
OMAP5912 Multimedia Processor
Serial Interfaces
Reference Guide

Literature Number: SPRU760C
February 2006

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from
a third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2006, Texas Instruments Incorporated

3OMAP5912SPRU760C

Preface

��������	�
��	�

About This Manual

This document describes the serial interfaces of the OMAP5912 multimedia
processor.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the fol-
lowing number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

Documentation that describes the OMAP5912 device, related peripherals,
and other technical collateral, is available in the OMAP5912 Product Folder
on TI’s website: www.ti.com/omap5912.

Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

Contents

4

������	

1 SPI Master/Slave 17.
1.1 Functional Description 17.
1.2 Interface 19.
1.3 SPI Registers 19.
1.4 Protocol Description 28.

1.4.1 MCU-DSP Protocol 29.
MCU-DSP Transmit Protocol in Master Mode 29.
MCU-DSP Receive/Transmit Protocol in Master Mode 31.
MCU-DSP Transmit Protocol in Slave Mode 33.
MCU-DSP Receive/Transmit Protocol in Slave Mode 35.

1.4.2 DMA Protocol 37.
DMA Transmit Protocol in Master Mode 37.
DMA Receive Protocol in Master Mode 39.
DMA Transmit and Receive Protocol in Master Mode 41.
DMA Transmit Protocol in Slave Mode 43.
DMA Receive Protocol in Slave Mode 45.
DMA Transmit and Receive Protocol in Slave Mode 47.

1.4.3 Overflow/Underflow Interrupts 49.
Overflow Interrupt Generation 49.
Underflow Interrupt Generation 50.

1.4.4 Transmission Modes 52.
1.5 Idle and Wake-Up Feature 53.
1.6 Emulation Mode 55.
1.7 Reset 55.

2 I2C Multimaster Peripheral 56.
2.1 Overview 56.
2.2 Functional Overview 56.
2.3 I2C Controller Features 57.
2.4 I2C Master/Slave Controller Signal Pads 57.
2.5 Operational Details 58.

2.5.1 I2C Reset 58.
2.5.2 I2C Bit Transfer 58.
2.5.3 Data Validity 59.
2.5.4 START and STOP Conditions 60.

Contents

5OMAP5912SPRU760C

2.6 I2C Operation 60.
Serial Data Formats 60.
Master Transmitter 62.
Master Receiver 62.
Slave Transmitter 63.
Slave Receiver 63.
2.6.1 Arbitration 63.
2.6.2 I2C Clock Generation and I2C Clock Synchronization 64.
2.6.3 Prescaler (SCLK/ICLK) 65.
2.6.4 Noise Filter 65.
2.6.5 I2C Interrupts 65.
2.6.6 DMA Events 66.

2.7 Register Map 66.
Module Revision Number (REV) 68.
Single Byte Data (SBD) 69.
Bus Busy (BB) 70.
Receive Overrun (ROVR) 70.
Transmit Underflow (XUDF) 71.
Address As Slave (AAS) 71.
General Call (GC) 71.
Transmit Data Ry (XRDY) 72.
Receive Data Ry (RRDY) 72.
Register Access Ry (ARDY) 73.
No Acknowledgment (NACK) 73.
Arbitration_Lost (AL) 74.
Reset Done (RDONE) 74.
Receive DMA Channel Enable (RDMA_EN) 75.
Transmit DMA Channel Enable (XDMA_EN) 75.
Data Count (DCOUNT) 76.
Transmit/Receive FIFO Data Value (DATA) 76.
Soft Reset (SRST) 77.
I2C Module Enable (I2C_EN) 78.
Big Endian (BE) 79.
Start Byte (STB) 79.
Master/Slave Mode (MST) 79.
Transmitter/Receiver Mode (TRX) 80.
Expand Address (XA) 80.
Stop Condition (STP) 81.
Start Condition (STT) 81.
2.7.1 Own Address (OA) 82.

Slave Address (SA) 82.
SCL Low Time (SCLL) 83.
SCL High Time (SCLH) 84.
System Test Enable (ST_EN) 85.

Contents

6 OMAP5912 SPRU760C

Free Running Mode After Breakpoint (FREE) 85.
Test Mode Select (TMODE) 85.
Set Status Bits (SSB) 86.
SCL Line Sense Input Value (SCL_I) 86.
SCL Line Drive Output Value (SCL_O) 87.
SDA Line Sense Input Value (SDA_I) 87.
SDA Line Drive Output Value (SDA_O) 87.

2.8 Programming Guidelines 88.
2.8.1 Main Program 88.

Module Configuration Before Enabling the Module 88.
Initialization Procedure 88.
Configure Slave Address and Data Counter Registers 88.
Initiate a Transfer 88.
Poll Receive Data 88.
Poll Transmit Data 89.

2.9 Interrupt Subroutines 89.
2.10 Flow Diagrams 90.

3 MicroWire Interface 99.
3.1 MicroWire Registers 99.
3.2 Protocol Description 106.
3.3 Example of Protocol Using a Serial EEPROM (XL93LC66) 107.

3.3.1 Read Cycle 107.
3.3.2 Write Cycle 108.

3.4 Example of Protocol Using an LCD Controller (COP472-3) 109.
3.4.1 Loading Sequence 110.

3.5 Example of Protocol Using Autotransmit Mode 111.
3.6 Example of Autotransmit Mode With DMA Support 113.

4 Multichannel Serial Interfaces 114.
4.1 Communication Protocol 115.

4.1.1 Configuration Parameters 115.
Slave/Master Control 115.
Single-Channel/Multichannel 115.
Short/Long Framing 115.
Normal/Alternate Frame Synchronization 116.
Continuous/Burst Mode 116.
Normal/Inverted Clock 116.
Normal/Inverted Frame Synchronization 116.
Channel Used 116.
Word Size 117.
Frame Size 117.
Transmission Clock Frequency 117.

Contents

7OMAP5912SPRU760C

4.1.2 Sample Setup for Communication m-Law Interface Using Interrupts 118.
MCSI Configuration 118.
Transmit Data Loading (TX_INT ISR) 118.
Received Data Loading (RX_INT ISR) 118.
Stop MCSI 118.

4.1.3 Interface Management 119.
Interrupts Generation 119.
Receive Interrupt 120.
Transmit Interrupt 120.
Frame Duration Error Interrupt 121.

4.1.4 Interrupt Programming 123.
4.1.5 DMA Channel Operation 123.

Transmit DMA Transfers 124.
Receive DMA Transfers 124.

4.1.6 Interface Activation 125.
Start Sequence 125.
Stop Sequence 126.
Software Reset 126.

4.1.7 Functional Mode Timing Diagrams 126.
Single-Channel/Alternate Long Framing 126.
Single-Channel/Alternate Long Framing/Burst 127.
Single-Channel/Alternate Short Framing/Continuous/Burst 127.
Multichannel/Normal Short Framing/Channel4 Disable 127.
Multichannel/Alternate Long Framing/Continuous/Burst 128.
Multichannel/Normal Short Framing/Burst 128.
Single-Channel/Normal Short Framing 128.
Single-Channel/Normal Short Framing/Burst 129.
Single-Channel/Normal Long Framing 129.
Single-Channel/Normal Long Framing/Burst 129.
Single-Channel/Normal Long Framing/Continuous 130.
Single-Channel/Alternate Short Framing 130.
Single-Channel/Alternate Short Framing/Burst 130.

4.2 MCSI Register Descriptions 131.

5 MCSI1 and MCSI2 138.
5.1 MCSI1 Pin Description 138.
5.2 MCSI1 Interrupt Mapping 139.
5.3 MCSI1 DMA Request Mapping 140.
5.4 MCSI2 Pin Description 140.
5.5 MCSI2 Interrupt Mapping 141.
5.6 MCSI2 DMA Request Mapping 142.

Contents

8 OMAP5912 SPRU760C

6 UARTs 143.
6.1 Main Features 144.

6.1.1 UART/Modem Functions 145.
6.1.2 IrDA Functions 145.

6.2 Control and Status Registers Description 147.
6.2.1 UART IrDA Registers Mapping 147.

6.3 Interrupt Enable Register (IER) 157.
UART Modes IER 157.
IrDA Modes IE 158.

6.3.1 Divisor Latches (DLL, DLH) 162.
6.4 Transmit Frame Length Register (TXFLL, TXFLH) 168.

6.4.1 Received Frame Length Register (RXFLL, RXFLH) 168.
6.4.2 Status FIFO Register (SFREGL, SFREGH) 170.

6.5 Different Modes of Operation 174.
6.5.1 UART Modes 175.
6.5.2 SIR Mode 176.

Frame Format 177.
Asynchronous Transparency 177.
Abort Sequence 178.
Pulse Shaping 178.
Encoder 178.
Decoder 179.
IR Address Checking 179.

6.5.3 MIR Mode 179.
6.5.4 MIR Transmit Frame Format 180.

MIR Encoder/Decoder 180.
SIP Generation 181.

6.5.5 FIR Mode 182.
6.6 Functional Description 182.

6.6.1 Trigger Levels 182.
6.6.2 Interrupts 182.

UART Mode Interrupts 183.
IrDA Mode Interrupts 184.
Wake-Up Interrupt 185.

6.6.3 FIFO Interrupt Mode Operation 185.
6.6.4 FIFO Polled Mode Operation 186.
6.6.5 FIFO DMA Mode Operation 186.

DMA Signaling 186.
DMA Transfers (DMA Mode 1, 2, or 3) 187.

6.6.6 Sleep Mode 190.
UART Modes 190.
IrDA Modes 191.

6.6.7 Idle Modes 191.

Contents

9OMAP5912SPRU760C

6.6.8 Break and Time-Out Conditions 192.
Time-Out Counter 192.
Break Condition 192.

6.6.9 Programmable Baud Rate Generator 192.
6.6.10 Hardware Flow Control 195.

Auto-RTS 196.
Auto-CTS 196.

6.6.11 Software Flow Control 196.
Receive (RX) 197.
Transmit (TX) 197.

6.6.12 Autobauding Mode 198.
6.6.13 Frame Closing 200.
6.6.14 Store and Controlled Transmission (SCT) 201.
6.6.15 Underrun During Transmission 201.
6.6.16 Overrun During Receive 201.
6.6.17 Status FIFO 201.

6.7 UART Configuration Example 202.
6.7.1 UART Software Reset 202.
6.7.2 UART FIFO Configuration 203.
6.7.3 Baud Rate Data and Stop Configuration 203.

7 HDQ and 1-Wire Protocols 204.
7.1 Functional Description 204.

7.1.1 Receive and Transmit Operation 204.
7.1.2 HDQ Mode (Default) 205.

7.2 1-Wire Mode (SDQ) 207.
7.3 1-Wire Bit Mode Operation 209.

7.3.1 Timing Diagrams 209.
7.3.2 Write State Diagram 211.
7.3.3 Read State Diagram 211.
7.3.4 Status Flags 212.
7.3.5 Interrupts 212.

7.4 Power-Down Mode 213.
7.5 HDQ and 1-Wire Battery Monitoring Serial Interface 213.
7.6 Software Interface 214.

8 Frame Adjustment Counter 217.
8.1 Features 217.
8.2 Synchronization and Counter Control 218.

8.2.1 Synchronization 219.
8.3 FAC Interrupt 220.
8.4 FAC Clocks and Reset 221.
8.5 Software Interface 221.

Revision History 225.

Figures

10 OMAP5912 SPRU760C

�����	

1 SPI Master/Slave Block Diagram 18.
2 Transmission Example 26.
3 MCU-DSP Transmit Protocol in Master Mode With CIi = 0, CEi = 0 .

and CPi = 0 30.
4 MCU-DSP Receive Transmit Protocol in Master Mode With CIi = 0, CEi = 0,

and CPi = 0 32.
5 MCU-DSP Transmit Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0 34.
6 MCU-DSP RX/TX Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0 36.
7 DMA TX Protocol in Master Mode With CIi = 0, CEi = 0 and CPi = 0 38.
8 DMA Receive Protocol in Master Mode With CIi = 0, CEi = 0 and CPi = 0 40.
9 DMA Transmit and Receive Protocol in Master Mode With CIi = 0, CEi = 0

and CPi = 0 42.
10 DMA Transmit Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0 44.
11 DMA Receive Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0 46.
12 DMA Transmit and Receive Protocol in Slave Mode With CIi = 0, CEi = 0

and CPi = 0 48.
13 Example of an Overflow Generation With CIi = 0, CEi = 0 and CPi = 0 50.
14 Example of an Underflow Generation With CIi = 0, CEi = 0 and CPi = 0 51.
15 Example of a Transmission With CPi = 0 52.
16 Example of a Transmission With CPi = 1 53.
17 I2C System Overview 56.
18 Bit Transfer on the I2C Bus 59.
19 Start and Stop Condition Events 60.
20 I2C Data Transfer 61.
21 I2C Data Transfer Formats 62.
22 Arbitration Procedure Between Two Master Transmitters 64.
23 Synchronization of Two I2C Clock Generators 65.
24 Synchronization of Two I2C Clock Generators 65.
25 Setup Procedure 90.
26 Master Transmitter Mode, Polling 91.
27 Master Receiver Mode, Polling 92.
28 Master Transmitter Mode, Interrupt 93.
29 Master Receiver Mode, Interrupt 94.
30 Master Transmitter Mode, DMA 95.
31 Master Receiver Mode, DMA 96.
32 Slave Transmitter/Receiver Mode, Polling 97.
33 Slave Transmitter/Receiver Mode, Interrupt 98.

Figures

11OMAP5912SPRU760C

34 Block Diagram 99.
35 Behavior of an X25C02 EEPROM Read Cycle 106.
36 Behavior of an XL93LC66 EEPROM Read Cycle 107.
37 Read Cycle in Autotransmit Mode 112.
38 Communication m-Law Interface Interrupts Waveform Example 119.
39 Receive Interrupt Timing Diagram 120.
40 Transmit Interrupt Timing Diagram 121.
41 Frame Duration Error—Too Many (Long) 122.
42 Frame Duration Error—Too Few (Short) 122.
43 Transmit DMA Transfers 124.
44 Receive DMA Transfers 125.
45 Single-Channel/Alternate Long Framing 126.
46 Single-Channel/Alternate Long Framing/Burst 127.
47 Single-Channel/Alternate Short Framing/Continuous/Burst 127.
48 Multichannel/Normal Short Framing/Channel4 Disable 127.
49 Multichannel/Alternate Long Framing/Continuous/Burst 128.
50 Multichannel/Normal Short Framing/Burst 128.
51 Single-Channel/Normal Short Framing 128.
52 Single-Channel/Normal Short Framing/Burst 129.
53 Single-Channel/Normal Long Framing 129.
54 Single-Channel/Normal Long Framing/Burst 129.
55 Single-Channel/Normal Long/Continuous 130.
56 Single-Channel/Alternate Short Framing 130.
57 Single-Channel/Alternate Short Framing/Burst 130.
58 MCSI1 Interface 139.
59 MCSI2 Interface 141.
60 UART IrDA Signals 143.
61 Functional Block Diagram 144.
62 UART Data Format 175.
63 IrDA SIR Frame Format 177.
64 IrDA Encoder Mechanism 178.
65 IrDA Decoder Mechanism 179.
66 MIR Transmit Frame Format 180.
67 MIR Baud-Rate Adjustment Mechanism 181.
68 SIP Pulse 181.
69 FIR Transmit Frame Format 182.
70 Receive FIFO IT Request Generation 185.
71 Transmit FIFO IT Request Generation 186.
72 Receive FIFO DMA Request Generation (32 Characters) 187.
73 Transmit FIFO DMA Request Generation (56 Spaces) 188.
74 Transmit FIFO DMA Request Generation (8 Spaces) 189.
75 Transmit FIFO DMA Request Generation (1 Space) 190.
76 Baud Rate Generator 193.
77 Autobaud State Machine 200.

Figures

12 OMAP5912 SPRU760C

78 Read Timing Diagram 210.
79 Reset Timing Diagram 210.
80 Write Timing Diagram 210.
81 Write State Machine #1 211.
82 Read State Machine #1 211.
83 HDQ and 1-Wire Overview 213.
84 FAC Top-Level Diagram 218.
85 FAC Module Counters and Clock Synchronization 219.
86 Synchronization Circuit for Frame Synchronization and Frame Start Signals 220.
87 Synchronization Circuit Waveforms 220.

Tables

13OMAP5912SPRU760C

�����	

1 SPI Interface 19.
2 SPI Registers 20.
3 Identification Register Bit Description (SPI_REV—0x000) 20.
4 System Configuration Register Bit Description (SPI_SCR—0x010) 21.
5 System Status Register Bit Description (SPI_SSR—0x014) 21.
6 Interrupt Status Register Bit Description (SPI_ISR—0x018) 22.
7 Interrupt Enable Register Bit Description (SPI_IER—0x01C) 22.
8 Set Up SPI 1 Register Bit Description (SPI_SET1—0x024) 23.
9 Set Up SPI 2 Register Bit Description (SPI_SET2—0x028) 24.
10 Control SPI Register Bit Description (SPI_CTRL—0x02C) 25.
11 Shift Status Register Bit Description (SPI_DSR—0x030) 25.
12 Transmit Register Bit Description (SPI_TX—0x034) 26.
13 Receive Register Bit Description (SPI_RX—0x038) 27.
14 Test Register Bit Description (SPI_TEST—0x03C) 27.
15 Signal Pads 58.
16 Reset State of I2C Signals 58.
17 Electrical Specification of the Input/Output 59.
18 Register Map 67.
19 Module Revision Register(I2C_REV) 67.
20 Interrupt Enable Register(I2C_IE) 68.
21 Status Register(I2C_STAT) 69.
22 ARDY Set Conditions 73.
23 System Status Register(I2C_SYSS) 74.
24 Buffer Configuration Register(I2C_BUF) 75.
25 Data Counter Register(I2C_CNT) 75.
26 Data Access Register(I2C_DATA) 76.
27 I2C System Configuration Register(I2C_SYSC) 77.
28 I2C Configuration Register(I2C_CON) 78.
29 I2C Controller Transmitter/Receiver Operating Modes 80.
30 STT Register Values 81.
31 I2C Own Address Register(I2C_OA) 81.
32 I2C_SA: I2C Slave Address Register 82.
33 I2C Clock Prescaler Register(I2C_PSC) 82.
34 I2C SCL Low Time Control Register(I2C_SCLL) 83.
35 I2C SCL High Time Control Register(I2C_SCLH) 83.
36 System Test Register (I2C_SYSTEST) 84.

Tables

14 OMAP5912 SPRU760C

37 Test Mode Select 86.
38 MicroWire Registers 99.
39 Transmit Data Register (TDR) 100.
40 Receive Data Register (RDR) 100.
41 Control and Status Register (CSR) 100.
42 Setup Register 1 (SR1) 101.
43 Setup Register 2 (SR2) 103.
44 Setup Register 3 (SR3) 104.
45 Setup Register 4 (SR4) (R/W) 104.
46 Setup Register 5 (SR5) (R/W) 105.
47 Channel Selection Register (CHANNEL_USED_REG) 131.
48 Clock Frequency Register (CLOCK_FREQUENCY_REG) 132.
49 Oversized Frame Dimension Register (OVER_CLOCK_REG) 132.
50 Interrupt Masks Register (INTERRUPTS_REG) 132.
51 Main Parameters Register (MAIN_PARAMETERS__REG) 133.
52 Activity Control Register (CONTROL_REG) 134.
53 Interface Status Register (STATUS_REG) 135.
54 Receive Word Register (RX_REG[15:0]) 136.
55 Transmit Word Register (TX_REG[15:0]) 137.
56 MCSI1 Pin Descriptions 138.
57 MCSI1 Interrupt Mapping 140.
58 TDMA Request Mapping—MCSI1 140.
59 MCSI2 Pin Descriptions 140.
60 MCSI2 Interrupt Mapping 142.
61 DMA Request Mapping—MCSI2 142.
62 I/O Description 146.
63 UART IrDA Registers 148.
64 Receive Holding Register (RHR) 149.
65 Transmit Holding Register (THR) 149.
66 FIFO Control Register (FCR) 150.
67 Supplementary Control Register (SCR) 151.
68 Line Control Register (LCR) 152.
69 Line Status Register (LSR) (UART Mode) 153.
70 Line Status Register (LSR) (IR Mode) 154.
71 Supplementary Status Register (SSR) 155.
72 Modem Control Register (MCR) 155.
73 Modem Status Register (MSR) 156.
74 Interrupt Enable Register (IER) (UART Mode) 157.
75 Interrupt Enable Register (IER) (IrDA Mode) 158.
76 Interrupt Identification Register (IIR) (UART Mode) 159.
77 IrDA Mode Register (IIR) 159.
78 Enhanced Feature Register (EFR) 160.
79 Software Flow Control Options(EFR[0−3]) 161.
80 XON1/ADDR1 Register 161.

Tables

15OMAP5912SPRU760C

81 XON2/ADDR2 Register 162.
82 XOFF1 Register 162.
83 XOFF2 Register 162.
84 Scratchpad Register (SPR) 162.
85 Divisor Latches LowRegister (DLL) 163.
86 Divisor Latches High Register (DLH) 163.
87 Transmission Control Register (TCR) 163.
88 Trigger Level Register (TLR) 163.
89 TX FIFO Trigger Level Setting Summary 164.
90 RX FIFO Trigger Level Setting Summary 164.
91 Mode Definition Register 1 (MDR1) 164.
92 Mode Definition Register 2 (MDR2) 166.
93 UART Autobauding Status Register (UASR) 167.
94 Transmit Frame Length Low Register (TXFLL) 168.
95 Transmit Frame Length High Register (TXFLH) 168.
96 Received Frame Length Low Register (RXFLL) 168.
97 Received Frame Length High Register (RXFLH) 169.
98 Status FIFO Line Status Register (SFLSR) 169.
99 Resume Register (RESUME) 169.
100 Status FIFO Register Low (SFREGL) 170.
101 Status FIFO Register High (SFREGH) 170.
102 BOF Control Register (BLR) 170.
103 BOF Length Register (EBLR) 171.
104 Auxiliary Control Register (ACREG) 171.
105 Module Version Register (MVR) 172.
106 System Configuration Register (SYSC) 173.
107 System Status Register (SYSS) 173.
108 Wake-Up Enable Register (WER) 174.
109 UART Mode Interrupts 183.
110 IrDA Mode Interrupts 184.
111 UART BAUD Rate Settings (48-MHz Clock) 194.
112 IrDA Baud Rate Settings (48-MHz Clock) 195.
113 HDQ and 1-Wire Registers 214.
114 HDQ/1−Wire TX Write Data Register (HDQ1W_TX) 215.
115 HDQ/1−Wire RX Receive Buffer Register (HDQ1W_RX) 215.
116 HDQ/1−Wire Control Register (HDQ1W_CTRL) 215.
117 HDQ/1−Wire Interrupt Status Register (HDQ1W_INTS) 216.
118 FAC Registers 221.
119 Frame Adjustment Reference Count Register (FARC) 221.
120 Frame Start Count Register (FSC) 222.
121 FAC Control and Configuration Register (CTRL) 223.
122 FAC Status Register (STATUS) 223.
123 SYNC Counter Register (SYNC_CNT) 224.
124 Start Counter Register (START_CNT) 224.
125 Document Revision History 225.

16 OMAP5912 SPRU760C

This page is intentionally left blank.

17Serial InterfacesSPRU760C

����������������	

This document describes the serial interfaces of the OMAP5912 multimedia
processor.

1 SPI Master/Slave

1.1 Functional Description

The serial interface is a bidirectional, four-line interface dedicated to the
transfer of data to and from external devices offering a four-line serial interface.
The four-line interface consists of:

� The clock used to shift data in and out

� The device enable

� The data input

� The data output

This serial port is based on a looped shift register, thus allowing both transmit
(PISO) and receive (SIPO) modes. It can operate in master or in slave mode
using MCU-DSP or DMA protocol. It supports up to five serial devices. The
serial data is sent MSB first.

The serial port is fully controlled by the OCP bus (data write, data read, and
activation of serialization operations).

SPI Master/Slave

Serial Interfaces18 SPRU760C

Figure 1. SPI Master/Slave Block Diagram

OCP bus interface

Interrupt request

SEQ
Clock
divider

Clock
enable

SPI
functional

clock

SPI_SR

SRCLK

Transmit DMA request

Receive DMA request

nTSPEN[4:0]

TSPCLKMX
nTSDOEN

nSPEN0

SPI_SET1 SPI_TESTSPI_TXSPI_CTRLSPI_SET2

TSPDI_M

TSPDO

TSPDI_S

Shift clock in
slave mode.

Mode

OCP bus

SPI_IER

SPI_IER SPI_IER

Clock
enable

SPI
reset

Global
reset

SPI_IERSPI_DSR SPI_RX

TSPDI

SPI Master/Slave

19Serial InterfacesSPRU760C

1.2 Interface

Table 1 describes the SPI interface.

Table 1. SPI Interface

SPI Integration

SPIF.SCK Shift register clock
Output in master mode
Input in slave mode

I/O

SPIF.DIN Serial data Input in master mode
Serial data output in slave mode

I/O

SPIF.DOUT Serial data output in master mode
Serial data Input in slave mode

Note: this signal is always driven by OMAP5912
regardless of master or slave mode.

I/O

SPIF.CS[0] SPI chip-select 0

Configured in output in master mode
Configured in input in slave mode

I/O

SPIF.CS[3:1] External SPI chip-selects in master mode O

1.3 SPI Registers

Start address: FFFB 0C00

Address of one register: Start address + offset address

Access supported: 16 or 32 bits

SPI uses little-endian addressing scheme.

The SPI offers input and output registers for loading data to serialize (transmit)
and reading received data (receive).

SPI Master/Slave

Serial Interfaces20 SPRU760C

Table 2. SPI Registers

Base Address = 0xFFFB 0C00

Mnemonic Register Name Size (Bits) Access Offset

SPI_REV Identification register 32 R 0x000

Reserved 0x004

Reserved 0x008

Reserved 0x00C

SPI_SCR System configuration register 32 R/W 0x010

SPI_SSR System status register 32 R 0x014

SPI_ISR Interrupt status register 32 R/W 0x018

SPI_IER Interrupt enable register 32 R/W 0x01C

Reserved 0x020

SPI_SET1 Set up 1 register 32 R/W 0x024

SPI_SET2 Set up 2 register 32 R/W 0x028

SPI_CTRL Control register 32 R/W 0x02C

SPI_DSR Data status register 32 R 0x030

SPI_TX Transmit register 32 R/W 0x034

SPI_RX Receive register 32 R 0x038

SPI_TEST Test register 32 R/W 0x03C

Table 3. Identification Register Bit Description (SPI_REV—0x000)

Base Address = 0xFFFB 0C00, Offset = 0x00

Bit Name Function Access

31:8 Reserved A read access returns 0. R

7:0 REV Revision number

The 4-bit LSB indicates a minor revision.
The 4-bit MSB indicates a major revision.

Ex: 0x10 → version 1.0.

R

A write to this register has no effect.

A reset has no effect on the value returned.

SPI Master/Slave

21Serial InterfacesSPRU760C

Table 4. System Configuration Register Bit Description (SPI_SCR—0x010)

Base Address = 0xFFFB 0C00, Offset = 0x10

Bit Name Function Access Reset

31:5 Reserved A read access returns 0. R 0x0000000

4:3 IDLEMODE Power management, req/ack control

00: Force-idle. An idle request is acknowledged
unconditionally.
01: No idle. An idle request is never acknowledged.
10: Smart idle. An idle request is acknowledged
based on the internal activity of the module.
11: Reserved: Do not use.

R/W 00

2 EN
AWAKEUP

Wake-up feature control

0: Wake-up is disabled.
1: Wake-up capability is enabled.

R/W 0

1 SOFTRESET Software reset. Set this bit to 1 to trigger an SPI
reset. This bit is automatically reset by hardware.
Writing a 0 has no effect.

During reads, it always returns 0.

0: Normal mode.
1: The module is reset.

R/W 0

0 AUTOIDLE Internal OCP clock gating strategy

0: OCP clock is free-running.
1: Automatic OCP clock gating strategy is applied,
based on the OCP interface activity.

R/W 0

This register allows control of the OCP interface parameters.

Table 5. System Status Register Bit Description (SPI_SSR—0x014)

This register provides status information about the reset.

Base Address = 0xFFFB 0C00, Offset = 0x14

Bit Name Function Access Reset

31:1 Reserved A read access returns 0. R 0x00000000

0 RESETDONE Internal reset monitoring
0: Internal module reset is ongoing.
1: Reset completed.

R 0

Note: Before accessing or using the module the local host must ensure that internal reset is released by reading the system
status register (SPI_SSR).

SPI Master/Slave

Serial Interfaces22 SPRU760C

Table 6. Interrupt Status Register Bit Description (SPI_ISR—0x018)

Base Address = 0xFFFB 0C00, Offset = 0x18

Bit Name Function Access Reset

31:5 Reserved A read access returns 0. R 0x0000000

4 WAKEUP Wake-up: Active high. R/W 0

3 TX_UNDERFLOW Transmit underflow: Active high. R/W 0

2 RX_OVERFLOW Receive overflow: Active high. R/W 0

1 WE Write end: Active high.

Serialization complete.

R/W 0

0 RE Read end: Active high.

Receive register updated.

R/W 0

The interrupt status register is used to qualify the interrupt. Writing a 1 to the
corresponding status bit releases the interrupt. Writing a 0 has no effect.

