()
[verify Flash region contains all 0's]
BOOL Flash_Verify_Zeros_B(UINT32 *start,

UINT32 length,
FLASH_CORE core,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash to be verified for all

0x00000000
length UINT32 Number of 32-bit words to be verified
core FLASH_CORE Bank select (0-7) of region being read
cntl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash region resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing verify zeros
stat2 Data at first location failing verify zeros
stat3 Data expected at failing address (0x00000000)
stat4 Value of 0 means normal read failure, 4 means read margin zero failure

Description
This function verifies the result of running Flash_Zeros_B by using normal read and read-margin 0 modes.
Verification starts from the start address “start” and checks “length” words from the start address.

The area specified for verify must be within the bank specified by “core” and the control register should be
passed in as “cntl”.

36 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.25 Flash_Zeros_B()
[program all 0's to a region of Flash]
BOOL Flash_Zeros_B(UINT32 *start,

UINT32 length,
FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be

programmed
length UINT32 Number of 32-bit words to program
core FLASH_CORE Bank select (0-7) of bank within region being

programmed
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
cntl FLASH_ARRAY_ST Flash Control Base address of module where the

Flash sector resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 If fail, first address that fails to program to zeros
stat2 If fail, data at first failing address
stat3 If pass, Total number of pulses applied to program all locations to zero, else if fail

this is the last MSTAT value read from the state machine to help determine the fail
mode.

stat4 Maximum number of pulses applied to a single location

Description
This function is not needed in F035 since the erase routines automatically clear the sector before erasing.
It is included for compatibility.

37SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.26 get_timing()
[calculate timing based on FCLK]
UINT32 get_timing(UINT32 n,

UINT32 delay,
UINT32 presc,
UINT32 shft,
UINT32 min,
UINT32 max
);

Parameters

Parameter Type Purpose
n UINT32 Count of 500 ns reference clocks to give magnitude

of intended timing. For example, if timing is
intended to be 20 µs, then n=40.

delay UINT32 From Table 4, Flash Delay Parameter Values in
Section 4 of this document

presc UINT32 Prescaler and Flash clock divider. This value
should be inferred from the RWAIT field in the
FRDCNTL register (bits 11:8),
presc=(2*(RWAIT+1))

shft UINT32 it shift inferred by prescaler divider.
presc=1<<shft
This argument is passed instead of calculated in
order to save cycles.

min UINT32 Minimum allowed clocks
max UINT32 Maximum allowed clocks

Return Value
This function returns an unsigned 32 bit value (UINT32) that is clock count scaled according to the given
arguments.

Description
This function is used to properly scale the values intended for the Flash State machine timing registers
according to the current delay parameter and RWAIT setting. If a certain timing requires a minimum
number of clocks, it should be specified by the min parameter, otherwise 0 should be specified. If a timing
has a maximum allowed number of clocks (based on the bit field in the register), then that value should be
specified as the max parameter. Generally this function is only called by init_state_machine or
setup_state_machine.

38 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.27 get_presc_shift()
[determine bit shift of FCLK and HCLK ratio]
UINT32 get_presc_shift(FLASH_ARRAY_ST cntl);

Parameters

Parameter Type Purpose
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module being

initialized.

Return Value
This function returns an unsigned 32 bit value (UINT32), which is the number of bits to shift the timing
values passed to wait_delay() in the COD routines based on the ratio of HCLK to FCLK.

Description
When the software interface is used to perform program, erase, and compaction, pulse lengths are based
on calls to wait-delay. The timing values initially calculated by setup_state_machine are based on FCLK
cycles, but in software mode, these values need to be re-scaled based on HCLK. get_presc_shift
calculates the ratio of HCLK to FLCK in powers of two and returns the appropriate bit shift with which to
multiply the FCLK based timings to achieve the same timings using HCLK cycles.

The basic assumption of get_presc_shift is that FCLK=(HCLK/(2*(RWAIT+1))).

3.28 psa_u32()
UINT32 PSA_U32(UINT32 *pdwStart,

UINT32 dwLength,
UINT32 dwInitialSeed
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word to be read
length UINT32 Number of 32-bit words to be read
psa_seed UINT32 Initial seed value for the PSA calculation

Return Value
This function returns an unsigned 32-bit integer that is the PSA value computed by the CPU based on the
length data words read from the start address.

Description
This function is used to calculate a PSA value over any 32-bit memory range. It can be used on Flash,
RAM or ROM. There is no restriction regarding crossing bank boundaries. Generally, this function is called
from another function to make sure the PSA is calculated in the proper Flash read mode. This function is
deprecated and can only be used directly from the TIABI version of the compile. Use the macro definition
PSA_U32 instead.

39SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.29 setup_state_machine()
[setup state machine timings from OTP]
FAPI_ERROR_CODE setup_state_machine(UINT32 *pu32Start,

FLASH_CORE oFlashCore,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl

);

Parameters

Parameter Type Purpose
Pu32Start UINT32 * Points to the first word to be read.
oFlashCore FLASH_CORE Bank select (0-7) of the bank in which the customer

OTP sector resides
U32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
oFlashControl FLASH_ARRAY_ST * Flash Control Base address of module where the

Flash State Machine resides

NOTE: This function must be executed from RAM only!

This function is also called by the following functions:
• Flash_Compact_B()
• Flash_Erase_Bank_B()
• Flash_Erase_B()
• Flash_Erase_Sector_B()
• Flash_Prog_Data_B()
• Flash_Start_Command_B()
• Flash_Vt_Read_V()
• Flash_Vt_Verify_Data_B()
• Flash_PSA_Vt_Verify_B()

This function calls the following functions that also must be executed from RAM:

• get_timing()
• Feed_Watchdog_V()

Description
This function is used to setup timings and CT values in the Flash State machine. It is a replacement to
the deprecated init_state_machine function. The default timings and CT values are read from the TI
OTP sector along with a 32-bit checksum for the 16-bit data. If the checksum matches the sum of all the
16 bit values, then the timing values from the TI OTP are scaled based on the delay parameter and stored
to the appropriate register, and the appropriate CT values are written to their appropriate registers. If the
checksum does not match, then default timings and CT values are used. Generally, this function is called
by all other functions that utilize the Flash State Machine (Flash_Erase_B, Flash_Prog_B, and so forth).

Return Value
This function returns a FAPI_ERROR_CODE value:

FAPI_ERROR_CODE_SUCCESS -> Operation completed successfully
FAPI_ERROR_CODE_OTP_CHECKSUM_ -> Device OTP checksum does not Match expected value
MISMATCH
FAPI_ERROR_CODE_INVALID_DELAY_ -> Delay value passed to the function generated an invalid
VALUE RWAIT value

40 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30 wait_delay()
void wait_delay(volatile UINT32 u32Delay);

Parameters

Parameter Type Purpose
U32Delay volatile UINT32 Count value based on the number of 2 µs

increments to delay scaled based on the delay
parameters found in Table 4, Flash Delay
Parameter Values in Section 4 of this document.

Description
This function is used to enable a non-interruptible delay of 'delay' * 4 * 1/HCLK (in MHz). This function is
deprecated and can only be used directly from the TIABI version of the compile. Use the macro definition
WAIT_DELAY instead.

Deprecated API Functions

3.30.1 aligned_byte_width()- Deprecated
[calculate byte length]
UINT32 aligned_byte_width(UINT32 address,

UINT32 length,
UINT32 width
);

Parameters

Parameter Type Purpose
Address UINT32 Absolute address value
Length UINT32 Length in bytes
Width UINT32 Alignment width in bytes (1, 2, or 4)

Return Value
This function returns a 32-bit unsigned integer (UINT32). This is the number of bytes available in the
current 'width' aligned range of bits starting at the specified 'address' and within the specified 'length.'

Description
The purpose of this function is to calculate a byte length no greater than 'width' and no less than 'length',
which is byte aligned according to 'width' bytes with respect to 'address.' This is mainly used to align the
bytes verified in a single pass when Flash_Prog_Wide_B() is called.

41SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.2 ceil_div_by_x()- Deprecated
[divide by x and round up result with remainder]
UINT32 aligned_byte_width(UINT32 val,

UINT32 denom
);

Parameters

Parameter Type Purpose
Val UINT32 Numerator to be divided
Denom UINT32 Denominator

Return Value
This function returns a 32-bit unsigned integer (UINT32), which is the result of dividing val by denom, and
rounding up the result in case there is a remainder.

Description
The purpose of this function is to simply perform a ceiling (rounding up) type divide in software, which is
useful for making sure timings always round up to the next whole integer value.

3.30.3 Flash_API_Version_U16()- Deprecated
[get 16bit BCD API version]
UINT16 Flash_API_Version_U16(void)

Parameters
None

Return Value
Unsigned 16-bit integer (UINT16)

Description
This function returns the programming algorithm version number in Binary Coded Decimal (BCD) notation.
For example, the number 0x0007 represents version 0.07. The direct call of this function is deprecated
and is replaced by the Fapi_getApiVersion32().

42 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30.4 Flash_Calculate_Parity_B()- Deprecated
[Calculate Flash Parity]
BOOL Flash_Calculate_Parity_B(UINT32 *pu32Start,

UINT16 *pu16ParityData,
UINT32 u32Length

);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Pointer to the location in Flash where the Parity will

be calculated. The address of this pointer will be
used for the address portion of the Parity
calculation routine.

pu16ParityData UINT16 * Pointer to buffer where Parity data will be stored
u32Length UINT32 Number of 32-bit words for which Parity will be

calculated. The value of length is required to be
multiples of 4.

Return Value
This function returns an BOOL value of either TRUE for a valid operation or FALSE due to:
1. Fails if “u32Length” is not a multiple of 4

Description
This function calculates Parity for a device. The user must provide a data buffer where the newly
calculated Parity bits will be stored. This data can then be programmed in Flash using the usual
programming method. The number of elements in the "pu16ParityData" buffer must be equal to the
number of 32-bit words of data, "u32Length" for which Parity will be calculated.

3.30.5 Flash_Compact_Status_U16()- Deprecated
[retrieve current FSM status]
UINT16 Flash_Compact_Status_U16(FLASH_ARRAY_ST cntl);

Parameters

Parameter Type Purpose
cntl FLASH_ARRAY_ST Flash Control Base address of module whose

status is being checked.

Return Value
This function returns a 16-bit value that defines the status of the program and erase state machine. For
more information, see Flash_Status_U16().

Description
This function is used to check the status of a compaction operation started by Flash_Start_Compact_B or
Flash_Start_Command_B. These functions allow the user to perform some other tasks, such as feeding a
watchdog, while a sector is being compacted. No attempts should be made to read from Flash locations in
the same bank as the sector being compacted until the compaction completes (indicated by BUSY going
back to 0). Once the BUSY bit is low, indicating command completion, it is recommended to flag a failure
if any other status bits read as anything other than 0.

43SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.6 Flash_EngRow_V()- Deprecated
[read engineering data from OTP]
void Flash_EngRow_V(UINT32 *start,

FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
):

Parameters

Parameter Type Purpose
start UINT32 * Pointer to first word in Flash array (first bank, first

sector)
cntl FLASH_ARRAY_ST Flash Control Base address of module where Flash

region resides
status FLASH_STATUS_ST * Pointer to a structure of the type

FLASH_STATUS_ST. The function puts statistical
information in this structure.

Return Value
The following values are stored in the FLASH_STATUS_ST structure:

stat1 Engineering Row Word #1
stat2 Engineering Row Word #2
stat3 Engineering Row Word #3
stat4 Engineering Row Word #4

Description
This function is called by Flash_EngInfo_V to read the engineering information from the TI OTP. Because
of the way the data is arranged, there is not functional difference between this function and
Flash_EngInfo_V.

Note
The data obtained by this function can be read the following way: the four words are in Binary Coded
Decimal (BCD) notation (except FlowCheck, which is binary). Unused means that the value of these bits is
indeterminate.