Table 7. Interrupt Enable Register Bit Description (SPI_IER—0x01C)

Base Address = 0xFFFB 0C00, Offset = 0x1C

Bit Name Function Access Reset

31:5 Reserved A read access returns 0. R 0x0000000

4 MSK4 Enable interrupt when wake up

0: Interrupt disabled.
1: Interrupt active.

R/W 0

3 MSK3 Enable interrupt when TX underflow

0: Interrupt disabled.
1: Interrupt active.

R/W 0

2 MSK2 Enable interrupt when RX overflow

0: Interrupt disabled.
1: Interrupt active.

R/W 0

1 MSK1 Enable interrupt for write cycle

0: Interrupt disabled.
1: Interrupt active.

R/W 0

0 MSK0 Enable interrupt for read cycle

0: Interrupt disabled.
1: Interrupt active.

R/W 0

SPI Master/Slave

23Serial InterfacesSPRU760C

Table 8. Set Up SPI 1 Register Bit Description (SPI_SET1—0x024)

Base Address = 0xFFFB 0C00, Offset = 0x24

Bit Name Function Access Reset

31:6 Reserved A read access returns 0. R 0x0000000

5 DMA_EN Defines the protocol
0: MCU-DSP protocol.
1: DMA protocol.

R/W 0

4:1 PTV The prescale time value (2 PTV) generates the
shift register clock in master mode.
(TSPCLKMX).

The following scale values are supported:
0000: 1
0001: 2
0010: 4
0011: 8
0100: 16
0101: 32
0110: 64
0111: 128
1000: 256
1001: 512
1010: 1024
1011: 2048

Others: 4096

R/W 0000

0 EN_CLK SPI functional clock enable

0: Clock is shut off.

1: Clock is running.

R/W 0

Note: A write access to this register during a transaction does not affect the register and activates an OCP error.

SPI_SET1 is dedicated to the configuration of the serial port interface.

SPI_SET2 is dedicated to the configuration of the serial port interface.

SPI Master/Slave

Serial Interfaces24 SPRU760C

Table 9. Set Up SPI 2 Register Bit Description (SPI_SET2—0x028)

Base Address = 0xFFFB 0C00, Offset = 0x28

Bit Name Function Access Reset

31:16 Reserved A read access returns 0. R 0x0000

15 MODE 0: Slave mode

1: Master mode

R/W 0

14:10 CP Clock phase

The shift register clock begins toggling at:

0: The middle of the data transfer
1: The beginning of the data transfer

Bit 10 qualifies the access on device 0.
Bit 11 qualifies the access on device 1.
Bit 12 qualifies the access on device 2.
Bit 13 qualifies the access on device 3.
Bit 14 qualifies the access on device 4.

R/W 00000

9:5 CE Shift register enable

Active level of the shift register enable

0: The active level is low.
1: The active level is high.

Bit 5 qualifies the access on device 0.
Bit 6 qualifies the access on device 1.
Bit 7 qualifies the access on device 2.
Bit 8 qualifies the access on device 3.
Bit 9 qualifies the access on device 4.

R/W 00000

4:0 CI Clock invert

Inactive edge of the shift register clock

0: The inactive state of the clock is low.
1: The inactive edge of the clock is high.

Bit 0 qualifies the access on device 0.
Bit 1 qualifies the access on device 1.
Bit 2 qualifies the access on device 2.
Bit 3 qualifies the access on device 3.
Bit 4 qualifies the access on device 4.

R/W 00000

Notes: 1) In slave mode, the end of a transaction is detected based on CE field configuration. If CEi = 0, the end of a transaction
is detected on the rising edge of nSPEN0. If CEi = 1, the end of a transaction is detected on the falling edge of
nSPEN0. For more information on the different configurations, see Section 14.1.4.4.

2) In slave mode, all CIi bits must have the same value. This value depends on the inactive edge of the master clock.
3) In slave mode, all CEi bits must have the same value. This value depends on the active level of the master enable.
4) In slave mode, all CPi bits must have the same value. This value depends on the master clock phase.
5) A write access to this register during a transaction does not affect the register and activates an OCP error. The delay

between a write in the SET2 register and the CI/CE bits taking effect is 2 x ARMXOR_CK cycles.

SPI Master/Slave

25Serial InterfacesSPRU760C

Table 10. Control SPI Register Bit Description (SPI_CTRL—0x02C)

Base Address = 0xFFFB 0C00, Offset = 0x2C

Bit Name Function Access Reset

31:10 Reserved A read access returns 0. R 0x000000

9:7 AD Index of the addressed device

000: Enable device 0
001: Enable device 1
010: Enable device 2
011: Enable device 3
100: Enable device 4

Others: Undefined

R/W 000

6:2 NB Number of bits to receive/transmit

00000: 1 bit receive/transmit
11111: 32 bits receive/transmit

R/W 00000

1 WR Write process activation− active high R/W 0

0 RD Read and write process activation− active high R/W 0

Note: A write access to this register during a transaction does not affect the register and activates an OCP error.

This register is dedicated to the activation of the serial port interface. It defines:

� Read activation of the serial port

� Write activation of the serial port

� Number of bits to transfer (in the range 1 to 32)

� External device address (up to 5)

Table 11. Shift Status Register Bit Description (SPI_DSR—0x030)

Base Address = 0xFFFB 0C00, Offset = 0x30

Bit Name Function Access Reset

31:2 Reserved A read access returns 0. R 0x0000000

1 TX_EMPTY Shift register is empty: Active high

This bit is cleared when the transmit register
(SPI_TX) has been written (in functional or
emulation mode).

R 1

0 RX_FULL Receive register is full: Active high
This bit is cleared when the receive register
(SPI_RX) has been read (not cleared from
debugger read).

R 0

SPI Master/Slave

Serial Interfaces26 SPRU760C

The data to transmit are loaded to the SPI_TX register.

Table 12. Transmit Register Bit Description (SPI_TX—0x034)

Base Address = 0xFFFB 0C00, Offset = 0x34

Bit Name Function Access Reset

31:0 SPI_TX Data to transmit R/W 0x00000000

Notes: 1) The bits to transmit have to be aligned on the LSB of the SPI_TX register.

2) If the number of bits to transmit is 8, SPI_TX [7] is transmitted first, then SPI_TX [6], and so on.

3) If the number of bits to transmit is 32, SPI_TX [31] is transmitted first, then SPI_TX [30], and so on.

Figure 2. Transmission Example

REG_TX

310 15

REG_SR

310 16

REG_RX

310

TSPDOTSPDI

NB+1 bits

Note: The number of bits of the word to be transmitted is programmed through NB bit field in the SPI_CTRL register. The trans-
mit register (SPI_TX) data loading must be completed according to the transmitted word bit length and in the proper se-
quence register access. SPI_TX register is considered as updated (transmit register full with new data) when the most-
significant byte part of the transmitted word has been written. If the number of bits of the transmitted word is not aligned on
a byte boundary, the value of the unused bits is considered as don’t care.

� 0 ≤ NB ≤ 7: MSB = SPI_TX[7:0]
� 8 ≤ NB ≤ 15: MSB = SPI_TX[15:8]
� 16 ≤ NB ≤ 23: MSB = SPI_TX[23:16]
� 24 ≤ NB ≤ 31: MSB = SPI_TX[31:24]

The SPI_TX register is a 32-bit wide register that is 16-bit, or 32-bit addressable. Partial register update with successive
16-bit accesses can be used to load the transmit register. In that case, the LSB must be updated before the MSB part of
the transmitted word.

The received data are accessible on the OCP bus through SPI_RX register.

SPI Master/Slave

27Serial InterfacesSPRU760C

Table 13. Receive Register Bit Description (SPI_RX—0x038)

Base Address = 0xFFFB 0C00, Offset = 0x38

Bit Name Function Access Reset

31:0 SPI_RX Receive data R 0x00000000

Note: The number of bits of the word to be received is programmed through the NB bit field in SPI_CTRL register. Receive
register (SPI_RX) data read must be completed according to the received word bit length and in the proper sequence
register access.

The SPI_RX register is considered to be empty if the most-significant byte part of the received word has been read (in
functional mode only and not in emulation mode). If the number of bits of the received word is not aligned on a byte
boundary, the unused bits are read as undefined value.

The SPI_RX register is a 32-bit register that is 16-bit, or 32-bit addressable. Partial register reads with successive 16-bit
accesses can be used to read the receive register. In this case, the LSB must be read before the MSB part of the received
word.

Table 14. Test Register Bit Description (SPI_TEST—0x03C)

Base Address = 0xFFFB 0C00, Offset = 0x3C

Bit Name Function Access Reset

31:11 Reserved A read access returns 0. R 0x000000

10:6 RTSPEN Read value of TSPEN R 0

5 RCV Read clock value R 0

4 WCV Write clock value R/W 0

3 RTV Read test value (spy TSPDI) R 0

2 WTV Write test value (force TSPDO) R/W 0

1 FDO Force TSPDO to read value from WTV bit: Active
high

R/W 0

0 TMODE Test mode enable: Active high R/W 0

When the test mode is selected by setting the TMODE configuration bit in the
SPI_TEST register, it enables the following features:

� TSPDO is fed back to TSPDI.

� It is possible to control and monitor the TSPDO, TSPDI, and CLK_S pins.

When the test mode is not active, a read to the SPI_TEST register always
returns 0.

SPI Master/Slave

Serial Interfaces28 SPRU760C

� FDO: This control bit enables forcing TSPDO to read the value of the WTV
bit, allowing control of TSPDO.

� WTV: This bit enables the forcing the TSPDO value (test purposes).

� RTV: This bit is directly connected to TSPDI. It assumes that the input
signal is static.

� WCV: This bit enables forcing the CLK output (in master mode only) to
provide control of the CLK output.

� RCV: This bit is directly connected to CLK input. It enables testing
connectivity of CLK_S in feedback mode only.

� RTSPEN: These bits are directly connected to TSPEN outputs when the
test mode is enabled.

1.4 Protocol Description

The serial port interface must be configured via the setup registers.

A read process is always simultaneous with a write process, because the
internal shift register is based on a loop (FIFO principle). However, the
concurrent write process can be a dummy write if there is no data to transmit.

Depending on the mode selection (master or slave mode), the shift register
clock can be derived internally from the CLK_M, or it can come directly from
the CLK_S input.

The external transfer of a packet starts as soon as one of the transmit clocks
is generated.

The received/transmitted data packet is shifted in/shifted out on the rising or
falling edge of the shift register clock (SRCLK).

The loading of the packet is then validated on the deactivation of the enable
signal (rising or falling edge).

SPI_ISR is updated at the end of a transaction in MCU-DSP and DMA modes
(master or slave), and an interrupt request can be generated depending on
SPI_IER bits.

Sections 1.4.1 to 1.4.3 present the steps describing the MCU-DSP and DMA
protocols. These steps must be followed in order to have a correct behavior.

In MCU-DSP protocol, the interrupt request must not be masked. Thus, the
SPI can issue an interrupt to inform the host that the transaction is finished.

SPI Master/Slave

29Serial InterfacesSPRU760C

1.4.1 MCU-DSP Protocol

The host is either the MCU or the DSP.

MCU-DSP Transmit Protocol in Master Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup registers (SPI_SET1 and SPI_SET2).

Step 2: MCU-DSP writes to the transmit register (SPI_TX).

Step 3: MCU-DSP writes to the control register (SPI_CTRL).

Once the WR bit is set:

� The transmit register (SPI_TX) is copied into the shift register
(SPI_SR).

� The device enable goes low (nTSPENi), if CEi = 0 in SPI_SET2.

� The shift register clock is activated (SRCLK) and the transmis-
sion starts.

One SRCLK cycle later, the WR bit is reset.

Step 4: When the transmission is completed:

� The device enable (nTSPENi) goes high if CEi = 0 in SPI_SET2.

� The WE bit is set in the interrupt status register (SPI_ISR).

� An interrupt is generated, if MSK1 is set in the interrupt enable
register (SPI_IER).

Step 5: Once the MCU-DSP clears the WE status bit (SPI_ISR), the interrupt
request is released.

SPI Master/Slave

Serial Interfaces30 SPRU760C

Figure 3. MCU-DSP Transmit Protocol in Master Mode With CIi = 0, CEi = 0
and CPi = 0

MCU-DSP write in SPI_ISR

d0

1 NB+1

SRCLK

TSPENi

TSPDO

TSPDI

d0

SPI_SR[31:0]

DATA 1

SPI_SR

SPI_TX

WE = 1SPI_ISR

IRQ

MCU-DSP write

WE = 0

WR = 1SPI_CTRL WR = 0

TSPDOEN

DATA1

dNB

dNB

SPI Master/Slave

31Serial InterfacesSPRU760C

MCU-DSP Receive/Transmit Protocol in Master Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup registers (SPI_SET1 and SPI_SET2).

Step 2: MCU-DSP writes to the transmit register (SPI_TX) (optional). This
is necessary only when you want to perform a transmission at the
same time.

Step 3: MCU-DSP writes to the control register (SPI_CTRL).

Once the RD bit is set:

� The transmit register is copied into the shift register (SPI_SR).

� The device enable goes low (nTSPEN[i]), if CEi = 0 in
SPI_SET2.

� The shift register clock is activated (SRCLK) and the transmis-
sion and reception start.

� One SRCLK cycle later, the RD bit is reset.

The WR bit has no effect on behavior. This bit is reset like RD, if it has been
set.

When the reception is completed:

� The device enable goes high (nTSPEN[i]), if CEi = 0 in
SPI_SET2.

� The RE bit is set in the interrupt status register (SPI_ISR).

� The shift register (SPI_SR) is copied into the receive register
(SPI_RX).

� An interrupt is generated if MSK0 is set in the interrupt enable
register (SPI_IER).

Step 4: Once the MCU-DSP has read the receive register (SPI_RX) and has
cleared the RE status bit (SPI_ISR), the interrupt request is re-
leased.

SPI Master/Slave

Serial Interfaces32 SPRU760C

Figure 4. MCU-DSP Receive Transmit Protocol in Master Mode With CIi = 0, CEi = 0,
and CPi = 0

MCU-DSP write in SPI_ISR

d0

1 NB+1

SRCLK

TSPENi

TSPDO

TSPDI

d0

DATA 1

SPI_SR

SPI_TX

RE = 1SPI_ISR

IRQ

MCU-DSP write

RE = 0

RD = 1SPI_CTRL RD = 0

TSPDOEN

DATA1

dNB

dNB

READ DATA 1SPI_RX

READ DATA 1

SPI Master/Slave

33Serial InterfacesSPRU760C

MCU-DSP Transmit Protocol in Slave Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup registers (SPI_SET1 and SPI_SET2).

Step 2: MCU-DSP writes to the transmit register (SPI_TX).

Step 3: MCU-DSP writes to the control register (SPI_CTRL).

Once the WR bit is set, the transmit register (SPI_TX) is copied into
the shift register (SPI_SR).

If CEi = 0 in SPI_SET2, the transmission starts as soon as the
slave device enable goes low (nSPEN0) and the shift register clock
is activated (SRCLK).

One SRCLK cycle later, the WR bit is reset.

Step 4: When the transmission is completed:

� The device enable goes high (nSPEN0) if CEi = 0 in SPI_SET2.

� The WE bit is set in the interrupt status register (SPI_ISR).

� An interrupt is generated if MSK1 is set in the interrupt enable
register (SPI_IER).

Step 5: Once the MCU-DSP clears the WE status bit (SPI_ISR), the interrupt
request is released.

SPI Master/Slave

Serial Interfaces34 SPRU760C

Figure 5. MCU-DSP Transmit Protocol in Slave Mode With CIi = 0, CEi = 0 and
CPi = 0

MCU-DSP write in SPI_ISR

d0

1 NB+1

SRCLK

SPEN0

TSPDO

TSPDI

d0

SPI_SR[31:0]

DATA 1

SPI_SR

SPI_TX

WE = 1SPI_ISR

IRQ

MCU-DSP write

WE = 0

WR = 1SPI_CTRL WR = 0

TSPDOEN

DATA1

dNB

dNB

SPI Master/Slave

35Serial InterfacesSPRU760C

MCU-DSP Receive/Transmit Protocol in Slave Mode

The protocol is made up of several steps:

Step 1: MCU-DSP writes to the setup registers (SPI_SET1 and SPI_SET2).

Step 2: MCU-DSP writes to the transmit register (SPI_TX) (optional).

This is necessary only when you want to perform a transmission at the
same time.

Step 3: MCU-DSP writes to the control register (SPI_CTRL).

Once the RD bit is set, the transmit register (SPI_TX) is copied into
the shift register (SPI_SR).

If CEi = 0 in SPI_SET2, the transmission and reception start as soon
as the slave device enable goes low (nSPEN0) and the shift register
clock is activated (SRCLK).

One cycle later, the RD bit is reset.

The WR bit has no effect on the behavior. This bit is reset like RD,
if it has been set.

Step 4: When the reception is completed:

� The device enable goes high (nSPEN0) if CEi = 0 in SPI_SET2.

� RE status bit is set in the interrupt status register (SPI_ISR).

� The shift register (SPI_SR) is copied into the receive register
(SPI_RX).

� An interrupt is generated if MSK0 is set in the interrupt enable
register (SPI_IER).

Step 5: Once the MCU-DSP has read the receive register (SPI_RX) and has
cleared the RE status bit (SPI_ISR), the interrupt request is re-
leased.

SPI Master/Slave

Serial Interfaces36 SPRU760C

Figure 6. MCU-DSP RX/TX Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0

MCU-DSP write in SPI_ISR

d0

1 NB+1

SRCLK

TSPENi

TSPDO

TSPDI

d0

DATA 1

SPI_SR

SPI_TX

RE = 1SPI_ISR

IRQ

MCU-DSP write

RE = 0

RD = 1SPI_CTRL RD = 0

TSPDOEN

DATA1

dNB

dNB

READ DATA 1SPI_RX

READ DATA 1

SPI Master/Slave

37Serial InterfacesSPRU760C

1.4.2 DMA Protocol

The interrupt (nIRQ) waveform is the same as the one in MCU-DSP protocol.

DMA Transmit Protocol in Master Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup and control registers (SPI_SET1,
SPI_SET2, and SPI_CTRL).

When DMA_EN is set, a transmit DMA request is generated, once the
WR bit is set.

Step 2: The DMA writes the data to the transmit register (SPI_TX). Once the
data is written:

� The transmit DMA request is cleared.

� The TX_EMPTY status bit is reset in the data status register
(SPI_DSR).

� The transmit register (SPI_TX) is copied into the shift register
(SPI_SR).

� The device enable goes low (nTSPENi), if CEi = 0 in SPI_SET2.

� The shift register clock is activated (SRCLK) and the transmis-
sion starts.

Step 3: When the transmission is completed:

� The device enable goes high (nTSPENi) if CEi = 0 in SPI_SET2.

� TX_EMPTY is set in the data status register (SPI_DSR).

� A transmit DMA request is generated.

� Another transmission is able to start (Step2 → Step3 → Step2
→ Step3…).

To stop the process, the MCU-DSP must reset the WR bit in the control register
(SPI_CTRL).

SPI Master/Slave

Serial Interfaces38 SPRU760C

Figure 7. DMA TX Protocol in Master Mode With CIi = 0, CEi = 0 and CPi = 0

SRCLK

TSPENi

TSPDO

TSPDI

SPI_SR

SPI_TX

SPI_DSR

d0dNB

1 NB+1

d0dNB

SPI_SR[31:0]

DATA 1

TX_EMPTY = 1

DMA write

DATA 2

TX_ndma_req

SPI_CTRL RD = 0; WR = 1 RD = 0; WR = 0

MCU-DSP writeDMA write

d0dNB

1 NB+1

d0dNB

SPI_SR[31:0]

TX_EMPTY = 1TX_EMPTY = 0

MCU-DSP write

TX_EMPTY = 0

TSDOEN

SPI Master/Slave

39Serial InterfacesSPRU760C

DMA Receive Protocol in Master Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup registers (SPI_SET1 and SPI_SET2).

Step 2: MCU-DSP writes to the control register (SPI_CTRL). Once the RD
bit is set:

� The device enable goes low (nTSPENi) if CEi = 0 in SPI_SET2.

� The shift register clock is activated (SRCLK) and the reception
starts.

Step 3: When the reception is completed:

� The device enable goes high (nTSPENi) if CEi = 0 in SPI_SET2.

� The RX_FULL status bit is set in the data status register
(SPI_DSR).

� The shift register (SPI_SR) is copied into the receive register
(SPI_RX).

� A receive DMA request is generated.

Step 4: Once the DMA reads the receive register (SPI_RX):

� The device enable goes low (nTSPENi) if CEi = 0 in SPI_SET2.

� The RX_FULL status bit is reset in the data status register
(SPI_DSR).

� The receive DMA request is released.

� Another reception starts (Step3 → Step4 → Step3 → Step4…).

To stop the process, the MCU-DSP must reset the RD bit in the
control register (SPI_CTRL).

SPI Master/Slave

Serial Interfaces40 SPRU760C

Figure 8. DMA Receive Protocol in Master Mode With CIi = 0, CEi = 0 and CPi = 0

SCLK

PIGPIOPINSI[n]

PIGPIOPINSI [m]

 PICLKOCP

GPIO_IRQSTATUSx

POROCPSINTERRUPTx

PIOCPMCMD

PIOCPMADDR

PIOCPMDATA[n]

PIOCPMDATA[m]

POROCPSCMDACCEPT

The software resets the interrupt status register by writing a 1 at the
 corresponding bit position [n] (or [m]) after the interrupt is served.

Expected transition set in EDGE_CTRL 1-2 registers on GPIO [n]

00...001..000 0x0000

 2-cycles deassertion

00...101..00000...100..00000...000..0000

WR WR

 @ @

 1

 1

Expected transition set in EDGE_CTRL 1-2 registers on GPIO [n]

SPI Master/Slave

41Serial InterfacesSPRU760C

DMA Transmit and Receive Protocol in Master Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup and control registers (SPI_SET1,
SPI_SET2, and SPI_CTRL).

When DMA_EN is set, a transmit DMA request is generated, once the
RD and WR bits are set.

Step 2: The DMA writes the data in the transmit register (SPI_TX). Once the
data is written:

� The transmit DMA request is released.

� TX_EMPTY is reset in the data status register (SPI_DSR).

� The transmit register (SPI_TX) is copied into the shift register
(SPI_SR).

� The device enable goes low (nTSPENi), if CEi = 0 in SPI_SET2.

� The shift register clock (SRCLK) is activated and the transmis-
sion and reception start.

Step 3: When the transmission and the reception are completed:

� The device enable goes high (nTSPENi), if CEi = 0 in SPI_SET2.

� The shift register (SPI_SR) is copied into the receive register
(SPI_RX).

� RX_FULL and TX_EMPTY are set in the data status register
(SPI_DSR).

� A receive DMA request is generated.

Step 4: Once the DMA reads the receive register (SPI_RX):

� The RX_FULL status bit is reset in the data status register
(SPI_DSR).

� The receive DMA request is released.

� A transmit DMA request is generated.

� Another transmission and reception can start (Step 2 → Step 3
→ Step 4 → Step 2 → Step 3 → Step4 →…).

To stop the process, the MCU-DSP has to reset the RD and WR bits
in the control register (SPI_CTRL).

SPI Master/Slave

Serial Interfaces42 SPRU760C

Figure 9. DMA Transmit and Receive Protocol in Master Mode With CIi = 0, CEi = 0
and CPi = 0

SRCLK

TSPENi

TSPDO

TSPDI

SPI_SR

SPI_TX

SPI_DSR

dNB

d0dNB

1 NB+1

d0dNB

READ DATA1

WRITE DATA 1

DMA write

d0dNB

1 NB+1

d0

READ DATA2

WRITE DATA 2

BB C A

RX_ndma_req

TX_ndma_req

C A

READ DATA 1SPI_RX READ DATA 2

DMA read on SPI_RX register DMA read on SPI_RX register

SPI_CTRL RD = 1; WR = 1 RD = 0; WR = 0

MCU-DSP writeDMA write

TSPDOEN

A

A: TX_EMPTY = 1 and RX_FULL = 0

B: TX_EMPTY = 0 and RX_FULL = 0

C: TX_EMPTY = 1 and RX_FULL = 1

SPI Master/Slave

43Serial InterfacesSPRU760C

DMA Transmit Protocol in Slave Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup and control registers (SPI_SET1,
SPI_SET2, and SPI_CTRL).

When DMA_EN is set, a transmit DMA request is generated, once
the WR bit is set.

Step 2: The DMA writes the data in the transmit register (SPI_TX). Once the
data is written:

� The transmit DMA request is cleared (TX_NDMA_REQ goes
high).

� TX_EMPTY is reset in the data status register (SPI_DSR).

� The transmit register (SPI_TX) is copied into the shift register
(SPI_SR).

� If CEi = 0 in SPI_SET2, the transmission starts as soon as the
slave device enable goes low (nSPEN0) and the shift register
clock is activated (SRCLK).

Step 3: When the transmission is completed:

� TX_EMPTY is set in the data status register (SPI_DSR).

� A transmit DMA request is generated.

� Another transmission can start (Step2 → Step3 → Step2 →
Step3…).

To stop the process, the MCU-DSP has to reset the WR bit in the con-
trol register (SPI_CTRL).

SPI Master/Slave

Serial Interfaces44 SPRU760C

Figure 10. DMA Transmit Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0

SCLK

PIGPIOPINSI[n]

PIGPIOPINSI [m]

 PICLKOCP

GPIO_IRQSTATUSx

POROCPSINTERRUPTx

PIOCPMCMD

PIOCPMADDR

PIOCPMDATA[n]

PIOCPMDATA[m]

POROCPSCMDACCEPT

The software resets the interrupt status register by writing a 1 at the
 corresponding bit position [n] (or [m]) after the interrupt is served.

Expected transition set in EDGE_CTRL 1-2 registers on GPIO [n]

00...001..000 0x0000

 2-cycles deassertion

00...101..00000...100..00000...000..0000

WR WR

 @ @

 1

 1

Expected transition set in EDGE_CTRL 1-2 registers on GPIO [n]

SPI Master/Slave

45Serial InterfacesSPRU760C

DMA Receive Protocol in Slave Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup and control registers (SPI_SET1,
SPI_SET2, and SPI_CTRL).

� If CEi = 0 in SPI_SET2 and the RD bit is set, the reception starts
as soon as the slave device enable goes low (nSPEN0) and the
shift register clock is activated (SRCLK).

Step 2: When the reception is completed:

� The device enable goes high (nSPEN0), if CEi = 0 in SPI_SET2.

� The RX_FULL bit is set in the data status register (SPI_DSR).

� The shift register (SPI_SR) is copied into the receive register
(SPI_RX).

� A receive DMA request is generated.

Step 3: Once the DMA reads the receive register (SPI_RX):

� The RX_FULL status bit is reset in the data status register
(SPI_DSR).

� The receive DMA request is released.

� Another reception can start.

To stop the process, the MCU-DSP must reset the RD bit in the con-
trol register (SPI_CTRL).

SPI Master/Slave

Serial Interfaces46 SPRU760C

Figure 11. DMA Receive Protocol in Slave Mode With CIi = 0, CEi = 0 and CPi = 0

SRCLK

SPEN0

TSPDO

TSPDI

SPI_SR

SPI_DSR

d0dNB

1 NB+1

d0dNB

DATA1

RD = 1; WR = 0

RX_FULL = 1RX_FULL = 0

RX_ndma_req

SPI_CTRL

d0dNB

1 NB+1

d0dNB

DATA2

RX_FULL = 1

MCU-DSP write

SPI_RX DATA 1 DATA2

DMA read on SPI_RX

TSDOEN

DMA read on SPI_RX

RX_FULL = 0RX_FULL = 0

SPI Master/Slave

47Serial InterfacesSPRU760C

DMA Transmit and Receive Protocol in Slave Mode

The protocol has several steps:

Step 1: MCU-DSP writes to the setup and control registers (SPI_SET1,
SPI_SET2, and SPI_CTRL).

When the DMA_EN and WR bits are set, a transmit DMA request is
generated.

Step 2: The DMA writes the data in the transmit register (SPI_TX). Once the
data is written:

� The transmit DMA request is released.

� The TX_EMPTY status bit is reset in the data status register
(SPI_DSR).

� The transmit register (SPI_TX) is copied into the shift register
(SPI_SR).

If CEi = 0 in SPI_SET2, the transmission and reception start as soon
as the slave device enable goes low (nSPEN0) and the shift register
clock is activated (SRCLK).

Step 3: When the transmission and the reception are completed:

� The shift register (SPI_SR) is copied into the receive register
(SPI_RX).

� The RX_FULL and TX_EMPTY bits are set in the data status
register (SPI_DSR).

� A receive DMA request is generated.

Step 4: Once the DMA reads the receive register (SPI_RX):

� The RX_FULL status bit is reset in the data status register
(SPI_DSR).

� The receive DMA request is released.

� A transmit DMA request is generated.

� Another transmission and reception can start.

To stop the process, the MCU-DSP must reset the RD and WR bits
in the control register (SPI_CTRL).