Table 2. Stat Return Value Reference
8 Bits 8 Bits

stat1 ASIC ID
stat2 Lot Number
stat3 FlowCheck Wafer Number
stat4 X Coordinate Y Coordinate

44 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30.7 Flash_Erase_Status_U16()- Deprecated
[returns status of FSM during erase]
UINT16 Flash_Erase_Status_U16(FLASH_ARRAY_ST cntl);

Parameters

Parameter Type Purpose
cntl FLASH_ARRAY_ST Flash Control Base address of module whose

status is being checked

Return Value
This function returns a 16 bit value that defines the status of the program and erase state machine. For
more information, see Flash_Status_U16().

Description
This function is used to check the status of a erase operation started by Flash_Start_Erase_B or
Flash_Start_Command_B. These functions allow the user to perform some other tasks, such as feeding a
watchdog, while a sector is being erased. No attempts should be made to read from Flash locations in the
same bank as the sector being erased until the erase completes (indicated by BUSY going back to 0).
Once the BUSY bit is low, indicating command completion, it is recommended to flag a failure if any other
status bits read as anything other than 0.

3.30.8 Flash_Match_Key_B()- Deprecated
BOOL Flash_Match_Key_B(volatile UINT32 *key_start,

const UINT32 key[],
FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
key_start volatile UINT32 * Pointer to first key in Flash array, this is usually the

fourth word from the end of the first sector in the
first bank of the Flash module.

key const UINT32 [] Pointer to an array of four keys to match against
the protection keys in Flash

cntl FLASH_ARRAY_ST Flash Control Base address of module where Flash
sector resides

Return Value
This function always returns TRUE.

Description
This function is a dummy function that exists merely for the purpose of portability with F05 and F10
applications and is, therefore, deprecated, because protection keys are not implemented in the F035 Flash
wrapper. This function merely returns TRUE.

45SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.9 Flash_Match_Key_V()- Deprecated
BOOL Flash_Match_Key_V(volatile UINT32 *key_start,

const UINT32 key[],
FLASH_ARRAY_ST cntl
);

Parameters

Parameter Type Purpose
key_start volatile UINT32 * Pointer to first key in Flash array, this is usually the

fourth word from the end of the first sector in the
first bank of the Flash module.

key const UINT32 [] Pointer to an array of four keys to match against
the protection keys in Flash

cntl FLASH_ARRAY_ST Flash Control Base address of module where Flash
sector resides

Description
This function exists merely for the purpose of portability from F05 and F10 applications and is deprecated,
because protection keys do not exist in the F035 architecture. This function merely returns immediately.

3.30.10 Flash_PSA_Vt_Verify_B()- Deprecated
[Vt fast verify using PSA]
BOOL Flash_PSA_Vt_Verify_B(UINT32 *start,

UINT32 length,
UINT32 psa,
FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash to be verified in Vt

mode
length UINT32 * Number of 32-bit words to be verified using PSA
psa UINT32 The expected PSA value against which the actual

PSA values will be compared
core FLASH_CORE Bank select (0-7) of region being read
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
cntl FLASH_ARRAY_ST Flash Control Base address of module where Flash

region resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

NOTE: This function must be executed from RAM in non-pipeline mode.

46 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure:

stat1 If programming failed, address of first failing location
stat2 If programming failed, data at first failing location
stat3 If programming failed, the last MSTAT value, otherwise the total number of pulses

applied to program all locations
stat4 Maximum number of pulses required to program a single location

Description
This function verifies proper programming by using Vt mode and an external voltage provided on the
TEST1 device pin by generating a 32 bit PSA checksum for the data region. Verification starts from the
start address “start” and checks “length” words from the start address.

The area specified for PSA verify must be within the bank specified by “core” and the control register
should be passed in as “cntl”.

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise
damage to the device will likely occur. This function is not recommended for use in a production
environment.

3.30.11 Flash_Set_Vread_V()- Deprecated
void Flash_Set_Vread_V(FLASH_ARRAY_ST cntl);

Parameters

Parameter Type Purpose
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module

NOTE: This function must be executed from RAM in non-pipeline mode.

Description
This function is used to set the read voltage to 4.914 V. The default word-line voltage during read
(VREAD) is 4.914 V after reset (FVREADCT[3:0]=0xF). This function is provided merely for backwards
compatibility to F05 applications, but is deprecated, because VREAD is governed primarily through the
settings programmed to the TI OTP sector as set by the setup_state_machine function.

47SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

The VREAD voltage is controlled by the Flash control register bits FVREADCT[15:12]. The voltage is set
according to Table 3.

Table 3. FVREAD Value and Voltage
FVREADCT[3:0] VREAD Voltage FVREADCT[3:0] VREAD Voltage

0x0 2.50V 0x8 4.333V
0x1 2.75V 0x9 4.416V
0x2 3.00V 0xA 4.499V
0x3 3.25V 0xB 4.582V
0x4 3.50V 0xC 4.665V
0x5 3.75V 0xD 4.748V
0x6 4.00V 0xE 4.831V
0x7 4.25V 0xF (default) 4.914V

3.30.12 Flash_Start_Command_B()- Deprecated
[issue command to FSM]
BOOL Flash_Start_Command_B(UINT32 *pu32Start,

FLASH_CORE oFlashCore,
UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
UINT16 u16Command,
UINT32 u32Data
);

Parameters

Parameter Type Purpose
pu32Start UINT32 * Points to the first word in the Flash sector that is to

be compacted
oFlashCore FLASH_CORE Bank select (0-7) of sector being compacted
u32Delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
oFlashControl FLASH_ARRAY_ST Flash Control Base address of module where Flash

sector resides.
u16Command UINT16 Command to be sent to the F035 State machine
u32Data UINT32 Command appropriate data to send to the F035

state machine after the command is issued

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. A failure indicates that the delay value was too
large (see Section 4).

Description
This function is used to issue a command to the Flash State Machine. The function Flash_Status_U16()
can be used to determine when the command has completed. This function allows the user to perform
some other tasks while the state machine is performing the command such as feeding a watchdog or
servicing the peripherals. No attempts should be made to read from Flash locations in the same bank as
the area being operated on by the Flash State Machine until the command completes. This function is
deprecated and it is recommended to use Flash_Start_Async_Command_B() instead.

48 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30.13 Flash_Vt_Bit_Count()- Deprecated
[Counts number of erased bits in Vt mode]
void Flash_Vt_Bit_Count_V(UINT32 *start,

UINT32 *buff,
UINT32 length,
UINT32 delay,
FLASH_CORE core,
FLASH_ARRAY_ST *cntl

);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word to be read
buff UINT32 * Pointer to data buffer that will store the number of

“1's” seen during the Vt Read
length UINT32 Number of 32-bit words to be read
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
core FLASH_CORE Bank select (0-7) of bank within which region to be

read resides
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function does not return any value. The number of set bits seen during the Vt mode read for the
range of Flash specified is returned in data locations referenced by the buff pointer. Vt mode is a special
test mode that allows the word line voltage to the Flash to be supplied externally through the TEST1
device pin.

Description
This function will read data stored in the Flash in Vt mode and count the number of set bits, “1's”, seen
store the count in location pointed to by buff.

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise,
damage to the device will likely occur. This function is not recommended for use in a production
environment.

49SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.14 Flash_Vt_Blank_B()- Deprecated
[Vt Verify Flash region is blank]
BOOL Flash_Vt_Blank_B(UINT32 *start,

UINT32 length,
FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST *cntl
FLASH_STATUS_ST *status,
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be read
length UINT32 Number of 32-bit words to be read
core FLASH_CORE Bank select (0-7) of bank within region to be read

resides
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document.
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information. Note that word length must be passed
to the Flash_Blank_B function via the status.stat1
element:
status.stat1=128 => No Parity and ECC
status.stat1=132 => Add Parity bits
status.stat1=144 => Add ECC bits

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing blank check (based on voltage on TEST1 pin)
stat2 Data at first location failing blank check (based on voltage on TEST1 pin)
stat3 Data expected at failing address (0xFFFFFFFF)
stat4 Total number of failing bits found in region

Vt mode is a special test mode that allows the word line voltage to the Flash to be supplied externally
through the TEST1 device pin.

Description
This function verifies that the Flash has been properly erased by using Vt mode and an external voltage
provided on the TEST1 device pin starting from the address passed in the parameter “start”. “length”
words are read, starting at the starting address. The area specified for blank check must be within a single
bank specified by “core”. If the array contains multiple banks, Flash_Vt_Blank_B must be called separately
for each bank to be blank checked. Regions may cross sector boundaries, as long as the sectors all
reside in the same bank. The user must also specify via the status.stat1 parameter whether to also blank
check the corresponding parity and ECC bits for the given main Flash address range (for more details,
see the above Parameter table).

50 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise,
damage to the device will likely occur. This function is not recommended for use in a production
environment.

3.30.15 Flash_Vt_Read_V()- Deprecated
[Vt read Flash data to buffer]
FAPI_ERROR_CODE Flash_Vt_Read_V(UINT32 *start,

UINT32 *buff,
UINT32 length,
UINT32 delay,
FLASH_CORE core,
FLASH_ARRAY_ST *cntl

);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be read
buff UINT32 * Pointer to buffer in RAM where the read data will

be copied
length UINT32 Number of 32-bit words to be read
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
core FLASH_CORE Bank select (0-7) of bank within which region to be

read resides
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function returns an FAPI_ERROR_CODE, which reflects the status of the setup_state_machine().
The value of "length" words starting at address "buffer" will be written with data from Flash in Vt mode. Vt
mode is a special test mode that allows the word line voltage to the Flash to be supplied externally
through the TEST1 device pin.

Description
This function reads data stored in the Flash in Vt mode and copies it to successive locations pointed to by
"buffer".

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise,
damage to the device will likely occur. This function is not recommended for use in a production
environment.

51SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.16 Flash_Vt_Verify_B()- Deprecated
[Vt Verify Flash region against data buffer]
BOOL Flash_Vt_Verify_B(UINT32 *start,

UINT32 *buff,
UINT32 length,
FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST *cntl
FLASH_STATUS_ST *status,
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be read
buff UINT32 * Pointer to data buffer against which to verify data in

Flash in Vt mode
length UINT32 Number of 32-bit words to be read
core FLASH_CORE Bank select (0-7) of bank within region to be read
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information.

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing verify (based on voltage on TEST1 pin)
stat2 Data at first location failing verify (based on voltage on TEST1 pin)
stat3 Data expected at failing address
stat4 Total number of failing bits found in region

Vt mode is a special test mode that allows the word line voltage to the Flash to be supplied externally
through the TEST1 device pin.

Description
This function verifies a region of Flash against a data buffer pointed to by "buff" by using Vt mode and an
external voltage provided on the TEST1 device pin starting from the address passed in the parameter
“start”. “length” words are read, starting at the starting address. The area specified for verify must be
within a single bank specified by “core”. If the array contains multiple banks, Flash_Vt_Verify_B must be
called separately for each bank to be verified. Regions may cross sector boundaries, as long as the
sectors all reside in the same bank.

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise,
damage to the device will likely occur. This function is not recommended for use in a production
environment.

52 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30.17 Flash_Vt_Verify_Data_B()- Deprecated
[Vt verify against 'cyclical' buffer]
BOOL Flash_Vt_Verify_Data_B(UINT32 *start,

UINT32 *buff,
UINT32 length,
FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST *cntl
FLASH_STATUS_ST *status,
UINT32 buflen
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be read
buff UINT32 * Pointer to data buffer against which to verify data in

Flash in Vt mode
length UINT32 Number of 32-bit words to be read
core FLASH_CORE Bank select (0-7) of bank within region to be read
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information.
buflen UINT32 Length of cyclical data buffer in 32-bit words

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing verify (based on voltage on TEST1 pin)
stat2 Data at first location failing verify (based on voltage on TEST1 pin)
stat3 Data expected at failing address
stat4 Total number of failing bits found in region

Vt mode is a special test mode that allows the word line voltage to the Flash to be supplied externally
through the TEST1 device pin.

Description
This function verifies a region of Flash against a cyclical data buffer pointed to by "buff" by using Vt mode
and an external voltage provided on the TEST1 device pin starting from the address passed in the
parameter “start”. “length” words are read, starting at the starting address. The area specified for verify
must be within a single bank specified by “core”. If the array contains multiple banks,
Flash_Vt_Verify_Data_B must be called separately for each bank to be verified. Regions may cross sector
boundaries, as long as the sectors all reside in the same bank.

53SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise,
damage to the device will likely occur. This function is not recommended for use in a production
environment.

3.30.18 Flash_Vt_Zeros_B()- Deprecated
[Vt verify region contains all 0's]
BOOL Flash_Vt_Zeros_B(UINT32 *start,

UINT32 length,
FLASH_CORE core,
UINT32 delay,
FLASH_ARRAY_ST *cntl
FLASH_STATUS_ST *status,
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in Flash that will be read for

all 0x00000000
length UINT32 Number of 32-bit words to be read
core FLASH_CORE Bank select (0-7) of bank within region to be read
delay UINT32 From Table 4, Flash Delay Parameter Values in

Section 4 of this document
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing verify (based on voltage on TEST1 pin)
stat2 Data at first location failing verify (based on voltage on TEST1 pin)
stat3 Data expected at failing address (0x00000000)
stat4 Total number of failing bits found in region

Vt mode is a special test mode that allows the word line voltage to the Flash to be supplied externally
through the TEST1 device pin.

Description
This function verifies a region of Flash contains all 0x00000000 by using Vt mode and an external voltage
provided on the TEST1 device pin starting from the address passed in the parameter “start”. “length”
words are read, starting at the starting address. The area specified for Vt read must be within a single
bank specified by “core”. If the array contains multiple banks, Flash_Vt_Zeros_B must be called separately
for each bank to be verified. Regions may cross sector boundaries, as long as the sectors all reside in the
same bank.

54 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

Warning
The result of the read is dependent on the voltage threshold of the bits in the address range being read
and the voltage that is being applied externally on the TEST1 pin. This function also requires that the
NTRST device pin be held at logic '1' and that your hardware supports supplying a DC voltage between
0.0 V and 8.0 V to the TEST1 pin after powering up the DUT but before calling the function. Before
powering down the device, the user must take care to first power down the TEST1 pin to 0.0 V, otherwise,
damage to the device will likely occur. This function is not recommended for use in a production
environment.

3.30.19 OTP_Blank_B()- Deprecated
BOOL OTP_Blank_B(UINT32 *start,

UINT32 length,
FLASH_CORE core,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in the customer OTP sector

that will be blank-checked
length UINT32 Number of 32-bit words to be blank-checked
core FLASH_CORE Bank select (0-7) of bank within which customer

OTP sector resides
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of the first non-blank location
stat2 Data read at the first non-blank location
stat3 Expected data (0xFFFFFFFF)
stat4 Read mode value in REGOPT register when non-blank location read. 0xA is value

for read margin 1 mode, 0x2 is value for normal read mode.

Description
This function verifies that the OTP section is still blank. The area specified for blank check must be within
the OTP sector of the bank specified by “core” and the control register should be passed in as “cntl”. This
function is simply a wrapper around Flash_Blank_B, so it should be considered deprecated in favor of
simply calling Flash_Blank_B.

55SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.20 OTP_PSA_Verify_B()- Deprecated
BOOL OTP_PSA_Verify_B(UINT32 *start,

UINT32 length,
UINT32 psa,
FLASH_CORE core,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in the customer OTP sector

that will be verified
length UINT32 Number of 32-bit words to be verified using PSA
psa UINT32 The expected PSA value against which the actual

PSA values will be compared
core FLASH_CORE Bank select (0-7) of bank within which the customer

OTP sector resides
cntl FLASH_ARRAY_ST Flash Control Base address of module where

customer OTP sector resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 PSA for read-margin 0
stat2 PSA for read-margin 1
stat3 PSA for normal read mode
stat4 Unused

Description
This function verifies proper programming by using normal read, read-margin 0 and read-margin 1 modes,
but will do so through the Parallel Signature Analysis (PSA) module. Verification starts from the start
address Flash_Start_PU32 and checks Flash_Length_U32 words from the start address. The area
specified for PSA verify must be within the OTP sector of the bank specified by “core” and the control
register should be passed in as “cntl”. This function is simply a wrapper around Flash_PSA_Verify_B, so it
should be considered deprecated in favor of simply calling Flash_PSA_Verify_B.

56 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30.21 OTP_Read_V()- Deprecated
void OTP_Read_V(UINT32 *start,

UINT32 *buffer,
UINT32 length,
UINT32 core,
FLASH_ARRAY_ST *cntl
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in the customer OTP sector

that will be read
buffer UINT32 * Pointer to buffer in RAM where the read data will

be copied
length UINT32 Number of 32-bit words to be read
core FLASH_CORE Bank select (0-7) of bank within which customer

OTP sector resides
cntl FLASH_ARRAY_ST Flash Control Base address of Flash module

Return Value
This function does not return any value, but "length" words starting at address "buffer" will be written with
data from customer OTP sector.

Description
This function reads data stored in the customer OTP sector of the Flash and copies it to successive
locations pointed to by "buffer". This function is simply a wrapper around Flash_Read_V, so it should be
considered deprecated in favor of simply calling Flash_Read_V.

57SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

API Functions www.ti.com

3.30.22 OTP_Verify_B()- Deprecated
BOOL OTP_Verify_B(UINT32 *start,

UINT32 *buffer,
UINT32 length,
FLASH_CORE core,
FLASH_ARRAY_ST cntl,
FLASH_STATUS_ST *status
);

Parameters

Parameter Type Purpose
start UINT32 * Points to the first word in the customer OTP sector

to be verified
buffer UINT32 * Pointer to the starting address of buffer with data to

verify against
length UINT32 Number of 32-bit words to be verified
core FLASH_CORE Bank select (0-7) of bank where the customer OTP

sector resides
cntl FLASH_ARRAY_ST Flash Control Base address of module where

customer OTP sector resides
status FLASH_STATUS_ST * Pointer to status structure for storing statistical

information

Return Value
This function returns a Boolean value. Pass = 1, Fail = 0. In addition, the following values are stored in the
FLASH_STATUS_ST structure (only on failure):

stat1 Address of first location failing verify
stat2 Data at first location failing verify
stat3 Data expected at failing address
stat4 Value of 0x2 means normal read failure, 0x6 means read margin 0 failure, and 0xA

means read margin 1 failure

Description
This function verifies proper programming by using normal read, read-margin 0 and read-margin 1 modes.
Verification starts from the start address “start” and checks “length” words from the start address.