SPI Master/Slave

Serial Interfaces48 SPRU760C

Figure 12. DMA Transmit and Receive Protocol in Slave Mode With CIi = 0, CEi = 0
and CPi = 0

SRCLK

SPEN0

TSPDO

TSPDI

SPI_SR

SPI_TX

SPI_DSR

dNB

d0dNB

1 NB+1

d0dNB

READ DATA1

WRITE DATA 1

DMA write

d0dNB

1 NB+1

d0

READ DATA2

WRITE DATA 2

BB C A

RX_ndma_req

TX_ndma_req

C A

READ DATA 1SPI_RX READ DATA 2

DMA read on SPI_RX register DMA read on SPI_RX register

SPI_CTRL RD = 1; WR = 1 RD = 0; WR = 0

MCU-DSP writeDMA write

TSPDOEN

A

A: TX_EMPTY = 1 and RX_FULL = 0

C: TX_EMPTY = 1 and RX_FULL = 1

B: TX_EMPTY = 0 and RX_FULL = 0

SPI Master/Slave

49Serial InterfacesSPRU760C

1.4.3 Overflow/Underflow Interrupts

In slave mode, whether the functional mode is MCU DSP or DMA, the
possibility exists that the receive register (SPI_RX) is overflowing or/and the
transmit register (SPI_TX) is underflowing. In either case, an interrupt is
generated and sent to the host. It is up to the host to take the right action,
according to the received interrupt.

Overflow Interrupt Generation

To generate an overflow interrupt, the SPI must be in the following state:

� SPI is configured in slave mode (SPI_SET2 [15] = 0).

� Enable for overflow interrupt is active (SPI_IER [2] = 1).

� The receive register (SPI_RX) has not been read between two receptions.

To release the interrupt (nIRQ) activated by the RX overflow bit (SPI_ISR [2]),
the user has to clear the RX overflow status bit by writing a 1 in SPI_ISR [2].

SPI Master/Slave

Serial Interfaces50 SPRU760C

Figure 13. Example of an Overflow Generation With CIi = 0, CEi = 0 and CPi = 0

SRCLK

SPEN0

TSPDO

TSPDI

SPI_SR

SPI_ISR

IRQ

d0dNB

1 NB+1

d0dNB

DATA 1

RD = 1; WR = 0

RE = 1RE = 0

RX_ndma_req

SPI_CTRL

d0dNB

1 NB+1

d0dNB

DATA 2

MCU-DSP write

SPI_RX DATA 1 DATA 2

 MCU-DSP read on SPI_RX register

RE = 1; RX_overflow = 1 RE = 0; RX_overflow = 0

MCU-DSP write 1 in RX_overflow and RE status bits

TSPDOEN

RX_FULL = 1RX_FULL = 0SPI_DSR RX_FULL = 0

Underflow Interrupt Generation

To generate an underflow interrupt, the SPI has to be in the following state:

� SPI is configured in slave mode (SPI_SET2 [15] = 0).

� Enable for underflow interrupt is active (SPI_IER [3] = 1).

� The transmit register (SPI_TX) has not been updated between two
transmissions.

To release the interrupt (nIRQ) activated by the TX underflow bit (SPI_ISR [3]),
the user has to clear the Tx_underflow status bit by writing a 1 to SPI_ISR [3].

SPI Master/Slave

51Serial InterfacesSPRU760C

Figure 14. Example of an Underflow Generation With CIi = 0, CEi = 0 and CPi = 0

SRCLK

SPEN0

TSPDO

TSPDI

SPI_SR

SPI_TX

SPI_ISR

IRQ

dNB

d0dNB

1 NB+1

d0dNB

READ DATA 1

WRITE DATA 1

DMA write

d0dNB

1 NB+1

d0

READ DATA 2

RE = 0; WE = 0 RE = 1 RE = 0

RX_ndma_req

TX_ndma_req

RE = 1; RE = 0

READ DATA 1SPI_RX READ DATA 2

DMA read on SPI_RX

DMA read on SPI_RX

SPI_CTRL RD = 1; WR = 1

DMA write on SPI_TX

 WE = 0;
TX_overflow = 0TX_underflow = 1

2 OCP clock cycles2 OCP clock cycles

TSPDOEN

SPI_DSR TX_EMPTY = 0 TX_EMPTY = 1

 MCU-DSP write in SPI_ISR

TX_EMPTY = 0

 MCU-DSP write in SPI_ISR

 MCU-DSP write

WE = 1

 in SPI_ISR

SPI Master/Slave

Serial Interfaces52 SPRU760C

1.4.4 Transmission Modes

The serial interface is active as soon as the shift register clock is activated.

nSPEN0 behaves the same as nTSPENi, as shown in Figure 15 and
Figure 16.

The transmitted data packet is shifted out on the rising or falling edge of
SRCLK, whereas the received data packet is captured on the falling or rising
edge of SRCLK (complementary edge).

When CPi = 0, the first edge (rising or falling) of SRCLK is used to capture the
data and the second edge (falling or rising) is used to shift the data.

Figure 15. Example of a Transmission With CPi = 0

CI = 0

TSPENi

TSPDO

TSPDI

LSB

1 * SRCLK 1 * SRCLK

1 NBSRCLK

CI = 1

MSB

QLSBMSB

CE = 1

CE = 0

When CPi = 1, the first edge (rising or falling) of SRCLK is used to shift the data
and the second edge (falling or rising) is used to capture the data.

SPI Master/Slave

53Serial InterfacesSPRU760C

Figure 16. Example of a Transmission With CPi = 1

CI = 0

TSPENi

TSPDO

TSPDI

LSB

1 * SRCLK 1 * SRCLK

1 NBSRCLK

CI = 1

MSB

Q LSBMSB

CE = 1

CE = 0

Q

1.5 Idle and Wake-Up Feature

When the host processor issues an idle request, the SPI goes into idle mode
(in this mode, no clock is provided to the SPI), according to the IDLEMODE
field of the system configuration register SPI_SCR as described in Table 4.

If the IDLEMODE field is set to no-idle, the SPI does not go to idle mode.

If the IDLEMODE field is set to force-idle, the SPI goes into idle mode and
acknowledges the request unconditionally. In this mode, SPI does not execute
any transaction.

If the IDLEMODE field is set to smart-idle, the SPI module evaluates its internal
capability to have the functional and interface clocks switched off. Once there
is no more internal activity, the request signal is acknowledged and the SPI
enters the sleep mode.

In this mode, the module issues a wake-up request when the following
conditions are met:

� SPI is configured in slave mode (SPI_SET2 [15] = 0).

� The slave device enable (nSPEN0) becomes inactive after a transaction.

SPI Master/Slave

Serial Interfaces54 SPRU760C

The ENAWAKEUP bit of the system configuration register (SPI_SCR) controls
this wake-up request.

When the system wakes up, the following actions are executed:

� The idle request goes low (inactive).

� The wake-up request is deasserted (in smart-idle mode only).

� The WAKEUP status bit is set in the interrupt status register (SPI_ISR).

� The idle acknowledge goes low (inactive).

� An interrupt is generated if MSK4 is set in the interrupt enable register
(SPI_IER).

Once the SPI acknowledges the idle request, the functional and interface
clocks can be stopped one cycle later.

Some restrictions apply on the module functionality when a wake-up request
is generated (in Smart-Idle mode only). The following conditions must be met
to ensure the right behavior of the requested transaction:

� The SPI must be in DMA mode: DMA_EN set in the set up register
(SPI_SET1 [5] = 1).

� The requested transaction that wakes up the module must be a receive:
RD set and WR reset in the control register (SPI_CTRL [1:0] = 01).

� The functional clock (CLK_M) must be active if the bit ENAWAKEUP
(SPI_SCR [2]) is set, in order to generate a wake-up request and to copy
the received data into the SPI_RX register. If the bit ENAWAKEUP is reset,
SPI does not work when receiving a read transaction.

The AUTOIDLE bit of the system configuration register (SPI_SCR [0]) can be
set in order to save power. This bit controls the internal OCP clock activity:

� When this bit is cleared, the internal OCP clock is free-running.

� When this bit is set, the internal OCP clock becomes inactive if the OCP
command is in IDLE state.

SPI Master/Slave

55Serial InterfacesSPRU760C

1.6 Emulation Mode

In emulation mode, SPI has a slightly different functionality: a read of SPI_RX
does not clear the bit RX_FULL (SPI_DSR [0]). Thus, SPI_RX is still
considered as not read for SPI.

Otherwise, SPI behavior in emulation mode is the same as in functional mode.

A read of the bits EMUSOFT and EMUFREE (SPI_SCR [6:5]) always gives 01.
A write has no effect on these bits.

1.7 Reset

Before accessing or using the module, the local host must ensure that internal
reset is released by reading the system status register (SPI_SSR).

I2C Multimaster Peripheral

Serial Interfaces56 SPRU760C

2 I2C Multimaster Peripheral

2.1 Overview

The multimaster I2C peripheral provides an interface between a local host (LH)
such as an MPU, MIPS, or DSP processor and any I2C-bus-compatible device
that connects via the I2C serial bus. External components attached to the I2C
bus can serially transmit/receive up to 8-bit data to/from the LH device through
the two-wire I2C interface.

This I2C peripheral supports any slave or master I2C-compatible device.
Figure 17 shows the example of a system with multiple I2C compatible devices
in which the I2C serial ports are connected together for a two-way transfer from
one device to other devices.

Figure 17. I2C System Overview

Interrupt
handler

Local host
(MPU)

System
DMA

P
er

ip
he

ra
l b

us

I2C
controller

I2C_IRQ

I2
C

_D
M

A
_R

X

I2
C

_D
M

A
_T

X

I2C. SCL

I2C. SDA

SCL

SDA

RP RP

Pullup
resistors

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

VDD

I2C I/F
Pads

2.2 Functional Overview

The I2C bus is a multimaster bus. The I2C controller supports the multimaster
mode that allows more than one device capable of controlling the bus to be
connected to it. Each I2C device, including the DSP, is recognized by a unique
address and can operate as either transmitter or receiver, according to the
function of the device. In addition to being a transmitter or receiver, a device
connected to the I2C bus can also be considered as master or slave when
performing data transfers. A master device is a device that initiates a data
transfer on the bus and generates the clock signals to permit that transfer.
During this transfer, any device addressed by this master is considered a
slave.

I2C Multimaster Peripheral

57Serial InterfacesSPRU760C

2.3 I2C Controller Features

The main features of the I2C controller are:

� Compliance with Philips I2C specification version 2.1, January 2000

� Standard mode (up to 100K bits/s) and fast mode (up to 400K bits/s)
support

� 7-bit and 10-bit device addressing modes

� General call

� Start/restart/stop

� Multimaster transmitter/slave receiver mode

� Multimaster receiver/slave transmitter mode

� Combined master transmit/receive and receive/transmit mode

� Built-in FIFO for buffered read or write

� Module enable/disable capability

� Programmable clock generation

� 16-bit wide access to maximize bus throughput

� Low-power design

� Two DMA channels

� Wide-interrupt capability

The current I2C does not support:

� High-speed (HS) mode for transfer up to 3.4M bits/s

� C-bus-compatibility mode

2.4 I2C Master/Slave Controller Signal Pads

Data are communicated to devices interfacing with the I2C via the serial data
line (SDA) and the serial clock line (SCL). These two wires carry information
between the DSP or MPU device and other devices connected to the I2C bus.
The I2C is a shared peripheral that can be allocated to the MCU or the DSP.
Both the SDA and SCL are bidirectional pins. They must be connected to a
positive supply voltage via a pullup resistor. When the bus is free, both pins
are high. The driver of these two pins has an open drain to perform the required
wired-AND function.

I2C Multimaster Peripheral

Serial Interfaces58 SPRU760C

Table 15. Signal Pads

Name Type Reset
Value

Description

I2C_SCL In/
Out(OD)

Input I2C serial CLK line.
Open-drain output buffer. Requires external pull-up resistor (Rp).

I2C_SDA In/
Out(OD)

Input I2C serial data line.
Open-drain output buffer. Requires external pull-up resistor (Rp).

2.5 Operational Details

2.5.1 I2C Reset

The I2C module can be reset in the following three ways:

� A system bus reset (RESET_ = 0). A device reset causes the system bus
reset.

� A software reset by setting the SRST bit in the I2C_SYSC register. This
bit has the same action on the module logic as the system bus reset.

� The I2C_EN bit in the I2C_CON register can also reset a part of the I2C
module. When the system bus reset is released (RESET_ = 1), I2C_EN
= 0 keeps the functional part of the I2C module in reset state and all
configuration registers can be accessed.

Table 16. Reset State of I2C Signals

Pin I/O/Z System Reset I2C Reset (I2C_EN = 0)

SDA I/O/Z High impedance High impedance

SCL I/O/Z High impedance High impedance

2.5.2 I2C Bit Transfer

The master device generates one clock pulse for each data bit transferred.
Because of the variety of technology devices (CMOS, NMOS, bipolar) that can
be connected to the I2C bus, the levels of logical 0 (low) and 1 (high) are
not fixed and depend on the associated level of VDD. See Table 17 for
electrical specifications.

I2C Multimaster Peripheral

59Serial InterfacesSPRU760C

Table 17. Electrical Specification of the Input/Output

Parameter

Standard Mode
Devices

Fast-Mode
Devices UnitParameter

Min Max Min Max
Unit

VIL Low-level input voltage:

Fixed input levels

VDD-related input levels

−0.5

−0.5

1.5

0.3VDD

n/a

−0.5

n/a

0.3VDD

V

VIH High-level input voltage:

Fixed input levels

VDD-related input levels

3.0

0.7VDD

VDDmax+0.5

VDDmax+0.5

n/a

0.7VDD

n/a

VDDmax+0.5

V

VOL1

VOL2

VOL3

Low-level output voltage:

VDD>2V

At 3mA sink current

At 6mA sink current

VDD<2V

At 3mA sink current

0

n/a

n/a

0.4

n/a

n/a

0

0

0

0.4

0.6

0.2VDD

V

2.5.3 Data Validity

The data on the SDA line must be stable during the high period of the clock.
The high and low states of the data line can change only when the clock signal
on the SCL line is low.

Figure 18. Bit Transfer on the I2C Bus

SDA

SCL

Data line
stable,

data valid

Change
of data
allowed

I2C Multimaster Peripheral

Serial Interfaces60 SPRU760C

2.5.4 START and STOP Conditions

The I2C module generates start and stop conditions when it is configured as
a master:

� START condition is a high-to-low transition on the SDA line while SCL is
high.

� STOP condition is a low-to-high transition on the SDA line while SCL is
high.

The bus is considered to be busy after the START condition (BB = 1) and free
after the STOP condition (BB = 0).

Figure 19. Start and Stop Condition Events

SDA

SCL

Start
condition (S)

Stop
condition (P)

2.6 I2C Operation

Serial Data Formats

The I2C controller operates in 16-bit word data format (byte write access
supported for the last access). Each byte put on the SDA line is 8 bits long. The
number of bytes that can be transmitted or received is unrestricted. The data
are transferred with the most-significant bit (MSB) first. Each byte is followed
by an acknowledge bit from the I2C module, if it is in receiver mode. The I2C
controller supports endianism.

I2C Multimaster Peripheral

61Serial InterfacesSPRU760C

Figure 20. I2C Data Transfer

1 2 7 8 9 1 2 8 9

MSB Acknowledgement
signal from receiver

Acknowledgement
signal from receiver

SDA

SCL

Start
condition (S)

Start
condition (S)

ACK ACK

The I2C module supports two data formats, as shown in Figure 21:

� 7-bit/10-bit addressing format

� 7-bit/10-bit addressing format with repeated start condition

The first byte after a start condition (S) always consists of 8 bits. In the
acknowledge mode, an extra bit dedicated for acknowledgement is inserted
after each byte.

In the addressing formats with 7-bit addresses, the first byte is composed of
7 MSB slave-address bits and 1 LSB R/W_ bit. In the addressing formats with
10-bit addresses, the first byte has 7 MSB slave address bits, such as 11110XX
where XX is the two MSB of the 10-bit addresses and 1 LSB R/W_ bit, which
is 0 in this case.

The least-significant R/W_ of the address byte indicates the direction of the
transmission of the following data bytes. If R/W_ is 0, the master writes data
into the selected slave; if it is 1, the master reads data out of the slave.

I2C Multimaster Peripheral

Serial Interfaces62 SPRU760C

Figure 21. I2C Data Transfer Formats

S

S Slave address R/W ACK Data ACK Data ACK S

1 7 1 1 8 1 8 1 1

S Slave address 1st 7-bit R/W ACK ACK Data ACK S

1 7 1 1 8 1 8 1 1

(a) 7-Bit addressing format

Slave address 2nd 7-bit

1 1 1 1 0 X X 0
(W) (b) 10-Bit addressing format

S Slave address R/W ACK Data ACK S

1 7 1 1 8 1 1

ACK

1 1

Slave address

7

R/W ACK

1 8

Data

Any number
of bytes

Any number
of bytes

(c) Addressing Format With Repeated Start Condition

Master Transmitter

In this mode, data assembled in one of the previously described data formats
is shifted out on the serial data line SDA in synch with the self-generated clock
pulses on the serial clock line SCL. The clock pulses are inhibited and SCL is
held low when the intervention of the processor is required (XUDF) after a byte
has been transmitted.

Master Receiver

This mode can be entered only from the master transmitter mode. With any
of the address formats (Figure 21 (a), (b), and (c)), the master receiver is
entered after the slave address byte and bit R/W_ have been transmitted, if
R/W_ is high. Serial data bits received on bus line SDA are shifted in synch with
the self-generated clock pulses on SCL. The clock pulses are inhibited and
SCL held low when the intervention of the processor is required (ROVR) after
a byte has been transmitted. At the end of a transfer, it generates the stop
condition.

I2C Multimaster Peripheral

63Serial InterfacesSPRU760C

Slave Transmitter

This mode can be entered only from the slave receiver mode. With any of the
address formats (Figure 21 (a), (b), and (c)), the slave transmitter is entered
if the slave address byte is the same as its own address and bit R/W_ has been
transmitted, if R/W_ is high. The slave transmitter shifts the serial data out on
the data line SDA in synch with the clock pulses that are generated by the
master device. It does not generate the clock, but it can hold clock line SCL
low while the local host is required to intervene (XUDF).

Slave Receiver

In this mode, serial data bits received on the bus line SDA are shifted-in in
synch with the clock pulses on SCL that are generated by the master device.
It does not generate the clock, but it can hold the clock line SCL low while the
local host is required to intervene (ROVR) following the reception of a byte.

2.6.1 Arbitration

If two or more master transmitters start a transmission on the same bus almost
simultaneously, an arbitration procedure is invoked. The arbitration procedure
uses the data presented on the serial bus by the competing transmitters. When
a transmitter senses that a high signal it has presented on the bus has been
overruled by a low signal, it switches to the slave receiver mode, sets the
arbitration lost (AL) flag, and generates the arbitration lost interrupt. Figure 22
shows the arbitration procedure between two devices. The arbitration
procedure gives priority to the device that transmits the serial data stream with
the lowest binary value. Should two or more devices send identical first bytes,
arbitration continues on the subsequent bytes.

I2C Multimaster Peripheral

Serial Interfaces64 SPRU760C

Figure 22. Arbitration Procedure Between Two Master Transmitters

Device 1 loses arbitration
and switches off.

1 0 1

0 01 01 1

0 01 01 1

Bus line
SCL

Data
from

device 1

Data
from

device 2

Bus line
SDA

2.6.2 I2C Clock Generation and I 2C Clock Synchronization

Under normal conditions, only one master device generates the clock signal,
SCL. During the arbitration procedure, however, two or more master devices
and the clock must be synchronized so that the data output can be compared.
The wired-AND property of the clock line means that a device that first
generates a low period of the clock line overrules the other devices. At this
high/low transition, the clock generators of the other devices are forced to start
generation of their own low period. The clock line is then held low by the device
with the longest low period, while the other devices that finish their low periods
must wait for the clock line to be released before starting their high periods.
A synchronized signal on the clock line is thus achieved, where the slowest
device determines the length of the low period and the fastest the length of the
high period.

If a device pulls down the clock line for a longer time, the result is that all clock
generators must enter the WAIT state. In this way, a slave can slow down a
fast master, and the slow device can create enough time to store a received
byte or prepare a byte to be transmitted. Figure 23 illustrates the clock
synchronization.

I2C Multimaster Peripheral

65Serial InterfacesSPRU760C

Figure 23. Synchronization of Two I2C Clock Generators

Wait
state

Start high
period

SCL from
device1

SCL from
device2

Bus line
SCL

2.6.3 Prescaler (SCLK/ICLK)

The I2C module is operated with an internal approximately 12-MHz clock
(ICLK). This clock is generated via the I2C prescaler block. The prescaler
consists of an 8-bit register. I2C _PSC is used for dividing down the system
clock (SCLK) to obtain an approximately 12-MHz clock for the I2C module.

Figure 24. Synchronization of Two I2C Clock Generators

1
(PSC+1)

PCLK ICLK

0x0:
0x1:

↓
0xFF:

Divide by 1
Divide by 2

↓
Divide by 256

Values after reset are low (All 8 bits).

2.6.4 Noise Filter

The noise filter suppresses any noise that is 50 ns or less. It is designed to
suppress noise with 1 ICLK, assuming the lower and upper limits of ICLK are
8 MHz and 16 MHz, respectively.

2.6.5 I2C Interrupts

The I2C module generates six types of interrupts: Arbitration-lost,
no-acknowledge, general call, registers-ready-for-access, receive, and
transmit. These six interrupts are accompanied by six interrupt masks and
flags defined in the I2C_IE and I2C_STAT registers, respectively.

� Arbitration lost interrupt (AL): Generated when the I2C arbitration
procedure is lost.

I2C Multimaster Peripheral

Serial Interfaces66 SPRU760C

� No-acknowledge interrupt (NACK): Generated when the master I2C does
not receive an acknowledge from the receiver.

� General call interrupt (GC): Generated when the device detects the
address of all zeros (8 bits).

� Registers-ready-for-access interrupt (ARDY): Generated by the I2C when
the previously programmed address, data, and command have been
performed and the status bits have been updated. This interrupt is used
to let the LH know that the I2C registers are ready for access.

� Receive interrupt/status (RRDY): Generated when there is received data
ready to be read by the LH from the I2C_DATA register. The LH can poll
this bit to read the received data from the I2C_DATA register.

� Transmit interrupt/status (XRDY): Generated when the LH needs to put
more data in the I2C_DATA register after the transmitted data has been
shifted out on the SDA pin. The LH can poll this bit to write the next
transmitted data into the I2C_DATA register.

When the interrupt signal is activated, the local host must read the I2C_STAT
register to define the type of interrupt, process the request, and then write into
this register the right value to clear the interrupt flag.

2.6.6 DMA Events

The I2C module can generate two DMA requests events, read (I2C_DMA_RX)
and write (I2C_DMA_TX), that the DMA controller can use to synchronously
read received data from the I2C_DATA and write transmitted data to the
I2C_DATA register. The DMA read and write requests are generated in a
similar manner as RRDY and XRDY, respectively.

The I2C DMA request signals (I2C_DMA_TX and I2C_DMA_RX) are activated
for every new 16-bit word to be read or written in the FIFOs.

2.7 Register Map

Table 18 lists the revision, interrupt enable, I2C status, system status, buffer
configuration, data counter, and data access registers. Table 19 through
Table 26 describe the register bits.

Start address: FFFB 3800

I2C Multimaster Peripheral

67Serial InterfacesSPRU760C

Table 18. Register Map
Name Addr

Offset
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I2C_REV 0x00 REV

I2C_IE 0x04 GC
_IE

XR
DY
_IE

RR
DY
_IE

AR
DY
_IE

NA
CK
_IE

AL_
IE

I2C_STAT 0x08 SB
D

BB RO
VR

XU
DF

AA
S

GC XR
DY

RR
DY

AR
DY

NA
CK

AL

Reserved 0x0C

I2C_SYSS 0x10 RDO
NE

I2C_BUF 0x14 RD
MA
_E
N

XDM
A_E

N

I2C_CNT 0x18 DCOUNT

I2C_DATA 0x1C DATA

I2C_SYSC 0x20 SR
ST

I2C_CON 0x24 I2C
_E
N

BE ST
B

MS
T

TR
X

X
A

ST
P

STT

I2C_OA 0x28 OA

I2C_SA 0x2C SA

I2C_PSC Ox30 PSC

I2C_SCLL 0x34 SCLL

I2C_SCLH 0x38 SCLH

I2C_SYSTE
ST

0x3C ST
_E
N

FRE
E

TMODE SS
B

SC
L
_I

SC
L

_O

SD
A
_I

SDA
_O

All bits defined as reserved must be written by software with zeros to preserve
future compatibility. When read, any reserved bit returns 0. Also, note that it
is good software practice to use complete mask patterns for setting or testing
bit fields individually within a register.

Table 19. Module Revision Register(I2C_REV)

Bit Name Description

15:8 − Reserved

7:0 REV Module version number

I2C Multimaster Peripheral

Serial Interfaces68 SPRU760C

This read-only register contains the hard-coded revision number of the
module. A write to this register has no effect.

Module Revision Number (REV)

This 8-bit field indicates the revision number of the current I2C controller
module. Its value is fixed by hardware and corresponds to the RTL revision of
this module.

The 4 LSBs indicate a minor revision. The 4 MSBs indicate a major revision.

For example:

� 0x20: Revision 2.0

� 0x21: Revision 2.1

A reset has no effect on the value returned.

Note:

I2C controller with interrupt using interrupt vector register (I2C_IV) is revision
1.x.

I2C controller with interrupt using status register bits (I2C_STAT) is revision
2.x.

Table 20. Interrupt Enable Register(I2C_IE)

Bit Name Description

15:6 − Reserved

5 GC_IE General call interrupt enable

4 XRDY_IE Transmit data ready interrupt enable

3 RRDY_IE Receive data ready interrupt enable

2 ARDY_IE Register access ready interrupt enable

1 NACK_IE No acknowledgment interrupt enable

0 AL_IE Arbitration lost interrupt enable

This R/W register controls the interrupts mask/unmask function.

The following are common to all bits:

When the local host sets a bit location to 1 , an interrupt is signaled to the local
host if the corresponding bit location in I2C_STAT (status register) is asserted
to 1 by the core of the I2C controller. If it is set to 0, the interrupt is masked and
is not signaled to the local host.

I2C Multimaster Peripheral

69Serial InterfacesSPRU760C

� 0: Interrupt disabled

� 1: Interrupt enabled

Value after reset is low (all bits).

Table 21. Status Register(I2C_STAT)

Bit Name Description

15 SBD Single byte data

14:13 − Reserved

12 BB Bus busy

11 ROVR Receive overrun

10 XUDF Transmit underflow

9 AAS Address as slave

8:6 − Reserved

5 GC General call

4 XRDY Transmit data ready

3 RRDY Receive data ready

2 ARDY Register access ready

1 NACK No acknowledgment interrupt enable

0 AL Arbitration lost interrupt enable

This register is composed of read-only and read-/clear-only registers. It
provides core status information for interrupt handling and other I2C control
management.

Single Byte Data (SBD)

This read-only bit is set to 1 in slave-receive or master-receive modes when
the last byte that was read from the I2C_DATA register contains a single valid
byte.

The core clears this bit to 0 when the local host clears the register access ready
interrupt flag.

I2C Multimaster Peripheral

Serial Interfaces70 SPRU760C

Note:

When SBD = 1, in little-endian data format (I2C_CON:BE = 0), the MSB
reads as 0x00, and in big-endian format (I2C_CON:BE = 1), the LSB reads
as 0x00.

Whenever the number of bytes to be received is unknown (for example,
slave receiver), the LH must poll this bit before clearing the register access
ready interrupt flag.

� 0: No action

� 1: Single valid byte in last 16-bit data read

Value after reset is low.

Bus Busy (BB)

This read-only bit indicates the state of the serial bus.

In slave mode, on reception of a start condition, the device sets BB to 1. BB
is cleared to 0 after reception of a stop condition.

In master mode, the software controls BB. To start a transmission with a start
condition, MST, TRX, and STT must be set to 1 in the I2C_CON register. To
end a transmission with a stop condition, STP must be set to 1 in the I2C_CON
register. When BB = 1, and STT is set to a 1, a restart condition is generated.

� 0: Bus is free

� 1: Bus is occupied

Value after reset is low.

Receive Overrun (ROVR)

Receive mode only.

This read-only bit indicates whether the receiver has experienced overrun.
Overrun occurs when the shift register is full and the receive FIFO is full. An
overrun condition does not result in a data loss; the peripheral is just holding
the bus (low on SCL) to prevent others bytes from being received.

ROVR is set to 1 when the I2C recognizes an overrun.

ROVR is clear when reading the I2C_DATA register, or when resetting the I2C
(I2C_CON:I2C_EN = 0).

I2C Multimaster Peripheral

71Serial InterfacesSPRU760C

� 0: Normal operation

� 1: Receiver overrun

Value after reset is low.

Transmit Underflow (XUDF)

Transmit mode only.

This read-only bit indicates whether the transmitter has experienced
underflow.

In the master transmit mode, underflow occurs when the shift register is empty,
the transmit FIFO is empty, and there are still some bytes to transmit
(DCOUNT ≠ 0).

In the slave transmit mode, underflow occurs when the shift register is empty,
the transmit FIFO is empty, and there are still some bytes to transmit (read
request from external I2C master).

XUDF is set to 1 when the I2C recognizes an underflow. The core holds the
line till the underflow cause disappears.

XUDF is clear when writing the I2C_DATA register or resetting the I2C
(I2C_CON:I2C_EN = 0).

� 0: Normal operation

� 1: Transmit underflow

Value after reset is low.

Address As Slave (AAS)

The device sets this bit to 1 when it recognizes its own slave address or an
address of all zeros (8 bits). The AAS bit is reset to 0 by restart or stop.

� 0: No action

� 1: Address as slave

Value after reset is low.

General Call (GC)

The device sets this read-/clear-only bit to1 if it detects the address of all zeros
(8 bits), that is, general call.

I2C Multimaster Peripheral

Serial Interfaces72 SPRU760C

When the core sets this bit to 1, an interrupt is signaled to the local host if the
interrupt was enabled.

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has
no effect.

When this bit is set to 1, AAS also reads as 1.

� 0: No action

� 1: General call

Value after reset is low.

Transmit Data Ry (XRDY)

Transmit mode only.

This read-/clear-only bit (XRDY) is set to 1 when the I2C peripheral is a master
or slave transmitter, the LH is able to write new data into the I2C_DATA
register, and the transmitter still requires new data. A master transmitter
requests new data if DCOUNT ≠ 0 , and a slave transmitter requests new data
if a read request is received from external master.

The transmitter requests two bytes to be written even if only a single byte is
needed. In this case, the other byte needs to be filled with a dummy 0x00 value
that is not transmitted over the I2C line.

When the core sets this bit to 1, an interrupt is signaled to the local host if the
interrupt was enabled. The LH can also poll this bit to write new transmitted
data into the I2C_DATA register.

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has
no effect.

If the DMA transmit mode is enabled, this bit is not set. Instead, a DMA TX
request to the main DMA controller of the system is generated.

� 0: Transmit buffer full (or receiver mode)
� 1: Transmit data ready (for write) and byte is needed

Value after reset is low.

Receive Data Ry (RRDY)

This read-/clear-only RRDY is set to 1 when the LH is able to read new data
from the I2C_DATA register. When the core sets this bit to 1, an interrupt is
signaled to the local host if the interrupt was enabled. The LH can also poll this
bit to read the received data in I2C_DATA register.

I2C Multimaster Peripheral

73Serial InterfacesSPRU760C

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has
no effect.

In interrupt mode, the LH needs to poll this bit after each read to I2C_DATA to
ensure that there is no other DATA on the FIFO waiting to be read. Indeed, the
RRDY needs to be cleared to 0 in order to receive a new RRDY interrupt.

If the DMA receive mode is enabled, this bit is not set. Instead, a DMA RX
request to the main DMA controller of the system is generated.

� 0: Receive buffer empty
� 1: Receive data ready (for read)

Value after reset is low.

Register Access Ry (ARDY)

When set to 1, this read-/clear-only bit indicates that the previously
programmed data and command (receive or transmit, master or slave) has
been performed and the status bit has been updated. The LH uses this flag to
let it know that the I2C registers are ready to be accessed again (see Table 22).

Table 22. ARDY Set Conditions

Mode Others ARDY Set Conditions

Master transmit STP = 1 DCOUNT = 0

Master receive STP = 1 DCOUNT = 0 and receiver FIFO empty

Master transmit or
receive

STP = 0 DCOUNT passed 0

Slave transmit − Stop or restart condition received from master

Slave receive − Stop or restart condition and receiver FIFO empty

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has
no effect.

� 0: No action

� 1: Access ready

Value after reset is low.

No Acknowledgment (NACK)

The read-/clear-only NO_ACKNOWLEDGE flag bit is set when the hardware
detects NO_ACKNOWLEDGE has been received.

I2C Multimaster Peripheral

Serial Interfaces74 SPRU760C

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has
no effect.

� 0: Normal/no action required

� 1: NACK

Value after reset is low.

Arbitration_Lost (AL)

The read-/clear-only ARBITRATION_LOST flag bit is set to 1 when the device
in the master transmitter mode senses it has lost an arbitration. This occurs
when two or more transmitters start a transmission almost simultaneously, or
when the I2C attempts to start a transfer while BB (bus busy) is 1.

When this is set to 1 due to arbitration lost, the core automatically clears the
MST/STP bits in the I2C_CON register and the I2C becomes a slave receiver.

The LH is able to clear this bit only by writing a 1 to this register. Writing 0 has
no effect.

� 0: Normal/no action required

� 1: Arbitration lost

Value after reset is low.

Table 23. System Status Register(I2C_SYSS)

Bit Name Description

15:1 − Reserved

0 RDONE− Reset Done

Reset Done (RDONE)

This read-only bit indicates the state of the reset in case of hardware reset,
global software reset (I2C_SYSC.SRST), or partial software reset
(I2C_CON.I2C_EN).

The module must receive all its clocks before it can grant a reset-completed
status.

� 0: Internal module reset is ongoing or partially held in reset

� 1: Reset completed

I2C Multimaster Peripheral

75Serial InterfacesSPRU760C

Value after reset is low.

Table 24. Buffer Configuration Register(I2C_BUF)

Bit Name Description

15 RDMA_EN Receive DMA channel enable

14:8 − Reserved

7 XDMA_EN Transmit DMA channel enable

6:0 − Reserved

This R/W register enables DMA transfers.

Receive DMA Channel Enable (RDMA_EN)

When this bit is set to 1, the receive DMA channel is enabled and the core
forces the receive data ready status bit (I2C_STAT:RRDY) to 0.

� 0: Receive DMA channel disabled

� 1: Receive DMA channel enabled

Value after reset is low.

Transmit DMA Channel Enable (XDMA_EN)

When this bit is set to 1, the transmit DMA channel is enabled and the core
forces the transmit data ready status (I2C_STAT:XRDY) bit to 0.

� 0: Transmit DMA channel disabled

� 1: Transmit DMA channel enabled

Value after reset is low.

Table 25. Data Counter Register(I2C_CNT)

Bit Name Description

15:0 DCOUNT Data count

This R/W register controls the numbers of bytes in the I2C data payload.

I2C Multimaster Peripheral

Serial Interfaces76 SPRU760C

Data Count (DCOUNT)

Master modes only (receive or transmit).

This 16-bit countdown counter decrements by 1 for every byte received or
sent. A write initializes DCOUNT to a saved initial value. A read returns the
number of bytes that are yet to be received or sent. A read into DCOUNT
returns the initial value only before a start condition and after a stop condition.

When DCOUNT reaches 0, the core generates a stop condition if a stop
condition was specified (I2C_CON:STP = 1), and the ARDY status flag is set
to 1 in the I2C_STAT register.

If I2C_CON:STP = 0, then the I2C asserts SCL = 0 when DCOUNT reaches
0. The LH can then reprogram DCOUNT to a new value and resume sending
or receiving data with a new start condition (restart). This process repeats until
the LH sets the STP to 1 in the I2C_CON register.

The ARDY flag is set each time DCOUNT reaches 0 and DCOUNT is reloaded
to its initial value.

In slave mode (receive or transmit), DCOUNT is not used.

0x0: Data counter = 65536 bytes (216)

0x1: Data counter = 1 bytes

 ↓ ↓

0xFFFF: Data counter = 65535 bytes (216 −1)

DCOUNT value after reset is 0x0000.

Table 26. Data Access Register(I2C_DATA)

Bit Name Description

15:0 DATA Transmit/Receive FIFO data

This register is the entry point for the local host to read data from or write data
to the FIFO buffer. The FIFO size is 2 x 16 bits (4 bytes). Bytes within a word
are stored and read in little-endian format (I2C_CON:BE = 0) or big-endian
format (I2C_CON:BE = 1).

Transmit/Receive FIFO Data Value (DATA)

When read, this register contains the received I2C data packet (1 or 2 bytes).
This register must be accessed 16-bit-wise by the LH. In the case of an odd
number of bytes received to read, the upper byte (with I2C_CON.BE = 0) or
the lower byte (with I2C_CON.BE = 1) of the last access always reads as 0x00.
The LH must check the SBD status bit in I2C_STAT register in order to flush
this null byte.

I2C Multimaster Peripheral

77Serial InterfacesSPRU760C

When written, this register contains the byte(s) value(s) to transmit over the
I2C data line (1or 2 bytes). This register must be accessed 16-bit-wise, except
for the last byte in case of an odd number of bytes to transmit. The last byte
of the data packet can be written using a byte write access or a 16-bit-wise
access. In the 16-bit-wise access, the module transmits only the relevant byte,
based on the byte counter (I2C_CNT). This feature is useful for DMA access,
which supports only one word size per channel.

In SYSTEST loopback mode (I2C_SYSTEST:TMODE = 11), this register is
also the entry/receive point for the data.

Values after reset are low (all 16-bits).

A read access when the buffer is empty returns the previous read data value.
A write access when the buffer is full is ignored. In both events, the FIFO
pointers are not updated and a remote access error (hardware error) is
generated (access qualifier). No remote error is generated if the local host
performs a 16-bit access if the buffer contains a single byte.

Table 27. I2C System Configuration Register(I2C_SYSC)

Bit Name Description

15:2 − Reserved

1 SRST Soft Reset

0 − Reserved

Soft Reset (SRST)

When this bit is set to 1, all of the module is reset, as for the hardware reset.
The core automatically sets this bit to 0, and it is only reset by the hardware
reset. During reads, it always returns 0.

� 0: Normal mode

� 1: The module is reset

Values after reset is low.

I2C Multimaster Peripheral

Serial Interfaces78 SPRU760C

Table 28. I2C Configuration Register(I2C_CON)

Bit Name Description

15 I2C_EN I2C module enable

14 BE Big endian mode

13:12 − Reserved

11 STB Start byte mode (master mode only)

10 MST Master/slave mode

9 TRX Transmitter/Receiver mode (master mode only)

8 XA Expand address

7:2 − Reserved

1 STP Stop condition (master mode only)

0 STT Start condition (master mode only)

Active Transfer Phase

During an active transfer phase (STT has been set to 1), no modification
must be done in this register. Changing it may result in an unpredictable
behavior.

I2C Module Enable (I2C_EN)

When this bit is set to 0, the I2C controller is not enabled and reset. When 0,
the receive and transmit FIFOs are cleared and all status bits are set to their
default values. None of the configuration registers (I2C_IE, I2C_BUF,
I2C_CNT, I2C_CON, I2C_OA, I2C_SA, I2C_PSC, I2C_SCLL and I2C_SCLH)
are reset, all keep their initial values, and all can be accessed. The LH must
set this bit to 1 for normal operation.

� 0: I2C controller in reset

� 1: I2C module enabled

Value after reset is low.

I2C Multimaster Peripheral

79Serial InterfacesSPRU760C

Big Endian (BE)

When this bit is 0 (default), the FIFO is accessed in little-endian format. In
transmit mode, the LSB (I2C_DATA [7:0]) is transmitted first, and the MSB
(I2C_DATA [15:8]) is transmitted in second position over the I2C line.
Conversely, in receive mode, the first, or odd, byte received (1,3, 5…) is stored
in the LSB position, and the second, or even, byte received is stored in the
MSB position.

When the LH sets this bit to a 1, the FIFO is accessed in big-endian format.
In transmit mode, the MS byte (I2C_DATA [15:8]) is transmitted first and the
LSB (I2C_DATA [7:0]) is transmitted in second position over the I2C line.
Conversely, in receive mode, the first, or odd, byte received (1,3, 5…) is stored
in the MS byte position, and the second, or even, byte received is stored in the
LSB position.

� 0: Little-endian mode

� 1: Big-endian mode

Value after reset is low.

Start Byte (STB)

Master mode only.

The local host sets the start-byte mode bit to 1 to configure the I2C in start byte
mode (I2C_SA = 00000001). See the Philips I2C specification Version 2.1 for
more details.

� 0: Normal mode
� 1: Start byte mode

Value after reset is low.

Master/Slave Mode (MST)

When this bit is cleared, the I2C controller is in the slave mode and the serial
clock (SCL) is received from the master device.

When this bit is set, the I2C controller is in the master mode and it generates
the serial clock.

This bit is automatically cleared at the end of the transfer on a detected stop
condition and in case of arbitration lost.

� 0: Slave mode
� 1: Master mode

Value after reset is low.

I2C Multimaster Peripheral

Serial Interfaces80 SPRU760C

Transmitter/Receiver Mode (TRX)

Master mode only.

When this bit is cleared, the I2C controller is in the receiver mode, and data on
data line SDA is shifted into the receiver FIFO and can be read from the
I2C_DATA register.

When this bit is set, the I2C controller is in the transmitter mode, and the data
written in the transmitter FIFO via I2C_DATA is shifted out on data line SDA.

� 0: Receiver mode
� 1: Transmitter mode

Value after reset is low. The operating modes are defined as shown in
Table 29.

Table 29. I2C Controller Transmitter/Receiver Operating Modes

MST TRX Operating Modes

0 x Slave receiver

0 x Slave transmitter

1 0 Master receiver

1 1 Master transmitter

Expand Address (XA)

When set, this bit expands the address to 10-bit.

� 0: 7-bit address mode
� 1: 10-bit address mode

Value after reset is low.

I2C Multimaster Peripheral

81Serial InterfacesSPRU760C

Stop Condition (STP)

Master mode only.

The local host is able to set this bit to a 1 to generate a stop condition. The
hardware resets it to 0 after the stop condition has been generated. The stop
condition is generated when DCOUNT passes 0.

When this bit is not set to 1 before the end of the transfer (DCOUNT = 0), the
stop condition is not generated and the SCL line is held to 0 by the master,
which can restart a new transfer by setting the STT bit to 1.

� 0: No action or stop condition detected

� 1: Stop condition queried

Value after reset is low.

Start Condition (STT)

Master mode only.

The local host is able to set this bit to a 1 to generate a start condition. The
hardware resets it to 0 after the start condition has been generated. The
start/stop bits can be configured to generate different transfer formats.

� 0: No action or start condition generated

� 1: Start

Value after reset is low.

Table 30. STT Register Values

STT STP Conditions Bus Activities

1 0 Start S−A−D

0 1 Stop P

1 1 Start−Stop (DCOUNT = n) S−A−D..(n)..D−P

1 0 Start (DCOUNT = n) S−A−D..(n)..D

DCOUNT is the data count value in the I2C_CNT register.

Table 31. I2C Own Address Register(I2C_OA)

Bit Name Description

15:10 − Reserved

9:0 OA Own address

This register specifies the module I2C 7-bit or 10-bit address (own address).

I2C Multimaster Peripheral

Serial Interfaces82 SPRU760C

2.7.1 Own Address (OA)

This field specifies either:

� A 10-bit address coded on OA [9:0] when XA (expand address, I2C_CON
[8]) is set to 1.

� A 7-bit address coded on OA [6:0] when XA (expand address, I2C_CON
[8]) is set to 0. In this case, application software must set OA [9:7] bits to
000.

Values after reset is low (all 10 bits).

Table 32. I2C_SA: I2C Slave Address Register

Bit Name Description

15:10 − Reserved

9:0 SA Slave address

This register specifies the addressed I2C module 7-bit or 10-bit address (slave
address).

Slave Address (SA)

This field specifies either:

� A 10-bit address coded on SA [9:0] when XA (expand address, I2C_CON
[8]) is set to 1.

� A 7-bit address coded on SA [6:0] when XA (expand address, I2C_CON
[8]) is set to 0. In this case, application software must set SA [9:7] bits to
000.

Values after reset are high (all 10 bits).

Table 33. I2C Clock Prescaler Register(I2C_PSC)

Bit Name Description

15:8 − Reserved

7:0 PSC Prescale sampling clock divider value

This register specifies the internal clocking of the I2C peripheral core.

I2C_PSC [7−0]: Prescale sampling clock divider value (PSC)

The core uses this 8-bit value to divide the system clock (SCLK) and generate
its own internal sampling clock (ICLK). The core logic is sampled at the clock
rate of the system clock for the module, divided by (PSC+1).

I2C Multimaster Peripheral

83Serial InterfacesSPRU760C

0x0: Divide by 1

0x1: Divide by 2

 ↓ ↓

0xFF: Divide by 256

Values after reset are low (all 8 bits).

Table 34. I2C SCL Low Time Control Register(I2C_SCLL)

Bit Name Description

15:8 − Reserved

7:0 SCLL SCL low time

This register determines the SCL low time value when master.

SCL Low Time (SCLL)

Master mode only.

This 8-bit value generates the SCL low time value (tLOW) when the peripheral
is operated in master mode.

The SCL low time depends on the I2C_PSC value and the ICLK time period
(internal sampling clock rate):

� When I2C_PSC = 0, tLOW = (SCLL+7) * ICLK time period

� When I2C_PSC = 1, tLOW = (SCLL+6) * ICLK time period

� When I2C_PSC > 1, tLOW = (SCLL+5) * ICLK time period

The different values to compute the SCL low time are due to the
synchronization stage and noise filter on the SCL line.

Values after reset are low (all 8 bits).

Table 35. I2C SCL High Time Control Register(I2C_SCLH)

Bit Name Description

15:8 − Reserved

7:0 SCLH SCL high time

This register determines the SCL high time value when master.

I2C Multimaster Peripheral

Serial Interfaces84 SPRU760C

SCL High Time (SCLH)

Master mode only.

This 8-bit value generates the SCL high-time value (tHIGH) when the peripheral
is operated in master mode.

The SCL high time depends on the I2C_PSC value and the ICLK time period
(internal sampling clock rate):

� When I2C_PSC = 0, tHIGH = (SCLH+7) * ICLK time period

� When I2C_PSC = 1, tHIGH = (SCLH+6) * ICLK time period

� When I2C_PSC > 1, tHIGH = (SCLH+5) * ICLK time period

The different values to compute the SCL high time are due to the
synchronization stage and noise filter on the SCL line.

Values after reset are low (all 8 bits).

Table 36. System Test Register (I2C_SYSTEST)

Bit Name Description

15 ST_EN System test enable

14 FREE Free running mode (on breakpoint)

13:12 TMODE Test mode select

11 SSB Set status bits

10:4 − Reserved

3 SCL_I SCL line sense input value

2 SCL_O SCL line drive output value

1 SDA_I SDA line sense input value

0 SDA_O SDA line drive output value

System Test Register

Never set this register for normal I2C operation.

I2C Multimaster Peripheral

85Serial InterfacesSPRU760C

This register facilitates system-level tests by overriding some of the standard
functional features of the peripheral. It can permit the test of SCL counters,
control the signals that connect to I/O pins, or create digital loopback for
self-test when the module is configured in system test (SYSTEST) mode. It
also provides stop/no-stop functionality in debug mode.

System Test Enable (ST_EN)

This bit must be set to 1 to permit other system test registers bits to be set.

� 0: Normal mode

� 1: System test enabled

Value after reset is low.

Free Running Mode After Breakpoint (FREE)

This bit determines the state of the I2C controller when a breakpoint is
encountered in the HLL debugger.

This bit can be set independently of the ST_EN value.

FREE = 0: If the I2C controller is a master, it stops immediately after the
completion of the ongoing bit transfer. If the I2C controller is a slave, it stops
during the data phase transfer when one byte is completely transmitted/
received.

FREE = 1: The I2C runs free.

� 0: Stop mode (on breakpoint condition)

� 1: Free running mode

Value after reset is low.

Test Mode Select (TMODE)

In normal functional mode (ST_EN = 0), these bits are don’t care. They always
read as 00 and a write is ignored.

In system test mode (ST_EN = 1), these bits can be set according to the
following table to permit various system tests (see Table 37).

I2C Multimaster Peripheral

Serial Interfaces86 SPRU760C

Table 37. Test Mode Select

TMODE Mode

00 Functional mode (default)

01 Reserved

10 Test of SCL counters (SCLL, SCLH, PSC)

11 Loop back mode select + SDA/SCL IO mode select

Values after reset is low (2 bits).

� SCL counter test mode: In this mode, the SCL pin is driven with a
permanent clock as if mastered, with the parameters set in the I2C_PSC,
I2C_SCLL, and I2C_SCLH registers.

� Loopback mode: In the master transmit mode only, data transmitted out
of the I2C_DATA register (write action) is received in the same I2C_DATA
register via an internal path through the 1-deep FIFO buffers. The DMA
and interrupt requests are normally generated if enabled.

� SDA/SCL IO mode: In this mode, the SCL IO and SDA IO are controlled
via the I2C_SYSTEST [3:0] register bits.

Set Status Bits (SSB)

Writing 1 into this bit also sets the six read/clear-only status bits contained in
the I2C_STAT register (bits 5:0) to 1.

Writing 0 into this bit does not clear status bits that are already set; only writing
1 into a set status bit can clear it. This bit must be cleared before attempting
to clear a status bit.

� 0: No action

� 1: Set all six bits in I2C_STAT [5:0] to 1

Value after reset is low.

SCL Line Sense Input Value (SCL_I)

In normal functional mode (ST_EN = 0), this read-only bit always reads 0.

In system test mode (ST_EN = 1 & TMODE = 11), this read-only bit returns the
logical state taken by the SCL line (either 1 or 0).

Value after reset is low.

I2C Multimaster Peripheral

87Serial InterfacesSPRU760C

SCL Line Drive Output Value (SCL_O)

In normal functional mode (ST_EN = 0), this bit is don’t care. It always reads
0 and a write is ignored.

In system test mode (ST_EN = 1 & TMODE = 11), a 0 forces a low level on the
SCL line, and a 1 puts the I2C output driver to a high impedance state.

� 0: Forces 0 on the SCL data line

� 1: SCL output driver in HiZ state

Value after reset is low.

SDA Line Sense Input Value (SDA_I)

In normal functional mode (ST_EN = 0), this read-only bit always reads 0.

In system test mode (ST_EN = 1 & TMODE = 11), this read-only bit returns the
logical state taken by the SDA line (either 1 or 0).

Value after reset is low.

SDA Line Drive Output Value (SDA_O)

In normal functional mode (ST_EN = 0), this bit is don’t care. It reads as 0 and
a write is ignored.

In system test mode (ST_EN = 1 & TMODE = 11), a 0 forces a low level on the
SDA line and a 1 puts the I2C output driver to a high impedance state.

� 0: Forces 0 on the SDA data line

� 1: SDA output driver in Hi-Z state

Value after reset is low.

I2C Multimaster Peripheral

Serial Interfaces88 SPRU760C

2.8 Programming Guidelines

2.8.1 Main Program

Module Configuration Before Enabling the Module

Step 1: Program the prescaler to obtain an approximately 12-MHz I2C mod-
ule clock (I2C_PSC = x; this value is to be calculated and is depen-
dent on the system clock frequency).

Step 2: Program the I2C clock to obtain 100K bps or 400K bps (I2C_SCLL
= x and I2C_SCLH = x; these values are to be calculated and are de-
pendent on the system clock frequency).

Step 3: Configure its own address (I2C_OA = x).

Step 4: Take the I2C module out of reset (I2C_CON:I2C_EN = 1).

Initialization Procedure

Step 1: Configure the I2C mode register (I2C_CON) bits.

Step 2: If using interrupt for transmit/receive data, enable interrupt masks
(I2C_IE).

Step 3: If using DMA for transmit/receive data, enable the DMA (I2C_BUF)
and program the DMA controller.

Configure Slave Address and Data Counter Registers

In master mode, configure the slave address (I2C_SA = x) and the number of
bytes associated with the transfer (I2C_CNT = x).

Initiate a Transfer

Poll the bus busy (BB) bit in the I2C status register (I2C_STAT). If it is cleared
to 0 (bus not busy), configure START/STOP (I2C_CON:STT / I2C_CON:STP)
condition to initiate a transfer.

Poll Receive Data

Poll the receive data ready interrupt flag bit (RRDY) in the I2C status register
(I2C_STAT). Use the RRDY interrupt or the DMA to read the receive data in
the data receive register (I2C_DATA).

I2C Multimaster Peripheral

89Serial InterfacesSPRU760C

Poll Transmit Data

Poll the transmit data ready interrupt flag bit (XRDY) in the I2C status register
(I2C_STAT). Use the XRDY interrupt or the DMA to write data into the data
transmit register (I2C_DATA).

2.9 Interrupt Subroutines

Step 1: Test for arbitration lost and resolve accordingly.

Step 2: Test for no-acknowledge and resolve accordingly.

Step 3: Test for register access ready and resolve accordingly.

Step 4: Test for receive data and resolve accordingly.

Step 5: Test for transmit data and resolve accordingly.

I2C Multimaster Peripheral

Serial Interfaces90 SPRU760C

2.10 Flow Diagrams

Figure 25. Setup Procedure

Start

Write I2C_PSC

Write I2C_SCLL

Write I2C_SCLH

Write I2C_OA

Write
I2C_CON.I2C_EN = 1

(enable module)

Write I2C_SA
(master mode)

End

Write I2C_CNT
(master mode)

Write I2C_IE

Write I2C_BUF
(for DMA usage)

I2C Multimaster Peripheral

91Serial InterfacesSPRU760C

Figure 26. Master Transmitter Mode, Polling

Start

Is
bus free
(BB = 0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT

No

Yes

Read I2C_STAT.

Is
ACK returned
(NACK = 0)

?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Can
update the
registers

(ARDY = 1)
?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit should be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

Yes

Is
send data

being requested
(XRDY = 1)

?

No No

Yes

Write I2C_DATA.

The I2C goes into slave receiver mode.

Write I2C_STAT
(clear XRDY)

I2C Multimaster Peripheral

Serial Interfaces92 SPRU760C

Figure 27. Master Receiver Mode, Polling

Start

Is
Bus free
(BB = 0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT

No

Yes

Read I2C_STAT.

Is
ACK returned
(NACK = 0)

?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Can
update the
registers

(ARDY = 1)
?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

Yes

Is
received data
in I2C_DATA
(RRDY = 1)

?

No No

Yes

Read I2C_DATA.

The I2C goes into slave receiver mode.

Write I2C_STAT
(clear RRDY)

I2C Multimaster Peripheral

93Serial InterfacesSPRU760C

Figure 28. Master Transmitter Mode, Interrupt

Start

Is
bus free
(BB = 0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Read I2C_STAT.

Is
ACK returned
(NACK = 0)

?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY = 1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 11111b

Yes

Is
send data

being requested
(XRDY = 1)

?

No No

Yes

Write I2C_DATA.

The I2C goes into slave receiver mode.

Write I2C_STAT
(clear XRDY)

Is
interrupt
received

?

No

Yes

I2C Multimaster Peripheral

Serial Interfaces94 SPRU760C

Figure 29. Master Receiver Mode, Interrupt

Start

Is
bus free
(BB = 0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Read I2C_STAT.

Is
ACK returned
(NACK = 0)

?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY = 1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 11111b

Yes

Is
send data

being requested
(RRDY = 1)

?

No No

Yes

Read I2C_DATA.

The I2C goes into slave receiver mode.

Write I2C_STAT
(clear RRDY)

Is
interrupt
received

?

No

Yes

I2C Multimaster Peripheral

95Serial InterfacesSPRU760C

Figure 30. Master Transmitter Mode, DMA

Start

Is
Bus free
(BB = 0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned
(NACK = 0)

?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY = 1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00111b

Yes

Is
DMA

interrupt
received

?

No

No

Yes

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is I2C
interrupt
received

?
No

Take necessary
actions.

I2C Multimaster Peripheral

Serial Interfaces96 SPRU760C

Figure 31. Master Receiver Mode, DMA

Start

Is
Bus free
(BB = 0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned
(NACK = 0)

?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY = 1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00111b

Yes

Is
DMA

interrupt
received

?

No

No

Yes

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is I2C
interrupt
received

?
No

Take necessary
actions.

I2C Multimaster Peripheral

97Serial InterfacesSPRU760C

Figure 32. Slave Transmitter/Receiver Mode, Polling

Write data
(XRDY =

1)
?

Read I2C_STAT.

Start

Read I2C_DATA.Write I2C_DATA.

No

Yes

No

Yes

Read data
(RRDY =

1)
?

Write I2C_STAT
(clear XRDY)

Write I2C_STAT
(clear XRDY)

I2C Multimaster Peripheral

Serial Interfaces98 SPRU760C

Figure 33. Slave Transmitter/Receiver Mode, Interrupt

Read I2C_IV.

Start

Write I2C_DATA. Read I2C_DATA.

No

Yes

No

Yes

Transmit
(I2C_IV =

5)
?

Is
interrupt
received

?

Receive
(I2C_IV =

4)
?

Yes

No

Yes

Write I2C_STAT
(clear XRDY)

Read I2C_STAT
(clear RRDY)

MicroWire Interface

99Serial InterfacesSPRU760C

3 MicroWire Interface
This serial synchronous interface can drive up to four serial external
components. For the external devices, this interface is compatible with the
µWire standard and is seen as the master (see Figure 34).

A transmit DMA mode is available.

Figure 34. Block Diagram

Clock
divide

Transmit data register UWIRE.SDO

Control
logic

UWIRE.SCLK
TIPB

Receive data register UWIRE.SDIControl and status

Setup register

UWIRE.CS[3:0]

Clock register

Clock
enable

MPU_PER_CLK

register

DMA_REQ to system DMA_REQ[6:0]

Inth lvl2 (2,3) - edge
2

(16 bits)

(16 bits)

3.1 MicroWire Registers
Start address in the peripheral range (hex): FFFB:3000

Table 38 lists the MicroWire registers. Table 39 through Table 46 describe the
individual registers.

Table 38. MicroWire Registers

Register Description R/W Size Address Offset

TDR Transmit data W 16 bits FFFB:3000 0x00

RDR Receive data R 16 bits FFFB:3000 0x00

CSR Control and status R/W 16 bits FFFB:3000 0x04

SR1 Setup 1 R/W 16 bits FFFB:3000 0x08

SR2 Setup 2 R/W 16 bits FFFB:3000 0x0C

SR3 Setup 3 R/W 16 bits FFFB:3000 0x10

SR4 Setup 4 R/W 16 bits FFFB:3000 0x14

SR5 Setup 5 R/W 16 bits FFFB:3000 0x18

MicroWire Interface

Serial Interfaces100 SPRU760C

Table 39. Transmit Data Register (TDR)

Base Address = 0xFFFB 3000, Offset = 0x00

Bit Name Function Reset

15:0 TD Data to transmit Undefined

Note: MSB (bit 15) is the first transmitted bit.