The area specified for verify must be within the OTP sector of the bank specified by “core” and the control
register should be passed in “cntl”. The verify routine compares the data stored in the Flash to the data
stored in the buffer pointed to by “buffer”. This function is simply a wrapper aroung Flash_Verify_B, so this
function should be considered deprecated in favor of simply calling Flash_Verify_B directly.

58 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com API Functions

3.30.23 verify_read()- Deprecated
[verify until a mismatch is found]
UINT16 verify_read(volatile UINT16 *addr,

UINT32 *length,
FLASH_ARRAY_ST cntl,
UINT32 delay,
FLASH_TIMING_ST *timing
);

Parameters

Parameter Type Purpose
addr volatile UINT16 ** Pointer to address pointer, which is the current

starting address to begin verifying. This address
pointer is incremented for every address that
compares correctly, and when a mismatch occurs,
the address pointer now points to the address of
the failing location.

length UINT32 * Pointer to a length value in bytes that is
decremented for every matching address. On
mismatch, the length being pointed to is the
remaining bytes before the end of the buffer,
starting at the last failing address.

cntl FLASH_ARRAY_ST * Flash Control Base address of module where the
Flash State Machine resides

delay UINT32 From Table 4, Flash Delay Parameter Values in
Section 4 of this document

timing FLASH_TIMING_ST * Timing structure containing the timing for the given
verify mode and also the 16-bit data value against
which to compare the 16-bit values being verified.

NOTE: This function must be executed from RAM in non-pipeline mode.

Return Value
This function returns the 16-bit failing data at the first failing address, and it also updates the address
pointed to by 'addr' and the length pointed to by 'length' so that the following verify can pick up where it left
off.

Description
This function is used to verify a range of data of '*length' bytes compared against a 16 bit value specified
in the FLASH_TIMING_ST structure. If any location does not match the compare data, the function returns
the failing data and also makes sure the address pointer pointed to by 'addr' is updated to the address of
the failing location, and that the length pointed to by 'length' is updated to the reflect the remaining bytes
before the end of the region.

59SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Flash Delay Parameter Values www.ti.com

4 Flash Delay Parameter Values
Some Flash algorithms rely on a delay parameter to generate timing. These algorithms take a UINT32
parameter "delay" that is meant to compensate the clock frequency. This value is used to scale timings
based HCLK and the maximum allowed FCLK as configured in the OTP via scaling RWAIT in the
FDRCNTL register or calculating appropriate values to pass to the wait_delay function.

The generic calculation for the delay parameter is as follows:

delay = (ceiling)(HCLK (in Mhz) / 2)
For example:

Table 4. Example Flash Delay Parameter Values
HCLK frequency (in MHz) Delay value

HCLK ≤ 2 1
2 ≤ HCLK ≤ 4 2
4 ≤ HCLK ≤ 6 3
6 ≤ HCLK ≤ 8 4
8 ≤ HCLK ≤ 10 5
10 ≤ HCLK ≤ 12 6
12 < HCLK ≤ 14 7
14 < HCLK ≤ 16 8
16 < HCLK ≤ 18 9
18 < HCLK ≤ 20 10
20 < HCLK ≤ 22 11
22 < HCLK ≤ 24 12
24 < HCLK ≤ 26 13
26 < HCLK ≤ 28 14
28 < HCLK ≤ 30 15
30 < HCLK ≤ 32 16
32 < HCLK ≤ 34 17
34 < HCLK ≤ 36 18
36 < HCLK ≤ 38 20

... ...
158 < HCLK ≤ 160 80

... ...
178 < HCLK ≤ 180 90

... ...

60 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com Recommended Flow Guidelines

5 Recommended Flow Guidelines

5.1 New Devices from Factory
Devices are shipped erased from the Factory. It is recommended, but not required to do a blank check on
devices received to verify they are erased.

5.2 Using Flash_Erase_B()
Figure 1 describes the flow for erasing a single sector on a device when using the Flash_Erase_B function
to accomplish the erase.

The user should familiarize themselves with the Flash_Erase_B function description in Section 3.10.

To save erase time, Flash_Erase_B supports disabling preconditioning (program to 0's prior to applying
erase pulses) on sectors that return TRUE from the Flash_Blank_B function. This preconditioning disable
is accomplished via a special key (0x12345678) passed via the FLASH_STATUS_ST status.stat1 element
(for more information, see Flash_Erase_B desciption in Section 3.10) to the Flash_Erase_B function.

While this feature does enable potentially faster throughput for erase on blank sectors, it does require the
user to take extra care to make sure no depleted bits exist in the target sector prior to calling
Flash_Erase_B with preconditioning disabled. This is the reason for the Flash_Compact_B call prior to the
Flash_Blank_B call in Figure 1. A device shipped from TI should have no depleted columns, but a device
that may have been reset or power cycled during a previous erase operation may contain depleted
columns or marginally erased bits. The flow shown in Figure 1 is designed to repair any such bits if
allowed to run to completion on a given sector.

It is not advisable to skip erase altogether on sectors that read as blank, because these sectors may
require repair to marginally erased bits or depleted columns that is performed during execution of
Flash_Erase_B.

Flash_Erase_B also allows for collecting erase pulse statistics for the sector if the user is interested.

61SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Start

Done

Flash_Erase_B

==

TRUE

Yes

DUT fails Erase

No

status.stat1=0x00000000

(preconditioning enabled)

Start

Flash_Compact_B

==

TRUE

Done

Flash_Erase_B

==

TRUE

Yes

Yes

DUT fails

Compaction

DUT fails Erase

No

No

Flash_Blank_B

==

TRUE

status.stat1=0x12345678

(preconditioning disabled)

status.stat1=0x00000000

(preconditioning enabled)

Yes

No

Recommended Flow Guidelines www.ti.com

Figure 1. Using Flash_Erase_B() With Optional Preconditioning Disabled Flow

Figure 2. Using Flash_Erase_B() Simple Flow

62 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Start

Flash_Compact_B

==

TRUE

Done

Flash_Erase_Bank_B

==

TRUE

Yes

Yes

DUT fails

Compaction

DUT fails Erase

No

No

Flash_Blank_B

==

TRUE

status.stat1=0x12345678

(preconditioning disabled)

status.stat1=0x00000000

(preconditioning enabled)

Yes

No

www.ti.com Recommended Flow Guidelines

5.3 Using Flash_Erase_Bank_B()
Figure 3 describes the flow for erasing a single bank on a device when using the Flash_Erase_Bank_B
function to accomplish the erase.

The user should familiarize themselves with the Flash_Erase_Bank_B function description in Section 3.11.

To save erase time, Flash_Erase_Bank_B supports disabling preconditioning (program to 0's prior to
applying erase pulses) on banks that return TRUE from the Flash_Blank_B function. This preconditioning
disable is accomplished via a special key (0x12345678) passed via the FLASH_STATUS_ST status.stat1
element (for more information, see the Flash_Erase_Bank_B desciption in Section 3.11) to the
Flash_Erase_Bank_B function.

While this feature does enable potentially faster throughput for erase on blank banks, it does require the
user to take extra care to make sure no depleted bits exist in the target sector prior to calling
Flash_Erase_Bank_B with preconditioning disabled. This is the reason for the Flash_COD_Compact_B
call prior to the Flash_Blank_B call in Figure 3. A device shipped from TI should have no depleted
columns, but a device that may have been reset or power cycled during a previous erase operation may
contain depleted columns or marginally erased bits. The flow shown in Figure 3 is designed to repair any
such bits if allowed to run to completion on a given sector.

It is not advisable to skip erase altogether on sectors that read as blank, because these sectors may
require repair to marginally erased bits or depleted columns that is performed during execution of
Flash_Erase_Bank_B.

Flash_Erase_Bank_B also allows for collecting erase pulse statistics for the sector if the user is interested.

Figure 3. Using Flash_Erase_Bank_B() With Optional Preconditioning Disabled Flow

63SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Start

Done

Flash_Erase_Bank_B
==

TRUE

Yes

DUT fails Erase

No

status.stat1=0x00000000

(preconditioning enabled)

Recommended Flow Guidelines www.ti.com

Figure 4. Using Flash_Erase_Bank_B() Simple Flow

64 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Start

Done

DUT fails Erase

No

Yes

Flash_Erase_Sector_B

TRUE

www.ti.com Recommended Flow Guidelines

5.4 Using Flash_Erase_Sector_B()
Figure 5 describes the flow for erasing a single bank on a device when using the Flash_Erase_Sector_B
function to accomplish the erase.

The user should familiarize themselves with the Flash_Erase_Sector_B function description in
Section 3.12.

Figure 5. Using Flash_Erase_Sector_B() Flow

65SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Start

Done

Yes

Yes

DUT fails Erase

No

Call

Flash_Start_Erase_B()

Flash_Status_U16()

!=

BUSY

Flash_Status_U16()

!=

Error Code

No

Call

setup_state_machine()

for current bank

FBSE = Enabled

Sectors

FMAC = Current Bank

Another Sector to Erase?
Yes

No

All Banks

Setup?

Setup

Next

Bank

Yes

No

Recommended Flow Guidelines www.ti.com

5.5 Using Flash_Start_Erase_B()
Figure 6 describes the flow for erasing a sector or sectors on a device when using the
Flash_Start_Erase_B function to accomplish the erase.

The user should familiarize themselves with the Flash_Start_Erase_B function description in Section 3.20.

Figure 6. Using Flash_Start_Erase_B() Flow

66 TMS470/570 Platform F035 Flash API Reference Guide v1.09 SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

Start with first data

buffer

Flash_Prog_B

==

TRUE

Last data

buffer?

Next Data

Buffer

Start again with

first data buffer

Last data

buffer?

Done

Next Data

Buffer

Flash_Verify_B

==

TRUE

Yes

Yes
Yes

Yes

DUT fails Program DUT fails Verify
No

No

NoNo

www.ti.com Recommended Flow Guidelines

5.6 Recommended Programming Flow
The flow in Figure 7 assumes the user has already erased all affected sectors using one of the
previously described erase flow(s) (see Section 5.2 - Section 5.5). The user needs to manage the
data buffers being programmed to Flash such that they do not cross boundaries between Flash banks.
Also note that the user must take care to make sure data buffers are 32-bit aligned.

For example, if a user has 1KB of data to write starting at the last 768 bytes of bank 0 on a device with
more than 1 bank, you need to divide the data into a 768 byte chunk to be written to bank 0 with one call
to Flash_Prog_B, and the remaining 256 bytes are to be written to bank 1 with a second call to
Flash_Prog_B. Within the same bank, you may program any amount of data within the limits of the
available data buffer.

In another example, if the user has 3 bytes to program to the device, the user should read from the 32-bit
location, to which the data will be programmed, to appropriately fill in the 4th byte in the data buffer.

TI recommends programming all data buffers using Flash_Prog_B, then performing verify on all buffers
using either Flash_Verify_B or Flash_PSA_Verify_B. It is NOT recommended to program a buffer, verify
the buffer, then program the next buffer, verify, and so forth. The reason for this is the very small risk that
a device damaged in handling may contain a Flash bit susceptible to charge loss from bit-bit stresses
introduced during programming. If the bit that drags the damaged bit down is in a separate data buffer,
then the damaged bit may pass verify after its initial programming, but programming subsequent buffers
may cause the damaged bit to fail a subsequent verify. Note that bit damage is not expected in any part
shipped from TI, but since the possibility of damage does exist in any subsequent manufacturing process,
programming all data before verifying all data will more likely catch any damaged bits at the program and
verify stage rather than in the field.

Figure 7. Recommended Programming Flow

67SPNU493E–April 2012–Revised February 2014 TMS470/570 Platform F035 Flash API Reference Guide v1.09
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

www.ti.com

Appendix A Revision History

Table 5 lists the API versions.