Whatever its size, the word is aligned on the most-significant bit (MSB) side.

Table 40. Receive Data Register (RDR)

Base Address = 0xFFFB 3000, Offset = 0x00

Bit Name Function Reset

15:0 RD Received data Undefined

Note: LSB (bit 0) is the last received bit.

Whatever its size, the word is aligned on the least-significant bit (LSB) side.

Table 41. Control and Status Register (CSR)

Base Address = 0xFFFB 3000, Offset = 0x04

Bit Name Function Reset

15 RDRB RDRB bit at 1 indicates that the receive (RDR) is
full. When the controller reads the content of the
RDR, this bit is cleared.

This bit is read only.

0

14 CSRB CSRB bit at 0 indicates that the control and status
(CSR) is ready to receive new data.

After starting a µWire transfer with the CSR, this bit
is set to 1. When the corresponding action has been
done, CSRB is reset. This bit is controlled by a
µWire internal state machine running on the F_INT
internal clock (12 MHz/N). If the CSR is read just
after being written, and the MPU is running at high
frequency (60 MHz or 120 MHz, for instance)
compared to the internal clock, the CSRB status bit
may still be low for the first read access. The CSRB
latency is 0 if the transfer was initiated by modifying
the CS_CMD bit, but it can be 0−3 cycles if initiated
by the START bit. Suggested workarounds are a) to
have a few NOPs between initiating a µWire
transfer and checking CSRB status or, b) to check
that CSRB first has a high value on an initial read
before it goes low on a subsequent read.

This bit is read only.

0

MicroWire Interface

101Serial InterfacesSPRU760C

Table 41. Control and Status Register (CSR) (Continued)

Base Address = 0xFFFB 3000, Offset = 0x04

Bit ResetFunctionName

13 START 1: Start a write and/or a read process.
This bit is automatically reset by internal logic when
a write or a read process is activated.

Send NB_BITS_WR bits (contained in TDR) to the
serial output DO. If NB_BITS_WR is equal to zero,
then the write process is not started.

Receive NB_BITS_RD bits from the serial input DI
and store them in RDR.

0

12 CS_CMD 1: Set the chip-select of the selected device to its
active level.

0

11:10 INDEX Index of the external device

00: CS0
01: CS1
10: CS2
11: CS3

Undefined

9:5 NB_BITS_WR Number of bits to transmit Undefined

4:0 NB_BITS_RD Number of bits to receive Undefined

Table 42. Setup Register 1 (SR1)

Base Address = 0xFFFB 3000, Offset = 0x08

Bit Name Function Reset

11 CS1_CHK Idem CS0_CHK.
Used when the CS1 is selected.

0xX (undefined)

10:9 CS1_FRQ Defines the frequency of the serial clock SCLK
when CS1 is selected

00 : F_INT/2
01 : F_INT/4
10 : F_INT/8
11 : undefined

0xX (undefined)

8 CS1CS_LVL Defines the active level of the CS1 chip-select. 0x0

7 CS1_EDGE_WR Idem CS0_EDGE_WR when CS1 is selected. 0xX (undefined)

6 CS1_EDGE_RD Idem CS0_EDGE_RD when CS1 is selected. 0xX (undefined)

Note: Content of this register must not be changed when a read or write process is running.

MicroWire Interface

Serial Interfaces102 SPRU760C

Table 42. Setup Register 1 (SR1) (Continued)

Base Address = 0xFFFB 3000, Offset = 0x08

Bit ResetFunctionName

5 CS0_CHK Before activating a write process, checks if external
device is ready.

0: No check is done and the write process is
immediately executed.

1: If DI signal is low, the interface considers the
external component busy; if DI is high, the interface
considers the first external component ready and
starts the write process.

Used when CS0 is selected.

Undefined

4:3 CS0_FRQ Defines the frequency of the serial clock SCLK
when CS0 is selected (F_INT is the frequency of
the internal clock).

00: F_INT/2
01: F_INT/4
10: F_INT/8
11: Undefined

Undefined

2 CS0CS_LVL Defines the active level of the chip-select by CS0 0

1 CS0_EDGE_WR When CS0 is selected, defines the active edge of
the serial clock SCLK used to write data to the
serial input D0.
(Output data is generated on this edge)

0: Falling (serial clock not inverted)
0: Rising (when serial clock inverted)
1: Rising (serial clock not inverted)
1: Falling (when serial clock inverted)

Undefined

0 CS0_EDGE_RD When CS0 is selected, defines the active edge of
the serial clock SCLK used to read data from the
serial input DI.
(Input data is strobed on this edge)

0: Falling (serial clock not inverted)
0: Rising (when serial clock inverted)
1: Rising (serial clock not inverted)
1: Falling (when serial clock inverted)

Undefined

Note: Content of this register must not be changed when a read or write process is running.

Table 42 sets up the serial interface for the first and second external
components.

MicroWire Interface

103Serial InterfacesSPRU760C

Table 43. Setup Register 2 (SR2)

Base Address = 0xFFFB 3000, Offset = 0x0C

Bit Name Function Reset

11 CS3_CHK Same as CS0_CHK.
Used when CS3 is selected.

Undefined

10:9 CS3_FRQ Defines the frequency of the serial clock SCLK
when CS3 is selected

00: F_INT/2
01: F_INT/4
10: F_INT/8
11: Undefined

Undefined

8 CS3CS_LVL Defines the active level of the CS3 chip-select 0

7 CS3_EDGE_WR Same as CS0_EDGE_WR when CS3 is selected Undefined

6 CS3_EDGE_RD Same as CS0_EDGE_RD when CS3 is selected Undefined

5 CS2_CHK Idem CS0_CHK.
Used when the CS2 is selected.

0xX (undefined)

4:3 CS2_FRQ Defines the frequency of the serial clock SCLK
when CS2 is selected
(F_INT is the frequency of the internal clock):

00 : F_INT/2
01 : F_INT/4
10 : F_INT/8
11 : Undefined

0xX (undefined)

2 CS2CS_LVL Defines the active level of the CS2 chip-select. 0x0

1 CS2_EDGE_WR Idem CS0_EDGE_WR when CS2 is selected. 0xX (undefined)

0 CS2_EDGE_RD Idem CS0_EDGE_RD when CS2 is selected. 0xX (undefined)

Note: Content of this register must not be changed when a read or write process is running.

Table 43 sets up the serial interface for the first and second external
components.

MicroWire Interface

Serial Interfaces104 SPRU760C

Table 44. Setup Register 3 (SR3)

This register sets up the serial interface for the internal clock.

Base Address = 0xFFFB 3000, Offset = 0x10

Bit Name Function Reset

2:1 CK_FREQ Defines the frequency of the internal clock, F_INT,
when CLK_EN = 1. All the internal logic is
controlled by F_INT (F is the frequency of the
external input clock).

00: F/2
01: F/4
10: F/7
11: F/10

00

0 CLK_EN Switch off the clock if 0.

Switch on the clock if 1.

0

Note: Content of this register must not be changed when a read or write process is running.

Table 45. Setup Register 4 (SR4) (R/W)

This register sets up the serial clock polarity.

Base Address = 0xFFFB 3000, Offset = 0x14

Bit Name Function Reset

0 CLK_IN Serial clock is not inverted if 0.

Serial clock is inverted if 1.

0

Note: Content of this register must not be changed when a read or write process is running.

MicroWire Interface

105Serial InterfacesSPRU760C

Table 46. Setup Register 5 (SR5) (R/W)

Base Address = 0xFFFB 3000, Offset = 0x18

Bit Name Function Reset Value

3 CS_TOGGLE_TX_EN CS_TOGGLE_TX_EN is possible only in
autotransmit mode.

When in autotransmit mode with
CS_TOGGLE_TX_EN inactive, the CS does not go
to its active level automatically. Control the CS with
the CS CMD bit of the control and status register
(CSR) in the software.

CS_toggle transmit mode is disabled if 0.

CS_toggle transmit mode is enabled if 1.

0

2 AUTO_TX_EN In autotransmit mode, the CS_CMD and START
bits of the control and status register (CSR) are not
used. A hardware state machine detects a TXD
write and automatically sets the programmed CS to
its active value, and then starts the transmission.

The CS CMD and the START bits in the control and
status register (CSR) are not updated during
autotransmit.

Autotransmit mode is disabled if 0.

Autotransmit mode is enabled if 1.

0

1 IT_EN In IT mode, an interrupt is generated each time a
word has been transferred or received. This
interrupt is a low-level interrupt. A status register
(IST) allows the CPU to know which interrupt
(receive and/or transmit) occurred.

IT mode is disabled if 0.

IT mode is enabled if 1.

0

0 DMA_TX_EN DMA transmit mode is disabled if 0.

DMA transmit mode is enabled if 1.

0

Note: Content of this register must not be changed when a read or write process is running.

Set up the DMA, IT, AUTO_TX, and CS_TOGGLE modes in this register.

In DMA mode, a DMA request is initiated each time a transmission slot is
available.

The maximum word size in DMA mode is 16 bits.

MicroWire Interface

Serial Interfaces106 SPRU760C

Note:

You cannot use another CS in normal or DMA modes when a DMA mode is
active on one specific CS.

Note:

To use the µWire in DMA transmit mode, DMA_EN and AUTO_TX_EN must
be enabled, and IT_EN is best disabled. The AUTO_TX_EN can be active
when DMA_EN is disabled.

3.2 Protocol Description
The serial port must be configured in order to use the setup registers.

This interface drives only one device at a given time. Therefore, the chip-select
of the selected device must be set to its active level before starting any read
or write process.

After loading the transmit data register (TDR), the write process is activated
by setting the START bit to 1 and by writing a value different from zero to the
NB_BITS_WR field.

A read process is always simultaneous with a write process, which means that
at every serial clock (SCLK) cycle, data is read. After having finished a write
process (if necessary), a number (defined by NB_BITS_RD) of SCLK cycles
is generated to allow storage of data from the serial input DI.

The transmitted data word is shifted out on the rising or falling edge of the serial
clock, according to the value of the *_EDGE_WR bits of the setup registers.
The received data word is shifted in on the falling or rising edge of the serial
clock, according to the value of the *_EDGE_RD bits of the setup registers.
When *_EDGE_WR and *_EDGE_RD bits have the same value, it is assumed
that the device behavior is the one shown in Figure 35. Otherwise, the required
behavior of the external device is as shown in Figure 36.

Figure 35. Behavior of an X25C02 EEPROM Read Cycle

0 0 0 0 0 0 A7

D7UWIRE.SDI

UWIRE.SDO

UWIRE.SCLK

WIRE_NCS

1 1 A6 A5 A4 A3 A2 A1 A0

D6 D5 D4 D1 D0

On the DO line, data is generated from the µWire interface on SLCK falling
edge and read by the EEPROM interface on SCLK rising edge.

MicroWire Interface

107Serial InterfacesSPRU760C

On the DI line, data is generated from the EEPROM interface on SCLK falling
edge and read by the µWire interface on SCLK falling edge.

Figure 36. Behavior of an XL93LC66 EEPROM Read Cycle

 1 1 0

D15UWIRE_SDI

UWIRESDO

UWIRE_SCLK

WIRE_NCS

A7 A6 A5 A4 A3 A2 A1 A0

D14 D13 D1 D0

On the DO line, data is generated from the µWire interface on SLCK falling
edge and read by the EEPROM interface on SCLK rising edge.

On the DI line, data is generated from the EEPROM interface on SCLK rising
edge and read by the µWire interface on SCLK rising edge.

3.3 Example of Protocol Using a Serial EEPROM (XL93LC66)

Set up the interface by writing the following values in setup 1 register (SR1):

� CS_EDGE_RD = 1
� CS_EDGE_WR = 0
� CSCS_LVL = 1
� CS_FRQ = 00
� CS_CHK = 1

In this example, only two cycles (read and write) are described.

3.3.1 Read Cycle

1) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 0

� INDEX: 00

� CS_CMD: 1

� START: 0

2) Load the transmit data register (TDR) with:

� 1 1 0 A7 A6 A5 A4 A3 A2 A1 A0 x x x x x x: Don’t care

� A7 ... A0: Address of the selected memory register

MicroWire Interface

Serial Interfaces108 SPRU760C

3) Wait for the CSRB bit of CSR to be reset.

4) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 16 (decimal)

� NB_BITS_WR: 11 (decimal)

� INDEX: 00

� CS_CMD: 1

� START: 1

5) Wait until CSRB = 0 and RDRB = 1 (status bits of CSR).

6) Read the content of receive data register (RDR).

7) To continue reading data external component, the EEPROM, go to step
8. Else go to step 9.

8) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 16 (decimal)

� NB_BITS_WR: 0 (decimal)

� INDEX: 00

� CS_CMD: 1

� START: 1

� Go to step 5.

9) Set the following fields of the control and status register (CSR):

� INDEX: 00

� CS_CMD: 0

� START: 0

3.3.2 Write Cycle

1) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 0

� INDEX: 00

� CS_CMD: 1

� START: 0

MicroWire Interface

109Serial InterfacesSPRU760C

2) Load the transmit data register (TDR) with:

� 1 0 1 A7 A6 A5 A4 A3 A2 A1 A0 x x x x x x: Don’t care

� A7 ... A0: Address of the selected memory register

3) Wait for the CSRB bit of the control and status register (CSR) to be reset.

4) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 11 (decimal)

� INDEX: 00

� CS_CMD: 1

� START: 1

5) Wait for the CSRB bit of the control and status register (CSR) to be reset.

6) Load the transmit data register (TDR) with:

� D15 D14 ... D0

� D15 ... D0: Data

7) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 16 (decimal)

� INDEX: 00

� CS_CMD 1

� START: 1

8) Wait for the CSRB bit of CSR to be reset.

9) Set the following fields of the control and status register (CSR):

� INDEX: 00

� CS_CMD: 0

� START: 0

3.4 Example of Protocol Using an LCD Controller (COP472-3)

Set up the interface by writing in setup 1 register (SR1) the following value:

� CS_EDGE_RD = 1
� CS_EDGE_WR = 0
� CSCS_LVL = 0
� CS_FRQ = 10
� CS_CHK = 0

This example describes a loading sequence to drive a four-digit display.

MicroWire Interface

Serial Interfaces110 SPRU760C

3.4.1 Loading Sequence

1) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 0

� INDEX: 01

� CS_CMD: 1

� START: 0

2) Wait for the CSRB bit of the control and status register (CSR) to be reset.

3) Load the transmit data register (TDR) with:

� D7d1...D0d1 D7d2...D0d2 D7d1...D0d1: Data for digit 1

� D7d2...D0d2: Data for digit 2

4) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 16 (decimal)

� INDEX: 01

� CS_CMD: 1

� START: 1

5) Wait for the CSRB bit of the control and status register (CSR) to be reset.

6) Load the transmit data register (TDR) with:

� D7d3...D0d3 D7d4...D0d4 D7d3...D0d3: Data for digit 3

� D7d4...D0d4: Data for digit 4

7) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 16 (decimal)

� INDEX: 01

� CS_CMD: 1

� START: 1

8) Wait for the CSRB bit of the control and status register (CSR) to be reset.

9) Load the transmit data register (TDR) with:

� D7...D0 x x x x x x x x x: Don’t care

� D7...D0: Data for special segment and control function

MicroWire Interface

111Serial InterfacesSPRU760C

10) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0

� NB_BITS_WR: 8 (decimal)

� INDEX: 01

� CS_CMD: 1

� START: 1

11) Wait for CSRB to go low, which indicates the CSR is ready to receive new
data. It is advised that you read the bit before and after every write access
to CSR to check the status.

12) Set the following fields of the control and status register (CSR):

� INDEX: 01

� CS_CMD: 0

� START: 0

3.5 Example of Protocol Using Autotransmit Mode

The setup 5 register (SR5) controls the autotransmit mode. The following
example configures µWire for a read access on CS0 with serial clock out
inverted, CS autotoggle enabled, DMA request disabled, and interrupt
enabled:

1) SR5 = DMA_TX_EN: 0

IT_EN: 1

AUTO_TX_EN: 1

CS_TOGGLE_TX_EN: 1

2) SR1 = CS0_EDGE_RD: 0

CS0_EDGE_WR: 1

CS0CS_LVL: 0

CS0_FREQ: 00

CS0_CHK: 1

Note:

Data out is latched on the falling edge of the serial clock. Data in is sampled
on the rising edge.

MicroWire Interface

Serial Interfaces112 SPRU760C

3) SR3 = CLK_EN: 1

CK_FREQ: 00 (must wait for 1 ARMXOR_CK + 1 F_INT cycle before any
other register access)

4) SR4 = CLK_IN: 1

5) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 5
� NB_BITS_WR: 7
� INDEX: 00
� CS_CMD: 0
� START: 0

6) Wait for the CSRB = 0 of the control and status register (CSR).

7) Load the transmit data register (TDR) with:

� A6 A5 A4 A3 A2 A1 A0 x x x x x x x x x x: Don’t care

� A6 ... A0: Address of the selected memory register

Transfer is automatically started.

8) Wait until CSRB = 0 and RDRB = 1 (status bits of CSR).

9) Read the content of receive data register (RDR).

10) To continue reading data external component, go to 5 else go to 11.

11) 20

12) Release autotransmit mode: SR5 = AUTO_TX_EN: 0.

13) END

The corresponding behavior of the serial interface is described in Figure 37.

Figure 37. Read Cycle in Autotransmit Mode

UWIRE_SCCLK

A6 A5 A4 A3 A2 A1 A0UWIRE_SDO

UWIRE_SDI D4 D3 D2 D1 D0

WIRE_NCS

MicroWire Interface

113Serial InterfacesSPRU760C

3.6 Example of Autotransmit Mode With DMA Support

The setup 5 register (SR5) controls the autotransmit mode and DMA mode.
The following example configures µWire for a 16-bit write access on CS1 with
serial clock out not inverted, CS autotoggle enabled, DMA request enabled,
and interrupt disabled:

1) Set up and enable the DMA channel.

2) Program the configuration registers SR1, SR3, and SR4.

3) Check CSRB status to ensure that the peripheral is ready to receive (low).

4) Program the control and status register (CSR) as follows:

� NB_BITS_RD = 0
� NB_BITS_WR = 16
� INDEX = 00
� CS_CMD: = 1
� START = 0

5) Write to the setup register (SR5) to configure and initiate the transfer:

� DMA_TX_EN = 1
� IT_EN = 0
� AUTO_TX_EN = 1
� CS_TOGGLE_TX_EN = 1 (Note that in AUTO TX mode, setting the

DMA_TX_EN bit to 1 starts the transfer)

6) When the DMA transfer is complete, check the status of CSRB to
determine whether µWire has finished the serial data transfer.

7) Write to the setup register (SR5) to disable DMA and AUTO TX mode:

� DMA_TX_EN = 0
� IT_EN = 0
� AUTO_TX_EN = 0
� CS_TOGGLE_TX_EN = 0

Using Autostart and Autotoggle CS Mode

You must wait for a minimum of 3 x F_INT clock cycles after the end
of transfer (transition 1 to 0 detected on CSRB) before setting the
SR3 register to turn off the internal clock.

Multichannel Serial Interfaces

Serial Interfaces114 SPRU760C

4 Multichannel Serial Interfaces

The Multichannel Serial Interface (MCSI) is a general-purpose serial port used
to interface the OMAP5912 to external devices such as Codes and other serail
devices that require a continuous clock.

The MSCI peipheral is a serial interface with multichannel transmission
capability. It is intended for voice/data transfer between OMAP5912 and
communication and Bluetooth chipsets. The MCSI requires a continuous clock
to operate and therefore does not support protocols such as I2C, SPI,
Microwire or any other protocol in which a gated clock is required.

The two public MCSIs on the device provide full duplex transmission and
master or slave clock control. All transmission parameters are configurable to
cover the maximum number of operating conditions:

� Master or slave clock control (transmission clock and frame
synchronization pulse)

� Programmable transmission clock frequency
� Single-channel or multichannel (x16) frame structure
� Programmable word length: 3 to 16 bits
� Full-duplex transmission
� Programmable frame configuration

� Continuous or burst transmission
� Normal or alternate framing
� Normal or inverted frame polarity
� Short or long frame pulse
� Programmable oversize frame length
� Programmable frame length

� Programmable interrupt occurrence time (TX and RX)
� Error detection with interrupt generation on wrong frame length
� DMA support for both TX and RX data transfers

Multichannel Serial Interfaces

115Serial InterfacesSPRU760C

4.1 Communication Protocol

4.1.1 Configuration Parameters

The configuration parameters can be modified only if the MCSI is disabled
(CONTROL_REG[0] = 0).

Slave/Master Control

Using the control bit, the interface can be configured in one of two ways:

� In master mode, with the transmission clock and the frame
synchronization pulse generated by the interface

� In slave mode, with the transmission clock and the frame synchronization
pulse generated from an external device

Control bit:
MAIN_ PARAMETERS _REG(6) = MCSI_MODE
1: Master
0: Slave

Single-Channel/Multichannel

The frame structure can be either single-channel-based (one channel per
frame), or multichannel-based with the number of channels fixed at 16.

Control bit:
MAIN_ PARAMETERS _REG(7) = MULTI
1: Multichannel
0: Single-channel

Short/Long Framing

The frame-synchronization pulse duration can be either short, with a pulse
duration equal to the bit duration, or long, with a pulse duration equal to the
channel duration.

The long frame is active only during transmission on channel 0.

Control bit:
MAIN_ PARAMETERS _REG(8) = FRAME_SIZE
1: Long
0: Short

Multichannel Serial Interfaces

Serial Interfaces116 SPRU760C

Normal/Alternate Frame Synchronization

The frame-synchronization pulse position is either normal, with the
frame-synchronization pulse starting one bit before channel 0, or alternates
with the frame-synchronization pulse starting with the first bit of channel 0.

Control bit:
MAIN_ PARAMETERS _REG(9) = FRAME_POSITION
1: Alternate
0: Normal

Continuous/Burst Mode

The frame mode is either continuous with one frame-synchronization pulse at
the first frame, or bursts with one frame-synchronization pulse at each frame.

Control bit:
MAIN_ PARAMETERS _REG(5) = FRAME_MODE
1: Continuous
0: Burst

Normal/Inverted Clock

The polarity of the clock can be either normal, with writing on the positive edge
clock and reading on the negative edge clock , or inverted, with writing on the
negative edge clock and reading on the positive edge clock.

Control bit:
MAIN_ PARAMETERS _REG(4) = CLOCK_POLARITY
1: Inverted
0: Normal

Normal/Inverted Frame Synchronization

The polarity of the frame-synchronization pulse can be either normal, with a
positive pulse, or inverted, with a negative pulse.

Control bit:
MAIN_ PARAMETERS _REG(10) = FRAME_POLARITY
1: Inverted
0: Normal

Channel Used

To enable a channel in multimode, set bit n for the desired channel n.

Multichannel Serial Interfaces

117Serial InterfacesSPRU760C

Word Size

To choose the size of the word, set its size minus one into the main parameters
registers.

Control bit:
MAIN_PARAMETERS_REG(3:0) = WORD_ SIZE
(2 <= WORD_ SIZE <= 15)

The MCSI transmits and receives the most significant bit first. For example,
if the word_size equals 11, the upper 12 bits of the TX registers are transmitted,
the upper 12 bits of the RX registers contain the received data, and the lower
4 bits are zeros.

Frame Size

To add any overhead bits at the end of each frame, set the number of desired
overhead bits in the over_size_register.

Control bit:
OVER_CLOCK_REG(9:0) = OVER_CLK (0<=OVER_CLK <=1023)

Transmission Clock Frequency

In master mode, the clock frequency is derived from the 12-MHz master clock
and can be programmed from 5.8 kHz to 6 MHz in increments of 83 ns.

Control bit:
CLOCK_FREQUENCY_REG(10:0) = CLK_FREQ
(2<=CLK_FREQ <= 2047)

with
(tCLK = t12MHz * CLK_FREQ)

Multichannel Serial Interfaces

Serial Interfaces118 SPRU760C

4.1.2 Sample Setup for Communication µ-Law Interface Using Interrupts

MCSI Configuration

An example of communication µ-law interface setup using interrupts follows.

� DSP_Write(0x0000) = CONTROL_REG (disable MCSI for setup)

� DSP_Write(0x0007) = MAIN_PARAMETERS_REG (set up MCSI per
configuration below)

� Bit 15-14 (00b): No DMA

� Bit 10 (0b): Positive polarity for frame

� Bit 9 (0b): Normal synchronization mode

� Bit 8 (0b): Short framing

� Bit 7 (0b): Single channel

� Bit 6 (0b): Slave mode

� Bit 5 (0b): Burst mode

� Bit 4 (0b): Positive edge for clock

� Bit 3-0 (0111b): 8-bit data

� DSP_Write(0x0700) = INTERRUPTS_REG (all interrupts are enabled)

� DSP_Write(0x0000) = OVER_CLOCK_REG

� DSP_Write(0x0001) = CONTROL_REG (start MCSI)

Transmit Data Loading (TX_INT ISR)

� DSP_Write = TX_REG

Received Data Loading (RX_INT ISR)

� DSP_Read = RX_REG

Stop MCSI

� DSP_Write(0x0000) = CONTROL_REG (disable MCSI clock)

� DSP_Write(0x0002) = CONTROL_REG (reset MCSI registers)

Multichannel Serial Interfaces

119Serial InterfacesSPRU760C

Figure 38. Communication µ-Law Interface Interrupts Waveform Example

CLK

FRM

TXD

RXD

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

T7 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0T6

4.1.3 Interface Management

Interrupts Generation

Three physical interrupts are available for real-time management of the MCSI
by the DSP:

� RX_INT (data receive interrupt)
� TX_INT (data transmit interrupt)
� FERR_INT (frame duration error interrupt)

RX_INT, TX_INT, and FERR_INT are maskable with dedicated programmable
control bits of the interrupt register INTERRUPTS_REG.

� RX_INT is masked when MASK_IT_RX = 0.
� TX_INT is masked when MASK_IT_TX = 0.
� FERR_INT is masked when MASK_IT_ERROR = 0.

Each interrupt is associated with a flag bit in the STATUS_REG register that
is set to 1 when the interrupt is generated. To acknowledge the interrupt and
release the corresponding physical signal, the DSP must write a 1 at the bit
location in the status register. The following list provides interrupt/flag bit
associations:

� RX_INT (RX_READY flag and acknowledge bit)
� TX_INT (TX_READY flag and acknowledge bit)
� FERR_INT (FRAME _ERROR flag and acknowledge bit)

Multichannel Serial Interfaces

Serial Interfaces120 SPRU760C

Receive Interrupt

The receive interrupt is generated every frame after the completion of the
reception of a data word:

� In single-channel mode, the interrupt is generated one half-clock period
(plus a synchronization delay) after the reception of the word.

� In multichannel mode, the interrupt is generated one half-clock period
(plus a synchronization delay) after the reception of the word of the
channel whose number is defined by the NB_CHAN_IT_RX parameter of
INTERRUPTS_REG register.

Note:

If MCSI is in slave mode, the clock must be driven after valid data reception
until the interrupt is generated and must not be gated before then, because
the interrupt is generated on the MCSI interface clock.

Figure 39. Receive Interrupt Timing Diagram
CLK

RXD

IT_RX

DSP_WRITE(1) => STATUS_REG(2)

INTERRUPT_REG(3:0) = N−1

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0

Channel N+1

t(syn) t(syn)

Channel N

Channel N-1

t(syn) < 2 x DSPXOR_CK (12 MHz)

Transmit Interrupt

The transmit interrupt is generated every frame after the start of the
transmission of a data word.

� In single-channel mode, the interrupt is generated one clock period after
the beginning of the transmission of the word.

� In multichannel mode, the interrupt is generated one clock period after the
transmission of the word of the channel whose number is defined by the
NB_CHAN_IT_RX parameter of INTERRUPTS_REG register.

Multichannel Serial Interfaces

121Serial InterfacesSPRU760C

Figure 40. Transmit Interrupt Timing Diagram

CLK

TXD

IT_TX

DSP_WRITE(1) => STATUS_REG(4)
INTERRUPT_REG(7:4) = N

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0

Channel N+1

t(syn) t(syn)

Channel N

Channel N-1

t(syn) < 2 x DSPXOR_CK (MHz)

Frame Duration Error Interrupt

The frame duration error interrupt is only generated when:

� The interface is configured in burst mode (CONTINUOUS = 0).
� The frame duration is smaller or longer than the expected value.

Namely, expected frame duration = [(channels number) * (word size)] +
(over-size number) in clock periods units with over-size number defined in
OVER_SIZE_REG register.

If the frame duration is longer than the expected value, then the interrupt is
generated one clock period after the number of the over_size clock periods,
as defined in OVER_CLOCK parameter.

If the frame duration is smaller than the expected value, then the interrupt is
generated one clock period after the occurrence of the next frame pulse (first
active edge).

Multichannel Serial Interfaces

Serial Interfaces122 SPRU760C

Figure 41. Frame Duration Error—Too Many (Long)

FSYNCH received FSYNCH expected

CLK

TXD

IT_FERR

DSP_WRITE(1) => STATUS_REG(0)

T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0

Channel 0

t(syn) t(syn)

Extra clock duration

Channel 15

Over clock duration

t(syn) < 2 T13 MHz

Figure 42. Frame Duration Error—Too Few (Short)

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1

FSYNCH received FSYNCH expected

CLK

TXD

IT_FERR

DSP_WRITE(1) => STATUS_REG(0)

T4 T3 T2 T1 T0

Channel 0

t(syn) t(syn)

t(syn) < 2 T13 MHz

Channel 15

Over clock duration

Multichannel Serial Interfaces

123Serial InterfacesSPRU760C

4.1.4 Interrupt Programming

At module reset, RX_INT, TX_INT, and FERR_INT are masked.

To validate an interrupt:

If in multichannel mode, the RX and TX interrupts can be configured to occur
in a dedicated channel of the frame [1-16].

� DSP_WRITE(channel_nb) = INTERRUPTS_REG(3:0) for RX_INT
� INTERRUPTS_REG(7:4) for TX_INT

Unmask the interrupt:

� DSP_WRITE(1) =

� INTERRUPTS_REG(8) for RX_INT
� INTERRUPTS_REG(9) for TX_INT
� INTERRUPTS_REG(10) for FERR_INT

On interrupt occurrence:

� DSP_READ =

� STATUS_REG(0) for FERR_INT occurrence
� STATUS_REG(2) for RX_INT occurrence
� STATUS_REG(3) for RX character overflow
� STATUS_REG(4) for TX_INT occurrence
� STATUS_REG(5) for TX character underflow

Then, to release the interrupt signal and reset the corresponding status bits:

� DSP_WRITE(1) =

� STATUS_REG(0) for FERR_INT release
� STATUS_REG(2) for RX_INT release
� STATUS_REG(4) for TX_INT release

4.1.5 DMA Channel Operation

Both transmit and receive operations can be supported by DMA. DMA support
is enabled by control bits in the MAIN_PARAMETERS_REG:

� MAIN_PARAMETERS_REG(15:14) = DMA_ENABLE(1:0)

� TX_DMA_REQ enabled when DMA_ENABLE(0) = 1
� TX_DMA_REQ disabled when DMA_ENABLE(0) = 0
� RX_DMA_REQ enabled when DMA_ENABLE(1) = 1
� RX_DMA_REQ disabled when DMA_ENABLE(1) = 0

Multichannel Serial Interfaces

Serial Interfaces124 SPRU760C

Transmit DMA Transfers

A new transmit DMA transfer is initiated during the transmission of the last
channel of a frame, at which time all data in the transmit registers (TX_REGs)
has been moved to shift registers; the TX_REGs are now ready to be rewritten.
If N channels are used, the DMA controller successively accesses all
consecutive registers between TX_REG(0) and TX_REG(N-1). If some
channels between TX_REG(0) and TX_REG(N-1) are not used, the DMA
controller writes dummy values when addressing these unused registers (see
Figure 43).

Figure 43. Transmit DMA Transfers

MCSI

dma add

Val0

Ad0

Valndum

Adn

TI peripheral bus

ad
n-1

Ad1

dum

Value 0

Empty N

Empty n+1

Value n

Dummy n-1

Dummy 1

Value 0

Empty N

Empty n+1

Value n

Empty n-1

Empty 1

MCSI Tx
registers

MCSI Tx
shift

registers Serial output

Value 0 Value n

Receive DMA Transfers

A receive DMA transfer is initiated after the reception of the last channel of a
frame, at which time all receive registers RX_REG have been updated and are
ready to be read. If N channels are used, the DMA controller successively
accesses all consecutive registers between RX_REG(0) and RX_REG(N-1).
If some channels between RX_REG(0) and RX_REG(N-1) are not used, the
DMA controller reads dummy values when addressing these unused registers
(see Figure 44).

Multichannel Serial Interfaces

125Serial InterfacesSPRU760C

Figure 44. Receive DMA Transfers

MCSI

dma add

dma data Val0

Ad0

Valndum

Adn

TI peripheral bus

ad
n-1

Ad1

dum

Value 0

Empty N

Empty n+1

Value n

Dummy n-1

Dummy 1

Value 0

Empty N

Empty n+1

Value n

Empty n-1

Empty 1

MCSI Rx
registers

MCSI Rx
shift

registers Serial input

Value 0 Value n

A multichannel application cannot use DMA for some channels and interrupt
servicing for others. RX/TX interrupts are not generated when DMA RX/TX
transfers are enabled.

4.1.6 Interface Activation

Start Sequence

A typical sequence to start the interface is:

1) MCSI configuration:

a) DSP_WRITE(0x0000)= CONTROL_REG in order to remove the write
protection on the control registers

b) DSP_WRITE(0x….)= MAIN_PARAMETERS_REG

c) DSP_WRITE(0x….)= INTERRUPTS_REG

d) DSP_WRITE(0x….)= CHANNEL_USED_REG

e) DSP_WRITE(0x….)= CLOCK_FREQUENCY_REG

f) DSP_WRITE(0x….)= OVER_CLOCK_REG

2) Transmit data loading for selected channels:

a) DSP_WRITE(0x….)= TX_REG[channel index]

3) Enable MCSI clock:

a) DSP_WRITE(0x0001)= CONTROL_REG

Multichannel Serial Interfaces

Serial Interfaces126 SPRU760C

Stop Sequence

A typical sequence to stop the interface is:

1) Disable MCSI clock: DSP_WRITE(0x0000) = CONTROL_REG

The status register keeps its content even after the stop of the transmis-
sion. The control registers can now be modified.

2) Software reset: DSP_WRITE(0x0002) = CONTROL_REG

The software reset initializes the status register.

Software Reset

The MCSI software reset is activated with the SW_RESET bit of the control
register (CONTROL_REG) (see Table 52, Activity Control Register).

This reset is limited to the control and status registers, the internal state
machine, and the PISO and SIPO logic. The parameters registers are not
affected by this software reset.

On the software reset, the MCSI reference clock is disabled, thus halting the
execution of any current operating mode.

4.1.7 Functional Mode Timing Diagrams

The following timing diagrams are based on a positive clock polarity with
parameter CLOCK_POL = 0.

(Transmit on rising edge/receive on falling edge.)

Single-Channel/Alternate Long Framing

Figure 45. Single-Channel/Alternate Long Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Multichannel Serial Interfaces

127Serial InterfacesSPRU760C

Single-Channel/Alternate Long Framing/Burst

Figure 46. Single-Channel/Alternate Long Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Single-Channel/Alternate Short Framing/Continuous/Burst

Figure 47. Single-Channel/Alternate Short Framing/Continuous/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Multichannel/Normal Short Framing/Channel4 Disable

Figure 48. Multichannel/Normal Short Framing/Channel4 Disable

Channel0

CLK

TXD

FSYNCH

Channel1 Channel2 Channel3 Channel5 Channel6 Channel14 Channel15 Channel0

Multichannel Serial Interfaces

Serial Interfaces128 SPRU760C

Multichannel/Alternate Long Framing/Continuous/Burst

Figure 49. Multichannel/Alternate Long Framing/Continuous/Burst

Channel0

CLK

TXD

FSYNCH

Channel1 Channel14 Channel15 Channel1 Channel2Channel0

OVER_CLOCK_REG = 0x0013

Multichannel/Normal Short Framing/Burst

Figure 50. Multichannel/Normal Short Framing/Burst

Channel0

CLK

TXD

FSYNCH

Channel1 Channel14 Channel15 Channel1 Channel2Channel0

OVER_CLOCK_REG = 0x0013

Single-Channel/Normal Short Framing

Figure 51. Single-Channel/Normal Short Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Multichannel Serial Interfaces

129Serial InterfacesSPRU760C

Single-Channel/Normal Short Framing/Burst

Figure 52. Single-Channel/Normal Short Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Single-Channel/Normal Long Framing

Figure 53. Single-Channel/Normal Long Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Single-Channel/Normal Long Framing/Burst

Figure 54. Single-Channel/Normal Long Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Multichannel Serial Interfaces

Serial Interfaces130 SPRU760C

Single-Channel/Normal Long Framing/Continuous

Figure 55. Single-Channel/Normal Long/Continuous

T7 T6 T5 T4 T3 T2 T1 T0

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0

T7 T6 T5 T4 T3 T2 T1 T0 T7

R7 R6 R5 R4 R3 R2 R1 R0 R7

Single-Channel/Alternate Short Framing

Figure 56. Single-Channel/Alternate Short Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Single-Channel/Alternate Short Framing/Burst

Figure 57. Single-Channel/Alternate Short Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0

T7 T6 T5 T4 T3 T2 T1

R7 R6 R5 R4 R3 R2 R1

OVER_CLOCK_REG = 0x0003

Multichannel Serial Interfaces

131Serial InterfacesSPRU760C

4.2 MCSI Register Descriptions

Table 47 through Table 55 describe the MCSI registers. The
CHANNEL_USED_REG, CLOCK_FREQUENCY_REG, OVER_CLOCK_REG,
INTERRUPTS_REG, and MAIN_PARAMETERS_REG registers are write
protected if the MCSI is enabled (CONTROL_REG[0] = 1).

The channel selection register is only used in multichannel mode.

Table 47. Channel Selection Register (CHANNEL_USED_REG)

Bit Name Access
Hardware

Reset

15 USE_CH15 R/W 0

14 USE_CH14 R/W 0

13 USE_CH13 R/W 0

12 USE_CH12 R/W 0

11 USE_CH11 R/W 0

10 USE_CH10 R/W 0

9 USE_CH9 R/W 0

8 USE_CH8 R/W 0

7 USE_CH7 R/W 0

6 USE_CH6 R/W 0

5 USE_CH5 R/W 0

4 USE_CH4 R/W 0

3 USE_CH3 R/W 0

2 USE_CH2 R/W 0

1 USE_CH1 R/W 0

0 USE_CH0 R/W 0

USE_CH[i] selects channel [i] for data transmission (active high).

Multichannel Serial Interfaces

Serial Interfaces132 SPRU760C

Table 48. Clock Frequency Register (CLOCK_FREQUENCY_REG)

The clock frequency register is used only in master mode when the interface
generates the serial clock.

Bit Name Description Access
Hardware

Reset

15:11 Unused R 0000 0

10:0 CLK_FREQ Division factor of 12-MHz reference clock
(2<=CLK_FREQ<= 2047)

In master mode, this register defines the transmission
baud rate from a frequency ratio based on a 12-MHz
reference clock. The transmission clock frequency can
be programmed from 5.8 kHz to 6 MHz in steps or
increments of 83 ns.

Clock frequency = 12 MHz/CLK_FREQ with 2 <=
CLK_FREQ <= 2047.

R/W 000 0000 0000

CLK_FREQ: division factor of 12-MHz reference clock (2<=CLK_FREQ<=
2047)

In master mode, this register defines the transmission baud rate from a
frequency ratio based on a 12-MHz reference clock. The transmission clock
frequency can be programmed from 5.8 kHz to 6 MHz in steps or increments
of 83 ns.

Clock frequency = 12 MHz / CLK_FREQ with 2 <= CLK_FREQ <= 2047.

Table 49. Oversized Frame Dimension Register (OVER_CLOCK_REG)

Bit Name Description Access
Hardware

Reset

15:10 Unused R 0000 00

9:0 OVER_CLOCK Overhead clock periods in frame duration
(0 = OVER_CLOCK = 1023)

R/W 00 0000 0000

Table 50. Interrupt Masks Register (INTERRUPTS_REG)

Bit Name Description Access
Hardware

Reset

15:11 Unused R 0000 0

10 MASK_IT_ERROR Mask of frame duration error interrupt (active
at 0)

R/W 0

9 MASK_IT_TX Mask of transmit interrupt (active at 0) R/W 0

Multichannel Serial Interfaces

133Serial InterfacesSPRU760C

Table 50. Interrupt Masks Register (INTERRUPTS_REG) (Continued)

Bit
Hardware

ResetAccessDescriptionName

8 MASK_IT_RX Mask of receive interrupt (active at 0) R/W 0

7:4 Number channel for
IT_TX

Channel number for transmit interrupt
generation
(0 <=NB_CHAN <= 15)

R/W 0000

3−0 Number channel for
IT_RX

Channel number for receive interrupt
generation
(0 <= NB_CHAN <=15)

R/W 0000

Table 51. Main Parameters Register (MAIN_PARAMETERS__REG)

Bit Name Value Description Access
Hardware

Reset

15:14 DMA enable Enable bits for DMA: R/W 00

00 Normal mode (No DMA)

01 DMA transmit mode, normal receive mode

10 Normal transmit mode, DMA receive mode

11 DMA transmit and receive mode

13:11 Reserved Reserved bits. These bits must always be
written as 0.

R/W 000

10 FSYNCH_POLA
RITY

Frame-synchronization pulse polarity R/W 0

0 Positive

1 Negative

9 FSYNCH_MODE Frame-synchronization pulse position R/W 0

0 Normal

1 Alternate

8 FSYNCH_SIZE Frame-synchronization pulse shape R/W 0

0 Short

1 Long

7 Multi/single Frame structure R/W 0

Multichannel Serial Interfaces

Serial Interfaces134 SPRU760C

Table 51. Main Parameters Register (MAIN_PARAMETERS__REG) (Continued)

Bit
Hardware

ResetAccessDescriptionValueName

0 Single

1 Multi

6 MCSI mode Interface transmission mode R/W 0

0 Slave

1 Master

5 Continuous/burst Frame mode R/W 0

0 Burst

1 Continuous

4 CLOCK_POLARI
TY

Clock edge selection R/W 0

0 Positive

1 Negative

3:0 Word size Word size in bits number (2 <= size <= 15)
with 2 for 3 bits and 15 for 16 bits.

R/W 0000

Table 52. Activity Control Register (CONTROL_REG)

Bit Name Value Description Access
Hardware

Reset
Software

Reset

15:3 Reserved Reserved bits. These bits
must always be written as
0.

R 0000 0000
0000 0

0000 0000
0000 0

2 Reserved Reserved bits. These bits
must always be written as
0.

R/W 0 0

1 MCSI software reset Asynchronous reset of
MCSI module

R/W 0 1

0 Disable

1 Enable

Multichannel Serial Interfaces

135Serial InterfacesSPRU760C

Table 52. Activity Control Register (CONTROL_REG) (Continued)

Bit
Software

Reset
Hardware

ResetAccessDescriptionValueName

0 MCSI clock enable Enable clock of MCSI
module

R/W 0 0

0 Disable

1 Enable

Note:

The software reset is applied as long as the MCSI software reset bit is set
to 1. A software reset disables the MSCI (the MCSI clk enable bit is cleared)
and initializes the status register. It does not modify the other registers.

To clear an interrupt on the MCSI, the DSP must write to the MCSI status
register with the bit corresponding to the interrupt set to 1. The MCSI status
register has a two-cycle latency when writing into it, so the interrupt line is
cleared two cycles after a write. To prevent clearing the interrupt handler
before the interrupt line is cleared, the interrupt routine must be at least two
cycles long.

Table 53. Interface Status Register (STATUS_REG)

Bit Name Value Description Access
Hardware

Reset
Software

Reset

15:7 Reserved Reserved bits. These bits
must always be written as 0.

R 0000 0000 0 0000 0000 0

6 Reserved Reserved bits. These bits
must always be written as 0.

R/W 0 0

5 TX underflow Transmit underflow R 0 0

0 No under

1 Under

4 TX ready Flag for transmit interrupt
occurrence

R/W 0 0

0 No interrupt

1 Interrupt

Multichannel Serial Interfaces

Serial Interfaces136 SPRU760C

Table 53. Interface Status Register (STATUS_REG) (Continued)

Bit
Software

Reset
Hardware

ResetAccessDescriptionValueName

3 RX overflow Receive overflow R 0 0

0 No over

1 Over

2 RX ready Flag for receive interrupt
occurrence

R/W 0 0

0 No interrupt

1 Interrupt

1 Error type
few/many

Too short (few) or too long
frame (many) status

R 0 0

0 Short

1 Long

0 Frame error Error flag when wrong frame
duration

R/W 0 0

0 Correct

1 Bad

This register is cleared by a software reset.

Table 54. Receive Word Register (RX_REG[15:0])

Bit Name Access Hardware Reset

15 b15 R U

14 b14 R U

13 b13 R U

12 b12 R U

11 b11 R U

10 b10 R U

9 b9 R U

Note: The MCSI receives the most significant bit first. For example, if the word_size equals 11, the upper 12 bits of the RX
registers contain the received data, and the lower 4 bits are zeros.

Multichannel Serial Interfaces

137Serial InterfacesSPRU760C

Table 54. Receive Word Register (RX_REG[15:0]) (Continued)

Bit Hardware ResetAccessName

8 b8 R U

7 b7 R U

6 b6 R U

5 b5 R U

4 b4 R U

3 b3 R U

2 b2 R U

1 b1 R U

0 b0 R U

Note: The MCSI receives the most significant bit first. For example, if the word_size equals 11, the upper 12 bits of the RX
registers contain the received data, and the lower 4 bits are zeros.

Table 55. Transmit Word Register (TX_REG[15:0])

Bit Name Access Hardware Reset

15 b15 R/W U

14 b14 R/W U

13 b13 R/W U

12 b12 R/W U

11 b11 R/W U

10 b10 R/W U

9 b9 R/W U

8 b8 R/W U

7 b7 R/W U

6 b6 R/W U

5 b5 R/W U

4 b4 R/W U

Note: The MCSI transmits the most significant bit first. For example, if the word_size equals 11, the upper 12 bits of the TX
registers are transmitted.

MCSI1 and MCSI2

Serial Interfaces138 SPRU760C

Table 55. Transmit Word Register (TX_REG[15:0]) (Continued)

Bit Hardware ResetAccessName

3 b3 R/W U

2 b2 R/W U

1 b1 R/W U

0 b0 R/W U

Note: The MCSI transmits the most significant bit first. For example, if the word_size equals 11, the upper 12 bits of the TX
registers are transmitted.

5 MCSI1 and MCSI2

This section provides information specific to MCSI1 and MCSI2 on the device.

5.1 MCSI1 Pin Description

Table 56 identifies the MCSI1 I/O pins. Figure 58 shows the MCSI1 interface.

Table 56. MCSI1 Pin Descriptions

Pin I/O Direction Description

MCSI1.DIN In Data input

MCSI1.DOUT Out Data output

MCSI1.CLK In/out Bit clock

MCSI1.SYNC In/out Frame synchronization

Multichannel Serial Interfaces / MCSI1 and MCSI2

MCSI1 and MCSI2

139Serial InterfacesSPRU760C

Figure 58. MCSI1 Interface

MCSI1.CLK

OMAP5912

MCSI1

clk_out

Clk_out_z
clk_in

Fsynch_out

Fsynch_out_z
Fsynch_in

txd

0

MCSI1.SYNC

MCSI1.DOUT

MCSI1.DIN

txd_z

Rxd

Tie-off

Reset

MPU

Interrupts

DMA
requests

I/F
16

RX (DMA_REQ_2)
TX (DMA_REQ_1)

RX interrupt (IRQ_7)
TX interrupt (IRQ_6)

DSP public
peripheral bus

DSPPER_nRST

DSPXOR_CK

TX/RX/frame error

RX (DMA_REQ_2)
TX (DMA_REQ_1)

DSP
DMA

DSP level 2
interrupt handler

System
DMA

MPU level 2
interrupt handler

DSP peripheral
bridge

Clock generation
and management

vfsrx

PWRON_RESET

Frame error (IRQ_10)

Interrupt (IRQ_16)

5.2 MCSI1 Interrupt Mapping

Table 57 identifies the MCSI1 interrupt mappings. MCSI1 generates level-2
interrupts for both the DSP and the MPU. Only one MPU MCSI1 interrupt
covers TX, RX, and frame error conditions; software must check the MCSI1
status register to determine the interrupt source.

MCSI1 and MCSI2

Serial Interfaces140 SPRU760C

Table 57. MCSI1 Interrupt Mapping

Incoming Interrupts Level 2 DSP Interrupt Level 2 MPU Interrupt

MCSI1 TX interrupt IRQ_06 IRQ_16

MCSI1 RX interrupt IRQ_07 IRQ_16

MCSI1 frame error IRQ_10 IRQ_16

5.3 MCSI1 DMA Request Mapping

Table 58 identifies MCSI1 DMA request lines.

Table 58. TDMA Request Mapping—MCSI1

DMA Request Source DMA Request Line—DSP DMA Request Line—MPU

MCSI1 TX DMA_REQ_01 DMA_REQ_01

MCSI1 RX DMA_REQ_02 DMA_REQ_02

5.4 MCSI2 Pin Description

This section provides information specific to MCSI2 on the device.

Table 59 identifies the MCSI2 I/O pins. Figure 59 shows the MCSI2 interface.

Table 59. MCSI2 Pin Descriptions

Pin I/O Direction Description

MCSI2.DIN In Data input

MCSI2.DOUT Out Data output

MCSI2.CLK In/out Bit clock

MCSI2.SYNC In/out Frame synchronization

MCSI1 and MCSI2

141Serial InterfacesSPRU760C

Figure 59. MCSI2 Interface

MCSI2.CLK

OMAP5912

MCSI2

clk_out

Clk_out_z
clk_in

Fsynch_out

Fsynch_out_z
Fsynch_in

txd

0

MCSI2.SYNC

MCSI2.DOUT

MCSI2.DIN

txd_z

Rxd

Tie-off

Reset

MPU

Interrupts

DMA
requests

I/F

16

RX (DMA_REQ_4)
TX (DMA_REQ_3)

RX interrupt (IRQ_9)
TX interrupt (IRQ_8)

DSP public
peripheral bus

DSPPER_nRST

DSPXOR_CK

TX/RX/frame error

DSP
DMA

DSP level 2
interrupt handler

MPU level 2
interrupt handler

DSP peripheral
bridge

Clock generation
and management

vfsrx

PWRON_RESET

Interrupt (IRQ_17)

Frame error (IRQ_11)

5.5 MCSI2 Interrupt Mapping

Table 60 identifies the MCSI2 interrupts. MCSI2 generates level-2 interrupts
for both the DSP and the MPU. Only one MPU MCSI2 interrupt covers TX, RX,
and frame error conditions; software must check the MCSI2 status register to
determine the interrupt source.

MCSI1 and MCSI2

Serial Interfaces142 SPRU760C

Table 60. MCSI2 Interrupt Mapping

Incoming Interrupts Level 2 DSP Interrupt Level 2 MPU Interrupt

MCSI2 TX interrupt IRQ_08 IRQ_17

MCSI2 RX interrupt IRQ_09 IRQ_17

MCSI2 frame error IRQ_11 IRQ_17

5.6 MCSI2 DMA Request Mapping

Table 61 identifies MCSI2 DMA request lines. Only the DSP DMA controller
can transfer MCSI2 data; there is no MPU DMA capability.

Table 61. DMA Request Mapping—MCSI2

DMA Request Source DMA Request Line—DSP DMA Request Line—MPU

MCSI2 TX DMA_REQ_03 −

MCSI2 RX DMA_REQ_04 −

UARTs

143Serial InterfacesSPRU760C

6 UARTs

There are three nearly identical UART modules on this device. The modules
are identical except for the fact that UART2 does not support infrared data
association (IrDA). UART1 and UART3 support IrDA. This section describes
all 3 UART modules. Note that discussions regarding IrDA apply only to
UART1 and UART3. This section includes a register description and a module
configuration example. It also shows the the basic UART IrDA module pins.

Figure 60. UART IrDA Signals

UART

RX

TX

CTS

RTS

DSR

DTR

DCD

RI

IrDA

TXIR

SD_MODE

RXIR

UARTs

Serial Interfaces144 SPRU760C

Figure 61. Functional Block Diagram

TIPB
MPU

RX

TXUART
TX FSM

TX FIFO

ControlTIPB
interface

RX FIFO

Data Exchanges

Controls

CLKGEN

Clocks to all blocks

RX
FSM

RXIR

TXIR

RX
FSM

SIR
TX FSM

UART
RX FSM

SIR
RX FSM

6.1 Main Features

� Selectable UART/IrDA modes

� Dual 64 entry FIFOs for received and transmitted data

� Programmable and selectable transmit and receive FIFO trigger levels for
DMA and interrupt generation

� Programmable sleep mode

� Complete status reporting capabilities in both normal and sleep modes

� Frequency prescaler values from 0 to 16383 to generate the appropriate
baud rates

� Single 48-MHz clock reference for baud setting

� Two DMA requests and one interrupt request to the system

UARTs

145Serial InterfacesSPRU760C

6.1.1 UART/Modem Functions

� Baud-rate from 300 bits/s up to 3.6864M bits/s

� Autobaud between 1200 bits/s and 115.2K bits/s

� Software/hardware flow control

� Programmable Xon/Xoff characters

� Programmable auto-RTS and auto-CTS

� Programmable serial interface characteristics

� 5-, 6-, 7-, or 8-bit characters

� Even, odd, mark (always = 1), space (always = 0) or no parity
(non parity bit frame) bit generation and detection

� 1, 1.5, or 2 stop-bit generation

� False start bit detection

� Line break generation and detection

� Fully prioritized interrupt system controls

� Internal test and loopback capabilities

� Modem control functions (CTS, RTS, DSR, DTR, RI and DCD)

6.1.2 IrDA Functions

� Slow infrared (SIR 115.2 KBAUD), medium infrared (MIR 0.576 MBAUD)
and fast infrared (FIR 4.0 MBAUD) operations. Very fast infrared (VFIR)
is not supported.

� Framing error, cyclic redundancy check (CRC) error, illegal symbol (FIR),
abort pattern (SIR, MIR) detection.

� 8-entry status FIFO (with selectable trigger levels) available to monitor
frame length and frame errors.

In Table 62, the module I/O description is at the module level.

UARTs

Serial Interfaces146 SPRU760C

Table 62. I/O Description

Signal I/O Description Reset

UART/MODEM Signals (UART 1,2,3)

RX I Serial data input. Unknown

TX O Serial data output. 1

CTS I Clear to send.

Active-low modem status signal. Reading bit 4 of the modem status
register checks the condition of CTS. Reading bit 0 of that register
checks a change of state of CTS since the last read of the modem
status register. CTS is used in auto-CTS mode to control the
transmitter.

Unknown

RTS O Request to send.

When active (low), the module is ready to receive data. Setting modem
control register bit 1 activates RTS. It becomes inactive as a result of a
module reset, loopback mode, or by clearing the MCR[1]. In auto-RTS
mode, it becomes inactive as a result of the receiver threshold logic.

1

DSR I Data set ready.

Active-low modem status signal. Reading bit 5 of the modem status
register checks the condition of DSR. Reading bit 1 of that register
checks a change of state of DSR since the last read of the modem
status register.

Unknown

DTR O Data terminal ready.

Active-low modem control signal. Reading bit 0 of the modem control
register checks the condition of DTR.

1

DCD I Data carrier detect.

Active-low modem status signal. The condition of DCD is checked by
reading bit 7 of the modem status register, and any change in its state
can be detected by reading bit 3 of that register.

Unknown

RI I Reading indicator.

Active-low modem status signal. The condition of RI is checked by
reading bit 6 of the modem status register, and any change in its state
is detected by reading bit 2 of that register.

Unknown

UARTs

147Serial InterfacesSPRU760C

Table 62. I/O Description (Continued)

Signal ResetDescriptionI/O

IrDA Signals (UART1 and UART3 only)

RXIR I Serial data input. Unknown

TXIR O Serial data output. 0

SD O Signal used to configure transceivers. 1

6.2 Control and Status Registers Description

Each register is selected using a combination of address and some LCR
register bit(s) settings as shown in the following Table 63.

6.2.1 UART IrDA Registers Mapping

The local host can access the following registers at address = module base
address + address offset. The module base address is the module start
address. Register address offsets depend on the module address alignment
at the system top level. The address offsets (0x13 x S) and (0x18 x S to 0x31
x S (inclusive)) are reserved and must be read as 0x00 at all times.

� S = 1 for 8-bit aligned addresses
� 2 for 16-bit aligned addresses
� 4 for 32-bit aligned addresses

All UART registers are 8-bit. Start addresses:

� UART1: FFFB 0000
� UART2: FFFB 0800
� UART3: FFFB 9800

UARTs

Serial Interfaces148 SPRU760C

Table 63. UART IrDA Registers

Address
Offset

Registers

LCR[7] = 0 LCR[7] = 1 and
LCR[7:0] is not 0xBF

LCR[7:0] = 0xBF

READ WRITE READ WRITE READ WRITE

0x00 x S RHR THR DLL DLL DLL DLL

0x01 x S IER § IER § DLH DLH DLH DLH

0x02 x S IIR FCR‡ IIR FCR‡ EFR EFR

0x03 x S LCR LCR LCR LCR LCR LCR

0x04 x S MCR‡ MCR‡ MCR‡ MCR‡ XON1/ADDR1 XON1/ADDR1

0x05 x S LSR − LSR − XON2/ADDR2 XON2/ADDR2

0x06 x S MSR/TCR† TCR† MSR/TCR† TCR† XOFF1/TCR† XOFF1/TCR†

0x07 x S SPR/TLR† SPR/TLR† SPR/TLR† SPR/TLR† XOFF2/TLR† XOFF2/TLR†

0x08 x S MDR1 MDR1 MDR1 MDR1 MDR1 MDR1

0x09 x S MDR2 MDR2 MDR2 MDR2 MDR2 MDR2

0x0A x S SFLSR TXFLL SFLSR TXFLL SFLSR TXFLL

0x0B x S RESUME TXFLH RESUME TXFLH RESUME TXFLH

0x0C x S SFREGL RXFLL SFREGL RXFLL SFREGL RXFLL

0x0D x S SFREGH RXFLH SFREGH RXFLH SFREGH RXFLH

0x0E x S BLR BLR UASR − UASR −

0x0F x S ACREG ACREG − − − −

0x10 x S SCR SCR SCR SCR SCR SCR

0x11 x S SSR − SSR − SSR −

0x12 x S EBLR EBLR − − − −

0x14 x S MVR − MVR − MVR −

0x15 x S SYSC SYSC SYSC SYSC SYSC SYSC

† In UART modes, IER[7:4] can only be written when EFR[4] = 1. In IrDA modes, EFR[4] has no effect on access to IER[7:4].
‡ MCR[7:5] and FCR[5:4] can only be written when EFR[4] = 1.
§ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

UARTs

149Serial InterfacesSPRU760C

Table 63. UART IrDA Registers (Continued)

Address
Offset

Registers

LCR[7:0] = 0xBFLCR[7] = 1 and
LCR[7:0] is not 0xBF

LCR[7] = 0

WRITEREADWRITEREADWRITEREAD

0x16 x S SYSS SYSS SYSS SYSS SYSS SYSS

0x17 x S WER WER WER WER WER WER

† In UART modes, IER[7:4] can only be written when EFR[4] = 1. In IrDA modes, EFR[4] has no effect on access to IER[7:4].
‡ MCR[7:5] and FCR[5:4] can only be written when EFR[4] = 1.
§ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

Offset Address (hex): 0x00 x S and LCR[7] = 0 and read

The receiver section consists of the receiver holding register (RHR) and the
receiver shift register. The RHR is actually a 64-byte FIFO. The receiver shift
register receives serial data from RX input. The data is converted to parallel
data and moved to the RHR. If the FIFO is disabled, location 0 of the FIFO is
used to store the single data character.