Table 5. API Version History
Version Additions, Modifications and Deletions
< 1.05 For revisions prior to v1.05, please see the v1.04 documentation
1.05 • Corrected compilation issue with Fapi_HardwareCalculateECC()

• Corrected accumulated pulse count information returned by Flash_Prog_Data_B()
1.06 • Resolved Advisory #SDOCM00084916. For additional details , see SPNZ185.
1.07 • Removed deprecated function exec_pulses()

• The following functions are not recommended for use in production code and have been deprecated:
– Flash_PSA_Vt_Verify()
– Flash_Vt_Bit_Count()
– Flash_Vt_Blank_B()
– Flash_Vt_Read_V()
– Flash_Vt_Verify_Data_B()
– Flash_Vt_Zeros_B()
– verify_read()

• Resolved Advisory #SDOCM00104972. For additional details, see SPNZ185.
1.08 Corrected error with blank check at the end of the flash
1.09 • Resolved Advisory #SDOCM00105927. For additional details , see SPNZ185.

Table 6 lists the API changes made since the previous revision of this document.

Table 6. Document Revision History
Reference Additions, Modifications and Deletions

- Initial revision
A Updated for v1.04
B Updated for v1.05
C Updated for v1.06
D Updated for v1.08
E Updated for v1.09

68 Revision History SPNU493E–April 2012–Revised February 2014
Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNZ185
http://www.ti.com/lit/pdf/SPNZ185
http://www.ti.com/lit/pdf/SPNZ185
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU493E

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	TMS470/570 Platform F035 Flash API Reference Guide v1.09
	Table of Contents
	1 Types, Structures, Enumerators, and Macros
	1.1 Types
	1.1.1 UINT64
	1.1.2 UINT32
	1.1.3 UINT16
	1.1.4 UINT8
	1.1.5 UBYTE
	1.1.6 INT64
	1.1.7 INT32
	1.1.8 INT16
	1.1.9 INT8
	1.1.10 BOOL
	1.1.11 FLASH_ARRAY_ST

	1.2 Structures
	1.2.1 FLASH_STATUS_ST
	1.2.2 FLASH_FSM_INFO_ST

	1.3 Enumerators
	1.3.1 FLASH_CORE
	1.3.2 FLASH_SECT
	1.3.3 FAPI_CORE_SELECTOR
	1.3.4 FAPI_WRITE_SIZE
	1.3.5 FAPI_ERROR_CODE

	1.4 Macros
	1.4.1 FAPI_GET_WRITE_SIZE
	1.4.2 Parity and ECC Address Translation
	1.4.3 Flash_Prog_B
	1.4.4 Flash_Verify_B
	1.4.5 OTP_Prog_B

	2 API Description
	2.1 Pulse Size and Limits
	2.2 Build Environment
	2.3 API Include Files and Recommended Usage
	2.4 API Defines and their Usage

	3 API Functions
	3.1 Fapi_CalculateParity()
	3.2 Fapi_getApiVersion32()
	3.3 Fapi_HardwareCalculateEcc()
	3.4 Fapi_SetupFlashPump()
	3.5 Feed_Watchdog_V()
	3.6 Flash_Aux_Engr_U16()
	3.7 Flash_Blank_B()
	3.8 Flash_Compact_B()
	3.9 Flash_EngInfo_V()
	3.10 Flash_Erase_B()
	3.11 Flash_Erase_Bank_B()
	3.12 Flash_Erase_Sector_B()
	3.13 Flash_Prog_Data_B()
	3.14 Flash_PSA_Calc_U32()
	3.15 Flash_PSA_Verify_B()
	3.16 Flash_Read_V()
	3.17 Flash_Sector_Select_V()
	3.18 Flash_Start_Async_Command_B()
	3.19 Flash_Start_Compact_B()
	3.20 Flash_Start_Erase_B()
	3.21 Flash_Start_Prog_B()
	3.22 Flash_Status_U16()
	3.23 Flash_Verify_Data_B()
	3.24 Flash_Verify_Zeros_B()
	3.25 Flash_Zeros_B()
	3.26 get_timing()
	3.27 get_presc_shift()
	3.28 psa_u32()
	3.29 setup_state_machine()
	3.30 wait_delay()
	3.30.1 aligned_byte_width()- Deprecated
	3.30.2 ceil_div_by_x()- Deprecated
	3.30.3 Flash_API_Version_U16()- Deprecated
	3.30.4 Flash_Calculate_Parity_B()- Deprecated
	3.30.5 Flash_Compact_Status_U16()- Deprecated
	3.30.6 Flash_EngRow_V()- Deprecated
	3.30.7 Flash_Erase_Status_U16()- Deprecated
	3.30.8 Flash_Match_Key_B()- Deprecated
	3.30.9 Flash_Match_Key_V()- Deprecated
	3.30.10 Flash_PSA_Vt_Verify_B()- Deprecated
	3.30.11 Flash_Set_Vread_V()- Deprecated
	3.30.12 Flash_Start_Command_B()- Deprecated
	3.30.13 Flash_Vt_Bit_Count()- Deprecated
	3.30.14 Flash_Vt_Blank_B()- Deprecated
	3.30.15 Flash_Vt_Read_V()- Deprecated
	3.30.16 Flash_Vt_Verify_B()- Deprecated
	3.30.17 Flash_Vt_Verify_Data_B()- Deprecated
	3.30.18 Flash_Vt_Zeros_B()- Deprecated
	3.30.19 OTP_Blank_B()- Deprecated
	3.30.20 OTP_PSA_Verify_B()- Deprecated
	3.30.21 OTP_Read_V()- Deprecated
	3.30.22 OTP_Verify_B()- Deprecated
	3.30.23 verify_read()- Deprecated

	4 Flash Delay Parameter Values
	5 Recommended Flow Guidelines
	5.1 New Devices from Factory
	5.2 Using Flash_Erase_B()
	5.3 Using Flash_Erase_Bank_B()
	5.4 Using Flash_Erase_Sector_B()
	5.5 Using Flash_Start_Erase_B()
	5.6 Recommended Programming Flow

	Appendix A Revision History