If an overflow occurs the data in the RHR is not overwritten.

Table 64. Receive Holding Register (RHR)

Bit Name Function R/W Reset

7:0 RHR Receive holding register R Unknown

Offset Address (hex): 0x00 x S and LCR[7] = 0 and write

The transmitter section consists of the transmit holding register (THR) and the
transmit shift register. The transmit holding register is actually a 64-byte FIFO.
The LH writes data to the THR. The data is placed into the transmit shift
register where it is shifted out serially on the TX output. If the FIFO is disabled,
location 0 of the FIFO is used to store the data.

Table 65. Transmit Holding Register (THR)

Bit Name Function R/W Reset

7:0 THR Transmit holding register W Unknown

Offset Address (hex): 0x02 x S and LCR not 0xBF (and EFR[4] = 1 for
FCR[5:4]) and write.

UARTs

Serial Interfaces150 SPRU760C

Table 66. FIFO Control Register (FCR)

Bit Name Function R/W Reset

7:6 RX_FIFO_TRIG Sets the trigger level for the RX FIFO:

If SCR[7] = 0 and TLR[7:4] = 0000:

00: 8 characters
01: 16 characters
10: 56 characters
11: 60 characters

If SCR[7] = 0 and TLR[7:4] non-0, RX_FIFO_TRIG
is not considered.

If SCR[7] = 1, RX_FIFO_TRIG is 2 LSB of the
trigger level (1−63 on 6 bits) with the granularity 1.

W 00

5:4 TX_FIFO_TRIG Sets the trigger level for the TX FIFO:

If SCR[6] = 0 and TLR[3:0] = 0000:

00: 8 spaces
01: 16 spaces
10: 32 spaces
11: 56 spaces

If SCR[6] = 0 and TLR[3:0] non-0, TX_FIFO_TRIG
is not considered.

If SCR[6] = 1, TX_FIFO_TRIG is 2 LSB of the
trigger level (1−63 on 6 bits) with the granularity 1.

W 00

3 DMA_MODE 0: DMA_MODE 0 (No DMA)

1: DMA_MODE 1 (UART_nDMA_REQ[0] in TX,
UART_nDMA_REQ[1] in RX)

This register is considered if SCR[0] = 0.

W 0

2 TX_FIFO_CLEAR 0: No change.

1: Clears the transmit FIFO and resets its counter
logic to 0. Returns to 0 after clearing FIFO.

W 0

1 RX_FIFO_CLEAR 0: No change.

1: Clears the receive FIFO and resets its counter
logic to 0. Returns to 0 after clearing FIFO.

W 0

0 FIFO_EN 0: Disables the transmit and receive FIFOs.

1: Enables the transmit and receive FIFOs.

W 0

Notes: 1) Bits 4 and 5 can only be written to when EFR[4] = 1.

2) Bits 0 to 3 can be changed only when the baud clock is not running (DLL and DLH set to 0).

3) See for FCR[5:4] setting restriction when SCR[6] = 1.

4) See for FCR[7:6] setting restriction when SCR[7] = 1.

UARTs

151Serial InterfacesSPRU760C

Offset Address (hex): 0x10 x S

Table 67. Supplementary Control Register (SCR)

Bit Name Function R/W Reset

7 RX_TRIG_GRANU1 0: Disables the granularity of 1 for trigger RX level.

1: Enables the granularity of 1 for trigger RX level.

R/W 0

6 TX_TRIG_GRANU1 0: Disables the granularity of 1 for trigger TX level.

1: Enables the granularity of 1 for trigger TX level.

R/W 0

5 DSR_IT 0: Disables DSR interrupt.

1: Enables DSR interrupt.

R/W 0

4 RX_CTS_DSR_
WAKE_UP_ENABLE

0: Disables the wake-up interrupt and clears
SSR[1].

1: Waits for a falling edge of pins RX, CTS or DSR
to generate an interrupt.

R/W 0

3 TX_EMPTY_CTL_IT 0: Normal mode for THR interrupt (See UART mode
interrupts table.)

1: The THR interrupt is generated when TX FIFO
and TX shift register are empty.

R/W 0

2:1 DMA_MODE_2 Used to specify the DMA mode valid if SCR[0] = 1

00: DMA mode 0 (no DMA)

01: DMA mode 1 (UART_nDMA_REQ[0] in TX,
UART_nDMA_REQ[1] in RX)

10: DMA mode 2 (UART_nDMA_REQ[0] in RX)

11: DMA mode 3 (UART_nDMA_REQ[0] in TX)

R/W 00

0 DMA_MODE_CTL 0: The DMA_MODE is set with FCR[3].

1: The DMA_MODE is set with SCR[2:1].

R/W 0

Bit 4 enables the wake-up interrupt, but this interrupt is not mapped into the
IIR register. Therefore, when an interrupt occurs and there is no interrupt
pending in the IIR register, the SSR[1] bit must be checked. To clear the
wake-up interrupt, bit SCR[4] must be reset to 0.

Offset Address (hex): 0x03 x S

LCR[6:0] defines parameters of the transmission and reception.

UARTs

Serial Interfaces152 SPRU760C

Table 68. Line Control Register (LCR)

Bit Name Function R/W Reset

7 DIV_EN 0: Normal operating condition.

1: Divisor latch enable. Allows access to DLL,
DLH, and other registers (refer to the registers’
mapping).

R/W 0

6 BREAK_EN Break control bit

0: Normal operating condition.

1: Forces the transmitter output to go low to alert
the communication terminal.

R/W 0

5 PARITY_TYPE2 R/W 0

4 PARITY_TYPE1 0: Odd parity is generated (if LCR[3] = 1).

1: Even parity is generated (if LCR[3] = 1).

R/W 0

3 PARITY_EN 0: No parity.

1: A parity bit is generated during transmission and
the receiver checks for received parity.

R/W 0

2 NB_STOP Specifies the number of stop bits:
0: 1 stop bits (word length = 5, 6, 7, 8)
1: 1.5 stop bits (word length = 5)
1−2 stop bits (word length = 6, 7, 8)

R/W 0

1:0 CHAR_LENGTH Specifies the word length to be transmitted or
received

00: 5 bits

01: 6 bits

10: 7 bits

11: 8 bits

R/W 00

Offset Address (hex): 0x05 x S and LCR is not 0xBF and read

UARTs

153Serial InterfacesSPRU760C

Table 69. Line Status Register (LSR) (UART Mode)

Bit Name Function R/W Reset

7 RX_FIFO_STS 0: Normal operation.

1: At least one parity error, framing error, or break
indication in the receiver FIFO. Bit 7 is cleared
when no more errors are present in the FIFO.

R 0

6 TX_SR_E 0: Transmitter hold and shift registers are not
empty.

1: Transmitter hold and shift registers are empty.

R 1

5 TX_FIFO_E 0: Transmit hold register is not empty.

1: Transmit hold register is empty. The processor
can now load up to 64 bytes of data into the THR if
the TX FIFO is enabled.

R 1

4 RX_BI 0: No break condition.

1: A break was detected while the data being read
from the RX FIFO was being received (that is, RX
input was low for one character time frame).

R 0

3 RX_FE 0: No framing error in data being read from RX
FIFO.

1: Framing error occurred in data being read from
RX FIFO (received data did not have a valid stop
bit).

R 0

2 RX_PE 0: No parity error in data being read from RX FIFO.

1: Parity error in data being read from RX FIFO.

R 0

1 RX_OE 0: No overrun error.

1: Overrun error has occurred. Set when the
character held in the receive shift register is not
transferred to the RX FIFO. This case occurs only
when receive FIFO is full.

R 0

0 RX_FIFO_E 0: No data in the receive FIFO.

1: At least one data character in the RX_FIFO.

R 0

When the LSR is read, LSR[4:2] reflects the error bits [BI, FE, PE] of the
character at the top of the RX FIFO (next character to be read). Therefore,
reading the LSR, and then reading the RHR, identifies errors in a character.

Reading RHR updates [BI, FE, PE] (See Table 109, UART Mode Interrupts.)

LSR [7] is set when there is an error anywhere in the RX FIFO, and is cleared
only when there are no more errors remaining in the FIFO.

UARTs

Serial Interfaces154 SPRU760C

Reading the LSR does not cause an increment of the RX FIFO read pointer.

The RX FIFO read pointer is incremented by reading the RHR.

Reading LSR clears [OE] if set (See Table 109, UART Mode Interrupts.)

Table 70. Line Status Register (LSR) (IR Mode)

Bit Name Function R/W Reset

7 THR_EMPTY 0: Transmit holding register is not empty.

1: Transmit holding register is empty. The
processor can now load up to 64 bytes of data into
the THR if the TX FIFO is enabled.

R 1

6 STS_FIFO_FULL 0: Status FIFO not full.

1: Status FIFO full.

R 0

5 RX_LAST_BYTE 0: The RX FIFO does not contain the last byte of
the frame to be read.

1: The RX FIFO contains the last byte of the frame
to be read. This bit is set only when the last byte
of a frame is available to be read. It is used to
determine the frame boundary. It is cleared on a
single read of the LSR register.

R 0

4 FRAME_TOO_LONG 0: No frame-too-long error in frame.

1: Frame-too-long error in the frame at the top of
the STATUS FIFO, [next character to be read].
This bit is set to 1 when a frame exceeding the
maximum length (set by RXFLH and RXFLL
registers) has been received. When this error is
detected, current frame reception is terminated.
Reception is stopped until the next START flag is
detected.

R 0

3 ABORT 0: No abort pattern error in frame.

1: Abort pattern is received.

SIR & MIR: Abort pattern

FIR: Illegal symbol 0000

R 0

2 CRC 0: No CRC error in frame.

1: CRC error in the frame at the top of the
STATUS FIFO (next character to be read).

R 0

UARTs

155Serial InterfacesSPRU760C

Table 70. Line Status Register (LSR) (IR Mode) (Continued)

Bit ResetR/WFunctionName

1 STS_FIFO_E 0: Status FIFO not empty.

1: Status FIFO empty.

R 1

0 RX_FIFO_E 0: At least one data character in the RX_FIFO.

1: No data in the receive FIFO.

R 1

When the LSR is read, LSR[4:2] reflects the error bits [FL, CRC, ABORT] of
the frame at the top of the STATUS FIFO (next frame status to be read). See
Table 110, IrDA Mode Interrupts.

Offset Address (hex): 0x11 x S and read

Table 71. Supplementary Status Register (SSR)

Bit Name Function R/W Reset

7:2 − Reserved R 000000

1 RX_CTS_DSR_WAKE
_UP_STS

0: No falling edge event on RX, CTS and DSR.

1: A falling edge occurred on RX, CTS or DSR.

R 0

0 TX_FIFO_FULL 0: TX FIFO not full.

1: TX FIFO full.

R 0

Bit 1 is reset only when SCR[4] is reset to 0.

Offset Address (hex): 0x04 x S and LCR is not 0xBF (and EFR[4] = 1 for
MCR[7:5])

MCR[3:0] controls the interface with the modem, data set, or peripheral device
that is emulating the modem.

Table 72. Modem Control Register (MCR)

Bit Name Function R/W Reset

7 − Reserved. R 0

6 TCR_TLR 0: No action.

1: Enables access to the TCR and TLR registers.

R/W 0

5 XON_EN 0: Disable the XON any function.

1: Enable the XON any function.

R/W 0

UARTs

Serial Interfaces156 SPRU760C

Table 72. Modem Control Register (MCR) (Continued)

Bit ResetR/WFunctionName

4 LOOPBACK_EN 0: Normal operating mode.

1: Enable local loopback mode (internal).

In this mode, the MCR[3:0] signals are looped back
into MSR[7:4]. The transmit output is looped back to
the receive input internally.

R/W 0

3 CD_STS_CH 0: In loopback, forces DCD input high and IRQ
outputs to inactive state.

1: In loopback, forces DCD input low and IRQ
outputs to inactive state.

R/W 0

2 RI_STS_CH 0: In loopback, forces RI input high.

1: In loopback, forces RI input low.

R/W 0

1 RTS 0: Force RTS output to inactive (high).

1: Force RTS output to active (low).

In loopback, controls MSR[4]

If auto-RTS is enabled, the RTS output is controlled
by hardware flow control.

R/W 0

0 DTR 0: Force DTR output to inactive (high).

1: Force DTR output to active (low).

R/W 0

Bits 5 and 6 can be written only when EFR[4] = 1.

Offset Address (hex): 0x06 x S and LCR is not 0xBF and (EFR[4] = 0 or MCR[6]
= 0) and read.

This register provides information about the current state of the control lines
from the modem, data set, or peripheral device to the LH. It also indicates when
a control input from the modem changes state.

Table 73. Modem Status Register (MSR)

Bit Name Function R/W Reset

7 NCD_STS This bit is the complement of the DCD input. In
loopback mode it is equivalent to MCR[3].

R Unknown

6 NRI_STS This bit is the complement of the RI input. In
loopback mode it is equivalent to MCR[2].

R Unknown

5 NDSR_STS This bit is the complement of the DSR input. In
loopback mode, it is equivalent to MCR[0].

R Unknown

UARTs

157Serial InterfacesSPRU760C

Table 73. Modem Status Register (MSR) (Continued)

Bit ResetR/WFunctionName

4 NCTS_STS This bit is the complement of the CTS input. In
loopback mode it is equivalent to MCR[1].

R Unknown

3 DCD_STS Indicates that DCD input (or MCR[3] in loopback)
has changed. Cleared on a read.

R 0

2 RI_STS Indicates that RI input (or MCR[2] in loopback)
has changed state from low to high. Cleared on a
read.

R 0

1 DSR_STS 1: Indicates that DSR input (or MCR[0] in
loop-back) has changed state. Cleared on a read.

R 0

0 CTS_STS 1: Indicates that CTS input (or MCR[1] in
loopback) has changed state. Cleared on a read.

R 0

6.3 Interrupt Enable Register (IER)

Offset Address (hex): 0x01 x S and LCR[7] = 0 (and EFR[4] = 1 for
IER[7:4]—UART modes only)

UART Modes IER

The interrupt enable register (IER) can be programmed to enable/disable any
interrupt. This mode has seven types of interrupt: Receiver error, RHR
interrupt, THR interrupt, XOFF received, and CTS/RTS change of state from
low to high. Each interrupt can be enabled/disabled individually. The IER also
has a sleep-mode enable bit.

Table 74. Interrupt Enable Register (IER) (UART Mode)

Bit Name Function R/W Reset

7 CTS_IT 0: Disables the CTS interrupt.

1: Enables the CTS interrupt.

R/W 0

6 RTS_IT 0: Disables the RTS interrupt.

1: Enables the RTS interrupt.

R/W 0

5 XOFF_IT 0: Disables the XOFF interrupt.

1: Enables the XOFF interrupt.

R/W 0

4 SLEEP_MODE 0: Disables sleep mode.

1: Enables sleep mode (stop baud rate clock when
the module is inactive).

R/W 0

UARTs

Serial Interfaces158 SPRU760C

Table 74. Interrupt Enable Register (IER) (UART Mode) (Continued)

Bit ResetR/WFunctionName

3 MODEM_STS_IT 0: Disables the modem status register interrupt.

1: Enables the modem status register interrupt.

R/W 0

2 LINE_STS_IT 0: Disables the receiver line status interrupt.

1: Enables the receiver line status interrupt.

R/W 0

1 THR_IT 0: Disables the THR interrupt.

1: Enables the THR interrupt.

R/W 0

0 RHR_IT 0: Disables the RHR interrupt and time-out interrupt.

1: Enables the RHR interrupt and time-out interrupt.

R/W 0

Bits 4, 5, 6, and 7 can only be written when EFR[4] = 1.

IrDA Modes IE

These modes have eight types of interrupts: received EOF, LSR interrupt, TX
status, status FIFO interrupt, RX overrun, last byte in RX FIFO, THR interrupt,
and RHR interrupt. All can be enabled/disabled individually.

Table 75. Interrupt Enable Register (IER) (IrDA Mode)

Bit Name Function R/W Reset

7 EOF_IT 0: Disables the received EOF interrupt.

1: Enables the received EOF interrupt.

R/W 0

6 LINE_STS_IT 0: Disables the receiver line status interrupt.

1: Enables the receiver line status interrupt.

R/W 0

5 TX_STATUS_IT 0: Disables the TX status interrupt.

1: Enables the TX status interrupt.

R/W 0

4 STS_FIFO_TRIG_IT 0: Disables status FIFO trigger level interrupt.

1: Enables status FIFO trigger level interrupt.

R/W 0

3 RX_OVERRUN_IT 0: Disables the RX overrun interrupt.

1: Enables the RX overrun interrupt.

R/W 0

2 LAST_RX_BYTE_IT 0: Disables the last byte of frame in RX FIFO
interrupt.

1: Enables the last byte of frame in RX FIFO interrupt.

R/W 0

UARTs

159Serial InterfacesSPRU760C

Table 75. Interrupt Enable Register (IER) (IrDA Mode) (Continued)

Bit ResetR/WFunctionName

1 THR_IT 0: Disables the THR interrupt.

1: Enables the THR interrupt.

R/W 0

0 RHR_IT 0: Disables the RHR interrupt.

1: Enables the RHR interrupt.

R/W 0

The TX_STATUS_IT interrupt reflects two possible conditions. The MDR2[0]
must be read to determine the status in the event of this interrupt.

Offset Address (hex): 0x02 x S and LCR is not 0xBF and read.

The IIR is a read-only register that provides the source of the interrupt in a
prioritized manner.

Table 76. Interrupt Identification Register (IIR) (UART Mode)

Bit Name Function R/W Reset

7:6 FCR_MIRROR Mirror the contents of FCR[0] on both bits R 00

5:1 IT_TYPE R 00000

0 IT_PENDING 0: An interrupt is pending (UART_nIRQ active).

1: No interrupt is pending (UART_nIRQ inactive).

R 1

The UART_nIRQ output is activated whenever one of the eight interrupts is
active.

Table 77. IrDA Mode Register (IIR)

Bit Name Function R/W Reset

7 EOF_IT 0: Received EOF interrupt inactive.

1: Received EOF interrupt active.

R 0

6 LINE_STS_IT 0: Receiver line status interrupt inactive.

1: Receiver line status interrupt active.

R 0

5 TX_STATUS_IT 0: TX status interrupt inactive.

1: TX status interrupt active.

R 0

4 STS_FIFO_IT 0: Status FIFO trigger level interrupt inactive.

1: Status FIFO trigger level interrupt active.

R 0

UARTs

Serial Interfaces160 SPRU760C

Table 77. IrDA Mode Register (IIR) (Continued)

Bit ResetR/WFunctionName

3 RX_OE_IT 0: RX overrun interrupt inactive.

1: RX overrun interrupt active.

R 0

2 RX_FIFO_LAST_
BYTE_IT

0: Last byte of frame in RX FIFO interrupt inactive.

1: Last byte of frame in RX FIFO interrupt active.

R 0

1 THR_IT 0: THR interrupt inactive.

1: THR interrupt active.

R 0

0 RHR_IT 0: RHR interrupt inactive.

1: RHR interrupt active.

R 0

Offset Address (hex): 0x02 x S and LCR = 0xBF

This register enables or disables enhanced features. Most of the enhanced
functions apply only to UART modes, but EFR[4] enables write access to
FCR[5:4], the TX trigger level, which is also used in IrDA modes.

Table 78. Enhanced Feature Register (EFR)

Bit Name Function R/W Reset

7 AUTO_CTS_EN Auto-CTS enable bit

0: Normal operation.

1: Auto-CTS flow control is enabled, that is,
transmission is halted when the CTS pin is high
(inactive).

R/W 0

6 AUTO_RTS_EN Auto-RTS enable bit

0: Normal operation.

1: Auto-RTS flow control is enabled. RTS pin goes
high (inactive) when the receiver FIFO HALT
trigger level, TCR[3:0], is reached, and goes low
(active) when the receiver FIFO RESTORE
transmission trigger level is reached.

R/W 0

5 SPECIAL_CHAR_
DETECT

0: Normal operation.

1: Special character detect enable.

Received data is compared with XOFF2 data. If a
match occurs the received data is transferred to
FIFO, and IIR bit 4 is set to 1 to indicate that a
special character has been detected.

R/W 0

UARTs

161Serial InterfacesSPRU760C

Table 78. Enhanced Feature Register (EFR) (Continued)

Bit ResetR/WFunctionName

4 ENHANCED_EN Enhanced functions write enable bit

0: Disables writing to IER bits 4−7, FCR bits 4−5,
and MCR bits 5−7.

1: Enables writing to IER bits 4−7, FCR bits 4−5,
and MCR bits 5−7.

R/W 0

3:0 SW_FLOW_
CONTROL

Combinations of software flow control can be
selected by programming bits 3−0.

See Table 79.

R/W 0000

Table 79. Software Flow Control Options(EFR[0−3])

Bit 3 Bit 2 Bit 1 Bit 0 TX, RX Software Flow Controls

0 0 X X No transmit flow control

1 0 X X Transmit XON1, XOFF1

0 1 X X Transmit XON2, XOFF2

1 1 X X Transmit XON1, XON2: XOFF1, XOFF2

X X 0 0 No receive flow control

X X 1 0 Receiver compares XON1, XOFF1

X X 1 1 Receiver compares XON2, XOFF2

X X 1 1 Receiver compares XON1, XON2: XOFF1, XOFF2†

† XON1 and XON2 must be set to different values if software flow control is enabled.

Offset Address (hex): 0x04 x S and LCR = 0xBF

Table 80. XON1/ADDR1 Register

Bit Name Function R/W Reset

7:0 XON_WORD1 Used to store the 8-bit XON1 character in
UART modes and ADDR1 address 1 for IrDA
modes

R/W 0x00

Offset Address (hex): 0x05 x S and LCR = 0xBF

UARTs

Serial Interfaces162 SPRU760C

Table 81. XON2/ADDR2 Register

Bit Name Function R/W Reset

7:0 XON_WORD2 Used to store the 8-bit XON2 character in UART
modes and ADDR2 address 2 for IrDA modes

R/W 0x00

Offset Address (hex): 0x06 x S and LCR = 0xBF and (EFR[4] = 0 or MCR[6]
= 0)

Table 82. XOFF1 Register

Bit Name Function R/W Reset

7:0 XOFF_WORD1 Used to store the 8-bit XOFF1 character used in
UART modes

R/W 0x00

Offset Address (hex): 0x07 x S and LCR = 0xBF and (EFR[4] = 0 or MCR[6]
= 0)

Table 83. XOFF2 Register

Bit Name Function R/W Reset

7:0 XOFF_WORD2 Used to store the 8-bit XOFF2 character used in
UART modes

R/W 0x00

Offset Address (hex): 0x07 x S and LCR is not 0xBF and (EFR[4] = 0 or MCR[6]
= 0)

This R/W register does not control the module in any way. It is a scratchpad
register the programmer can use to hold temporary data.

Table 84. Scratchpad Register (SPR)

Bit Name Function R/W Reset

7:0 SPR_WORD Scratchpad register R/W 0x00

6.3.1 Divisor Latches (DLL, DLH)

These two registers store the 14-bit divisor for generation of the baud clock in
the baud rate generator. DLH stores the most-significant part of the divisor.
DLL stores the least-significant part of the divisor.

DLL and DLH can only be written to before sleep mode is enabled, that is,
before IER[4] is set.

Offset Address (hex): 0x00 x S and LCR[7] = 1

UARTs

163Serial InterfacesSPRU760C

Table 85. Divisor Latches LowRegister (DLL)

Bit Name Function R/W Reset

7:0 CLOCK_LSB Used to store the 8-bit LSB divisor value R/W 0x00

Offset Address (hex): 0x01 x S and LCR[7] = 1

Table 86. Divisor Latches High Register (DLH)

Bit Name Function R/W Reset

7:6 − Reserved R 00

5:0 CLOCK_MSB Used to store the 6-bit MSB divisor value R/W 000000

Offset Address (hex): 0x06 x S and EFR[4] = 1 and MCR[6] = 1

This register stores the receive FIFO threshold levels to start/stop
transmission during hardware/software flow control.

Table 87. Transmission Control Register (TCR)

Bit Name Function R/W Reset

7:4 RX_FIFO_TRIG_START RCV FIFO trigger level to RESTORE transmission
(0 − 60)

R/W 0x0

3:0 RX_FIFO_TRIG_HALT RCV FIFO trigger level to HALT transmission
(0 − 60)

R/W 0xF

Notes: 1) Trigger levels from 0 − 60 bytes are available with a granularity of 4.
(Trigger level = 4 x [4-bit register value])

2) The programmer must ensure that TCR[3:0] > TCR[7:4] whenever auto-RTS or software flow control is enabled,
to prevent device malfunction.

3) In FIFO interrupt mode with flow control, the programmer also must ensure that the trigger level to HALT transmis-
sion is greater than or equal to the receive FIFO trigger level (either TLR[7:4] or FCR[7:6]). Otherwise, the FIFO
operation stalls. This problem does not exist in FIFO DMA mode with flow control because a DMA request is sent
each time a byte is received.

Offset Address (hex): 0x07 x S and EFR[4] = 1 and MCR[6] = 1

This register stores the programmable transmit and receive FIFO trigger levels
used for DMA and IRQ generation.

Table 88. Trigger Level Register (TLR)

Bit Name Function R/W Reset

7:4 RX_FIFO_TRIG_DMA RCV FIFO trigger level R/W 0x0

3:0 TX_FIFO_TRIG_DMA Transmit FIFO trigger level R/W 0x0

UARTs

Serial Interfaces164 SPRU760C

Table 89 and Table 90 summarize the different ways to set the trigger levels
for the transmit FIFO and the receive FIFO, respectively.

Table 89. TX FIFO Trigger Level Setting Summary

SCR[6] TLR[3:0] TX FIFO Trigger Level

0 0000 Defined by FCR[5:4] (either 8,16,32, 56 spaces)

0 Non-zero Defined by TLR[3:0] (from 4 to 60 spaces with a granularity of 4 spaces)

1 Value Defined by the concatenated value of TLR[3:0] and FCR [5:4] (from 1 to 63 spaces
with a granularity of 1 space).

Note: The combination of TLR [3:0] = 0000 and FCR [5:4] = 00 (all zeros) is not
supported (min 1 space required). All zeros result in unpredictable behavior.

Table 90. RX FIFO Trigger Level Setting Summary

SCR[7] TLR[7:4] RX FIFO Trigger Level

0 0000 Defined by FCR[7:6] (either 8,16,56, 60 characters)

0 Non-zero Defined by TLR[7:4] (from 4 to 60 characters with a granularity of 4 characters)

1 Value Defined by the concatenated value of TLR[7:4] and FCR [7:6] (from 1 to 63
characters with a granularity of 1 character)

Note: The combination of TLR[7:4] = 0000 and FCR [7:6] = 00 (all zeros) is not
supported (min 1 character required). All zeros result in unpredictable behavior.

Offset Address (hex): 0x08 x S

The mode of operation is programmed by writing to MDR1[2:0]. Therefore, the
MDR1 must be programmed on start-up after configuring registers DLL, DLH,
and LCR. The value of MDR1[2:0] must not be changed again during normal
operation.

Table 91. Mode Definition Register 1 (MDR1)
Bit Name Function R/W Reset

7 FRAME_END_MODE 0: Frame-length method.

1: Set EOT bit method.

R/W 0

6 SIP_MODE MIR/FIR modes only

0: Manual SIP mode: SIP is generated with the
control of ACREG[3].

1: Automatic SIP mode: SIP is generated after each
transmission.

R/W 0

UARTs

165Serial InterfacesSPRU760C

Table 91. Mode Definition Register 1 (MDR1) (Continued)
Bit ResetR/WFunctionName

5 SCT Store and control the transmission

0: Starts the IrDA transmission as soon as a value is
written to THR.

1: Starts the IrDA transmission with the control of
ACREG[2].

R/W 0

4 SET_TXIR Used to configure the IrDA transceiver

0: No action.

1: TXIR pin output is forced high.

R/W 0

3 IR_SLEEP 0: IrDA sleep mode disabled.

1: IrDA sleep mode enabled.

R/W 0

2:0 MODE_SELECT 000: UART 16x mode

001: SIR mode

010: UART 16x autobaud

011: UART 13x mode

100: MIR mode

101: FIR mode

110: Reserved

111: Disable (default state)

R/W 111

Offset Address (hex): 0x09 x S

IrDA modes only.

MDR2[0] describes the status of the interrupt in IIR[5]. The IRTX_UNDERRUN
bit should be read after an IIR[5] TX_STATUS_IT interrupt has occurred. The
bits [2:1] of this register set the trigger level for the frame status FIFO (8 entries)
and must be programmed before the mode is programmed in MDR1[2:0].

UARTs

Serial Interfaces166 SPRU760C

Table 92. Mode Definition Register 2 (MDR2)

Bit Name Function R/W Reset

7:3 − Reserved R 00000

2:1 STS_FIFO_TRIG Frame status FIFO threshold select:
00: 1 entry
01: 4 entries
10: 7 entries
11: 8 entries

R/W 00

0 IRTX_UNDERRUN IRDA transmission status interrupt

When the IIR[5] interrupt occurs, the meaning of the
interrupt is:

0: IRTX last bit of the frame has been transmitted
successfully without error.

1: IRTX underrun has occurred. The last bit of the
frame has been transmitted but with an underrun
error present. The bit is reset to 0 when the
RESUME register is read.

R 0

Offset Address (hex): 0x0E x S and LCR[7] = 1 and read

UART autobauding mode only.

This status register returns the speed, the number of bits by characters, and
the type of the parity in UART autobauding mode.

In autobauding mode the input frequency of the UART modem must be fixed
to 48 MHz. Any other module clock frequency results in incorrect baud rate
recognition.

UARTs

167Serial InterfacesSPRU760C

Table 93. UART Autobauding Status Register (UASR)

Bit Name Function R/W Reset

7:6 PARITY_TYPE 00: No parity identified

01: Parity space

10: Even parity

11: Odd parity

R 00

5 BIT_BY_CHAR 0: 7 bits character identified.

1: 8 bits character identified.

R 0

4:0 SPEED Used to report the speed identified

00000: No speed identified

00001: 115 200 bauds

00010: 57 600 bauds

00011: 38 400 bauds

00100: 28 800 bauds

00101: 19 200 bauds

00110: 14 400 bauds

00111: 9 600 bauds

01000: 4 800 bauds

01001: 2 400 bauds

01010: 1 200 bauds

R 00000

This register sets up transmission according to characteristics of previous
reception instead of the LCR, DLL, and DLH registers used when UART is in
autobauding mode.

To reset the autobauding hardware (to start a new AT detection) or to set the
UART in standard mode (no autobaud), MDR1[2:0] must be set to reset state
111, and then to the UART in autobaud mode 010 or UART in standard mode
000.

Usage limitation:

� Only 7- and 8-bit character (5 and 6 bits not supported)
� 7-bit character with space parity not supported
� Baud rate between 1200 and 115200 bp/s (10 possibilities)

UARTs

Serial Interfaces168 SPRU760C

6.4 Transmit Frame Length Register (TXFLL, TXFLH)

IrDA modes only.

The registers TXFLL and TXFLH hold the 13-bit transmit frame length
(expressed in bytes). TXFLL holds the least-significant bits, and TXFLH holds
the most-significant bits. The frame length value is used if the frame length
method of frame closing is used.

Offset Address (hex): 0x0A x S and write

Table 94. Transmit Frame Length Low Register (TXFLL)

Bit Name Function R/W Reset

7:0 TXFLL LSB register used to specify the frame length. W 0x00

Offset Address (hex): 0x0B x S and write

Table 95. Transmit Frame Length High Register (TXFLH)

Bit Name Function R/W Reset

7:5 − Reserved R 000

4:0 TXFLH MSB register used to specify the frame length. W 00000

6.4.1 Received Frame Length Register (RXFLL, RXFLH)

IrDA modes only.

The registers RXFLL and RXFLH hold the 12-bit receive maximum frame
length. RXFLL holds the least-significant bits, and RXFLH holds the
most-significant bits. If the intended maximum-receive frame length is n bytes,
program RXFLL and RXFLH to be n + 3 in SIR or MIR modes and n + 6 in FIR
mode (+3 and +6 are due to frame format with CRC and stop flag; there are
two bytes associated with the FIR stop flag).

Offset Address (hex): 0x0C x S and write

Table 96. Received Frame Length Low Register (RXFLL)

Bit Name Function R/W Reset

7:0 RXFLL LSB register used to specify the frame length in
reception

W 0x00

Offset Address (hex): 0x0D x S and write

UARTs

169Serial InterfacesSPRU760C

Table 97. Received Frame Length High Register (RXFLH)

Bit Name Function R/W Reset

7:4 − Reserved R 0x0

3:0 RXFLH MSB register used to specify the frame length in
reception

W 0x0

Offset Address (hex): 0x0A x S and read

IrDA modes only.

Reading this register in effect reads frame-status information from the status
FIFO. This register does not physically exist. Reading this register increments
the status FIFO read pointer (SFREGL and SFREGH must be read first).

Table 98. Status FIFO Line Status Register (SFLSR)

Bit Name Function R/W Reset

7:5 − Reserved R 000

4 OE_ERROR 1: Overrun error in RX FIFO when frame at top of
FIFO was received.

R Unknown

3 FRAME_TOO_LONG_
ERROR

1: Frame-length too long error in frame at top of
FIFO.

R Unknown

2 ABORT_DETECT 1: Abort pattern detected in frame at top of FIFO. R Unknown

1 CRC_ERROR 1: CRC error in frame at top of FIFO. R Unknown

0 − Reserved R 0

Offset Address (hex): 0x0B x S and read

IrDA modes only.

This register clears internal flags that halt transmission/reception when an
underrun/overrun error occurs. Reading this register resumes the halted
operation. This register does not physically exist and reads always as 0x00.

Table 99. Resume Register (RESUME)

Bit Name Function R/W Reset

7:0 RESUME Dummy read to restart the TX or RX R 0x00

UARTs

Serial Interfaces170 SPRU760C

6.4.2 Status FIFO Register (SFREGL, SFREGH)

IrDA modes only. The frame lengths of received frames are written into the
status FIFO. This information can be read from the SFREGL and SFREGH
registers. These registers do not physically exist. The least-significant bits are
read from SFREGL, and the most-significant bits are read from SFREGH.
Reading these registers does not alter the status FIFO read pointer. These
registers must be read before the pointer is incremented by reading the
SFLSR.

Offset Address (hex): 0x0C x S and read

Table 100. Status FIFO Register Low (SFREGL)

Bit Name Function R/W Reset

7:0 SFREGL LSB part of the frame length R Unknown

Offset Address (hex): 0x0D x S and read

Table 101. Status FIFO Register High (SFREGH)

Bit Name Function R/W Reset

7:4 − Reserved R 0x0

3:0 SFREGH MSB part of the frame length R Unknown

Offset Address (hex): 0x0E x S and LCR[7] = 0

IrDA modes only. BLR[6] is used to select whether 0xC0 or 0xFF start patterns
are to be used when multiple start flags are required in SIR mode. If only one
start flag is required, the start pattern is always 0xC0. If n start flags are
required, either (n−1) 0xC0 or (n−1) 0xFF flags are sent, followed by a single
0xC0 flag immediately preceding the first data byte.

Table 102. BOF Control Register (BLR)

Bit Name Function R/W Reset

7 STS_FIFO_RESET Status FIFO reset. This bit is self-clearing. R/W 0

6 XBOF_TYPE SIR xBOF select

0: 0xFF.

1: 0xC0.

R/W 1

5:0 − Reserved R 000000

Offset Address (hex): 0x12 x S and LCR[7] = 0

UARTs

171Serial InterfacesSPRU760C

IrDA modes only.

This register specifies the number of BOF + xBOFs to transmit in IrDA SIR
operation. The value set into this register must take into account the BOF
character. To send only one BOF with no XBOF, this register must be set to 1.
To send one BOF with N XBOF, this register must be set to n+1. Furthermore,
the value 0 sends 1 BOF plus 255 XBOF.

In IrDA MIR mode, this register specifies the number of additional start flags
(MIR protocol mandates a minimum of two start flags).

Table 103. BOF Length Register (EBLR)

Bit Name Function R/W Reset

7:0 EBLR This register allows definition up to 176 xBOFs, the
maximum required by IrDA specification.

R/W 0x00

Offset Address (hex): 0x0F x S and LCR[7] = 0

IrDA modes only.

Table 104. Auxiliary Control Register (ACREG)

Bit Name Function R/W Reset

7 PULSE_TYPE SIR pulse width select

0: 3/16 of baud-rate pulse width.

1: 1.6 µs.

R/W 0

6 SD_MOD Primary output used to configure transceivers.
Connected to the SD/MODE input pin of IrDA
transceivers

0: SD pin is set to high.

1: SD pin is set to low.

R/W 0

5 DIS_IR_RX 0: Normal operation (Note: RXIR input
automatically disabled during transmit but enabled
outside of transmit operation.)

1: Disables RXIR input (permanent state−
independent of transmit).

Hence, RX_IR is disabled when either TX is active
or ACREG[5] = 1

R/W 0

4 DIS_TX_UNDERRUN 0: Long stop bits cannot be transmitted, and TX
underrun is enabled.

1: Long stop bits can be transmitted, and TX
underrun is disabled.

R/W 0

UARTs

Serial Interfaces172 SPRU760C

Table 104. Auxiliary Control Register (ACREG) (Continued)

Bit ResetR/WFunctionName

3 SEND_SIP MIR/FIR modes only

Send serial infrared interaction pulse (SIP)

0: No action.

1: Send SIP pulse.

If this bit is set during a MIR/FIR transmission, the
SIP is sent at the end of it.

This bit is automatically cleared at the end of the
SIP transmission.

R/W 0

2 SCTX_EN Store and controlled TX start

When MDR1[5] = 1 and the LH writes 1 to this bit,
the TX state machine starts frame transmission.
This bit is self-clearing.

R/W 0

1 ABORT_EN Frame abort

The LH can intentionally abort transmission of a
frame by writing 1 to this bit. Neither the end flag
nor the CRC bits are appended to the frame.

R/W 0

0 EOT_EN EOT (end of transmission) bit

The LH writes 1 to this bit just before it writes the
last byte to the TX FIFO in set-EOT bit frame
closing method. This bit is automatically cleared
when the LH writes to the THR (TX FIFO).

R/W 0

Offset Address (hex): 0x14 x S and read

Table 105. Module Version Register (MVR)

Bit Name Function R/W Reset

7:4 MAJOR_REV Major revision number of the module R 1

3:0 MINOR_REV Minor revision number of the module R −

Note: UART/IRDA SIR only module is revision 1.x (WMU_012_1 specification). UART/IRDA with SIR, MIR, and FIR support is
revision 2.x (this specification) .

Offset Address (hex):0x15 x S

The autoidle bit controls a power-saving technique to reduce the logic power
consumption of the OCP interface. That is, when the feature is enabled, the
clock is gated off until an OCP command for this device has been detected.

When the software reset bit is set high, it causes a full device reset.

UARTs

173Serial InterfacesSPRU760C

Table 106. System Configuration Register (SYSC)

Bit Name Function R/W Reset

7:5 − Reserved R 000

4:3 IdleMode Power management request/acknowledge control

00: Force idle. An idle request is acknowledged
unconditionally.

01: No idle. An idle request is never
acknowledged.

10: Smart idle. Acknowledgement to an idle
request is given based on the internal activity of
the module.

11: Reserved.

Ref: OCP design guidelines version 1.1

R/W 00

2 EnaWakeUp Wake-up feature control

0: Wake up is disabled.

1: Wake-up capability is enabled.

R/W 0

1 SoftReset Software reset

Set this bit to 1 to trigger a module reset. This bit is
automatically reset by the hardware. During reads
it always returns a 0.

0: Normal mode.

1: The module is reset.

R/W 0

0 AutoIdle Internal OCP clock gating strategy

0: Clock is running.

1: Automatic OCP clock gating strategy is applied,
based on the OCP interface activity.

R/W 0

Offset Address (hex): 0x16 x S

Table 107. System Status Register (SYSS)

Bit Name Function R/W Reset

7:1 − Reserved R 0000000

0 ResetDone Internal reset monitoring

0: Internal module reset is ongoing.

1: Reset completed.

R 0

Offset Address (hex): 0x17 x S

UARTs

Serial Interfaces174 SPRU760C

The UART wake-up enable register masks and unmasks a UART event that
would subsequently notify the system. Such events are any activity in the logic
that can cause an interrupt and/or any that require the system to wake up.
Even if the wake-up is disabled for certain events, if these events also interrupt
the UART, the UART still registers the interrupt as such.

Table 108. Wake-Up Enable Register (WER)

Bit Name Function R/W Reset

7 − Reserved R 0

6 Event 6

Receiver line status
interrupt

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

5 Event 5

RHR interrupt

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

4 Event 4

RX/ RXIR activity

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

3 Event 3

DCD (CD) activity

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

2 Event 2

RI activity

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

1 Event 1

DSR activity

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

0 Event 0

CTS activity

0: Event is not allowed to wake up the system.

1: Event can wake up the system.

W/R 1

6.5 Different Modes of Operation

The UART/IRDA module can operate in six different modes:

1) UART 16x mode (≤230.4K bits/s)

2) UART 16x mode with autobauding (≥1200 bits/s and ≤115.2K bits/s)

3) UART 13x mode (≥460.8K bits/s)

4) IrDA SIR mode (≤115.2K bits/s)

5) IrDA MIR mode (0.576 and 1.152M bits/s)

6) IrDA FIR mode (4M bits/s)

UARTs

175Serial InterfacesSPRU760C

The module performs serial-to-parallel conversion on received data
characters, and parallel-to-serial conversion on data characters the processor
transmits. The complete status of each channel of the module and each
received character/frame can be read at any time during functional operation
via the line status register (LSR).

The module can be placed in an alternate mode (FIFO mode), relieving the
processor of excessive software overhead by buffering received/transmitted
characters. Both the receiver and transmitter FIFOs store up to 64 bytes of
data (plus 3 additional bits of error status per byte for the receiver FIFO) and
have selectable trigger levels.

Both interrupts and DMA are available to control the data flow between the LH
and the module.

6.5.1 UART Modes

The UART uses a wired interface for serial communication with a remote
device.

The module can use hardware or software flow control to manage
transmission/ reception. Hardware flow control uses the RTS output and CTS
input signals to automatically control serial data flow. This significantly reduces
software overhead and increases system efficiency. Software flow control
uses programmable XON/XOFF characters to automatically control data flow.

The UART modem module is enhanced with an autobauding functionality,
which, in control mode, allows for automatic setting of the speed, number of
bits per character, and parity.

Figure 62. UART Data Format

Start
bit

5, 6, 7, or 8 bits of data according to LCR register Parity bit
(see LCR
register)

1 or 2
Stop bit

according
to LCR
register

UARTs

Serial Interfaces176 SPRU760C

6.5.2 SIR Mode

In slow infrared (SIR) mode, data transfer takes place between the LH and
peripheral devices at speeds up to 115200 bauds. A SIR transmit frame begins
with start flags (either a single 0xC0, multiple 0xC0, or a single 0xC0 preceded
by a number of 0xFF flags), followed by frame data, CRC−16, and ends with
a stop flag (0xC1).

BLR[6] is used to select whether 0xC0 or 0xFF start patterns are to be used,
when multiple start flags are required.

The SIR transmit state machine attaches start flags, CRC−16, and stop flags.
It checks the outgoing data to determine whether data transparency is
required.

SIR transparency is carried out if the outgoing data, between the start and stop
flags, contains 0xC0, 0xC1, or 0x7D. If one of these is about to be transmitted,
the SIR state machine sends an escape character (0x7D) first, then inverts the
fifth bit of the real data to be sent, and sends this data immediately after the
0x7D character.

The SIR receive state machine recovers the receive clock, removes the start
flags, removes any transparency from the incoming data, and determines
frame boundary with reception of the stop flag. It also checks for errors such
as frame abort (0x7D character followed immediately by a 0xC1 stop flag,
without transparency), CRC error, and frame-length error. At the end of a
frame reception, the LH reads the line status register (LSR) to find possible
errors in the received frame.

The module can transfer data both ways, but when the device is transmitting,
hardware automatically disables the IR RX circuitry. Refer to Table 104,
Auxiliary Control Register Bit 5, for a description of the logical operation of all
three modes, SIR, MIR, and FIR.

The infrared output in SIR mode can be either 1.6 µs or 3/16 encoding,
selected by the PULSE_TYPE bit of the auxiliary control register (ACREG[7]).
In 1.6 µs encoding, the infrared pulse width is 1.6 µs, and in 3/16 encoding the
infrared pulse width is 3/16 of a bit duration (1/baud-rate).

The transmitting device must send at least 2 start flags at the start of each
frame for back-to-back frames. Reception supports variable-length stop bits.

UARTs

177Serial InterfacesSPRU760C

Frame Format

Figure 63. IrDA SIR Frame Format

XBOF BOF A C I CRC EOF

M*8 bitsN*8 bits 2*8 bits8 bits8 bits8 bits 8 bits

The CRC is applied on the address (A), control (C), and information (I) bytes.

The two words of CRC are written in the FIFO in reception.

Asynchronous Transparency

Before transmitting a byte, the UART IrDA controller examines each byte of
the payload and the CRC field (between BOF and EOF). For each byte equal
to 0xC0 (BOF), 0xC1 (EOF), or 0x7D (control escape), it does the following.

In transmission:

� Inserts a control escape (CE) byte preceding the byte.

� Complements bit 5 of the byte (that is, exclusive ORs the byte with 0x20).

The byte sent for the CRC computation is the initial byte written in the TX FIFO
(before the XOR with 0x20).

In reception:

For the A, C, I, and CRC fields:

� Compares the byte with the CE byte. If not equal, sends it to the CRC
detector and stores it in the RX FIFO.

� If equal to CE, discards the CE byte.

� Complements bit 5 of the byte following the CE.

� Sends the complemented byte to the CRC detector and stores it in the RX
FIFO.

UARTs

Serial Interfaces178 SPRU760C

Abort Sequence

The transmitter may decide to prematurely close a frame. The transmitter
aborts by sending the 0x7DC1 sequence. The abort pattern closes the frame
without a CRC field or an ending flag.

It is possible to abort a transmission frame by programming the ABORT_EN
bit of the auxiliary control register (ACREG [1]).

When this bit is set to 1, 0x7D and 0xC1 are transmitted and the frame is not
terminated with CRC or stop flags.

The receiver treats a frame as an aborted frame when a 0x7D character
followed immediately by a 0xC1 character is received without transparency.

Pulse Shaping

In SIR mode both the 3/16 and the 1.6 ìs pulse duration methods are
supported. ACREG[7] selects the pulse-width method in transmit mode.

Encoder

Serial data from the transmit state machine is encoded to transmit data to the
optoelectronics. While the serial data input to the (TXD) is high, the output
(TXIR) is always low, and the counter used to form a pulse on TXIR is
continuously cleared. After TXD resets to 0, TXIR rises on the falling edge of
the 7th 16XCLK. On the falling edge of the 10th 16XCLK pulse, TXIR falls,
creating a 3-clock-wide pulse. While TXD stays low, a pulse is transmitted
during the 7th to the 10th clocks of each 16-clock bit cycle.

Figure 64. IrDA Encoder Mechanism

TXD

1 2 4 5 63 7 8 10 11 129 13 14 1615
16XCLK

TXIR

UARTs

179Serial InterfacesSPRU760C

Decoder

After reset, RXD is high and the 4-bit counter is cleared. When a rising edge
is detected on RXIR, RXD falls on the next rising edge of 16XCLK with
sufficient setup time. RXD stays low for 16 cycles (16XCLK) and then returns
to high as required by the IrDA specification. As long as no pulses (rising
edges) are detected on the RXIR, RXD remains high.

Figure 65. IrDA Decoder Mechanism

RXD

1 2 4 5 63 7 8 10 11 129 13 14 1615
16XCLK

RXIR

The reception of RXIR input is disabled with DIS_IR_RX bits of the auxiliary
control register (ACREG[5]).

IR Address Checking

In all IR modes, if address checking has been enabled, only frames intended
for the device are written to the RX FIFO. This is to avoid receiving frames not
meant for this device in a multi-point infrared environment. It is possible to
program two frame addresses that the UART IrDA receives with
XON1/ADDR1 and XON2/ADDR2 registers.

Selecting address1 checking is done by setting EFR[0] to 1, and address2
checking is done by setting EFR[1] to 1. Setting EFR[1:0] to 0 disables all
address checking operations. If both bits are set, the incoming frame is
checked for both private and public addresses.

If address checking is disabled, all received frames are written into the
reception FIFO.

6.5.3 MIR Mode

In medium infrared (MIR) mode, data transfer takes place between the LH and
peripheral devices at 0.576 or 1.152M bits/s speed. A MIR transmit frame
begins with start flags (at least 2), followed by a frame data, CRC−16, and ends
with a stop flag.

UARTs

Serial Interfaces180 SPRU760C

6.5.4 MIR Transmit Frame Format

On transmit, the MIR state machine attaches start flags, CRC−16, and stop
flags. It also looks for 5 consecutive 1s in the frame data and automatically
inserts 0 after them. (This is called bit stuffing.)

Figure 66. MIR Transmit Frame Format

Start flags Stop flagCRC-16Frame data

On receive, the MIR receive state machine recovers the receive clock,
removes the start flags, destuffs the incoming data, and determines the frame
boundary with reception of the stop flag. It also checks for errors such as frame
abort, CRC error, or frame-length error. At the end of a frame reception, the
LH reads the line status register (LSR) to discover possible errors in the
received frame.

The module transfers data both ways, but when the device is transmitting,
hardware automatically disables the IR RX circuitry. Refer to Table 104,
Auxiliary Control Register Bit 5, for a description of the logical operation of all
three modes, SIR, MIR, and FIR.

MIR Encoder/Decoder

In order to meet MIR baud-rate tolerance of ±0.1% with a 48-Mhz clock input,
a 42−41−42 encoding/decoding adjustment is performed. The reference start
point is 1st start flag, and the 42−41−42 cyclic pattern is repeated until the stop
flag is sent or detected. The jitter created this way is within MIR tolerances. The
pulse width is not exactly 1/4 but within tolerances defined by the IrDA
specifications.

UARTs

181Serial InterfacesSPRU760C

Figure 67. MIR Baud-Rate Adjustment Mechanism

42x 41x 42x

baud adjustment cyclic pattern (3 MIR periods)

TXIR

Jitter Jitter

10x

RXIR

42x 41x 42x

Sampling
window

Ideal edge
placement

SIP Generation

In MIR and FIR operation modes, the transmitter needs to send a serial
infrared interaction pulse (SIP) at least once every 500 ms. The purpose of the
SIP is to let slow devices (operating in SIR mode) know that the medium is
currently occupied.

The SIP pulse is shown below in Figure 68.

Figure 68. SIP Pulse

Serial infrared
interaction pulse

1.6 µs

8.7 µs

When the SIP_MODE bit of mode definition register 1 = 1 (MDR1[6]), the TX
state machine always sends 1 SIP at the end of a transmission frame. But
when MDR1[6] = 0, the transmission of the SIP depends on the SEND_SIP bit
of the auxiliary control register (ACREG[3]). The local host can set ACREG[3]
at least once every 500 ms. The advantage of this approach over the default
is that the TX state machine does not need to send the SIP at the end of each
frame, which may reduce the overhead required.

UARTs

Serial Interfaces182 SPRU760C

6.5.5 FIR Mode

In fast infrared mode (FIR), data transfer takes place between the LH and
peripheral devices at 4M bits/s. A FIR transmit frame starts with a preamble,
followed by a start flag, frame data, CRC−32, and ends with a stop flag.

Figure 69. FIR Transmit Frame Format

Start flags Stop flagCRC-16Frame dataPreamble
(16x)

On transmit, the FIR transmit state machine attaches the preamble, start flag,
CRC−32, and stop flag. It also encodes the transmit data into 4PPM format and
generates the serial infrared interaction pulse (SIP).

On receive, the FIR receive state machine recovers the receive clock,
removes the start flag, decodes the 4PPM incoming data, and determines the
frame boundary with reception of the stop flag. It also checks for errors such
as illegal symbol, CRC error, and frame-length error. At the end of a frame
reception, the LH reads the line status register (LSR) to discover possible
errors in the received frame.

The module transfers data both ways, but when the device is transmitting,
hardware automatically disables the IR RX circuitry. Refer to Table 104,
Auxiliary Control Register Bit 5, for a description of the logical operation for all
three modes, SIR, MIR, and FIR.

6.6 Functional Description

6.6.1 Trigger Levels

The UART provides programmable trigger levels for both receiver and
transmitter DMA and interrupt generation. After reset, both transmitter and
receiver FIFOs are disabled, so in effect the trigger level is the default value
of 1 byte. The programmable trigger levels are an enhanced feature available
via the trigger level register (TLR).

6.6.2 Interrupts

The UART/IrDA module generates interrupts on the UART_nIRQ output pin.
All interrupts are enabled/disabled by writing to the appropriate bit in the
interrupt enable register (IER). The interrupt status of the device can be
checked at any time by reading the interrupt identification register (IIR).

The UART and IrDA modes have different interrupts in the UART/IrDA module,
and therefore different IER and IIR mappings according to the selected mode.

UARTs

183Serial InterfacesSPRU760C

UART Mode Interrupts

The UART modes have seven possible interrupts. These interrupts are
prioritized to six different levels.

When an interrupt is generated, the interrupt identification register (IIR)
indicates that an interrupt is pending by bringing IIR[0] to 0, and provides the
type of interrupt through IIR[5−1]. It also summarizes the interrupt control
functions.

Table 109. UART Mode Interrupts

IIR[5−0]
Priority
Level

Interrupt
Type

Interrupt
Source

Interrupt Reset
Method

0 0 0 0 0 1 None None None None

0 0 0 1 1 0 1 Receiver line
status

OE, FE, PE, or BI errors occur in
characters in the RX FIFO

FE,PE,BI: Read RHR. OE:
Read LSR

0 0 1 1 0 0 2 RX time-out Stale data in RX FIFO Read RHR

0 0 0 1 0 0 2 RHR interrupt DRDY (data ready) (FIFO
disable)

RX FIFO above trigger level
(FIFO enable)

Read RHR until interrupt
condition disappears

0 0 0 0 1 0 3 THR interrupt TFE (THR empty)

(FIFO disable)

TX FIFO below trigger level
(FIFO enable)

Write to THR until interrupt
condition disappears.

0 0 0 0 0 0 4 Modem status MSR[1:0] / = 0 Read MSR

0 1 0 0 0 0 5 XOFF
interrupt/special
character
interrupt

Receive XOFF
characters(s)/special character

Receive XON character(s),
if XOFF interrupt/read of
IIR, if special character
interrupt

1 0 0 0 0 0 6 CTS,RTS, DSR RTS pin, CTS pin or DSR pin
change state from active (low) to
inactive (high).

Read IIR

It is important to note that for the receiver line status interrupt, RX_FIFO_STS
bit (LSR[7]) generates the interrupt.

For the XOFF interrupt, if an XOFF flow character detection caused the
interrupt, an XON flow character detection clears the interrupt. If special
character detection caused the interrupt, a read of the IIR clears the interrupt.

UARTs

Serial Interfaces184 SPRU760C

IrDA Mode Interrupts

IrDA modes have eight possible interrupts. The UART_nIRQ output is
activated when any of the eight interrupts is generated (there is no priority).

Table 110. IrDA Mode Interrupts

IIR Bit no.
Interrupt
Type Interrupt Source Interrupt Reset Method

0 RHR interrupt DRDY (data ready)

(FIFO disable)

RX FIFO above trigger level (FIFO
enable)

Read RHR until interrupt condition
disappears.

1 THR interrupt TFE (THR empty)

(FIFO disable)

TX FIFO below trigger level

(FIFO enable)

Write to THR until interrupt
condition disappears.

2 Last byte in RX
FIFO

Last byte of frame in RX FIFO Read IIR

3 RX overrun Write to RHR when RX FIFO full Read RESUME register

4 Status FIFO
interrupt

Status FIFO triggers level reached Read STATUS FIFO

5 TX status 1. THR empty before EOF sent. Last
bit of transmission of the IRDA frame
has occurred but with an underrun
error.

OR

2. Transmission of the last bit of the
IRDA frame is finished successfully.

1. Read RESUME register.

OR

2. Read IIR

6 Receiver line
status interrupt

CRC, ABORT or frame-length error is
written into STATUS FIFO

Read STATUS FIFO
[Read until empty—max 8 reads
required]

7 Received EOF Received end-of-frame. Read IIR

For IIR[5] the interrupt source 1 is used with interrupt reset method 1. The
interrupt source 2 is used with interrupt reset method 2.

UARTs

185Serial InterfacesSPRU760C

Wake-Up Interrupt

Wake-up interrupt is a special interrupt, not designed the same as the previous
ones. It is enabled when the RX_CTS_DSR_WAKE_UP_ENABLE bit of the
supplementary control register (SCR[4]) is set to 1. The IIR register is not
modified when it occurs. SSR[1] must be checked to detect a wake-up event.
When wake-up interrupt occurs, the only way to clear it is to reset SCR[4] to
0.

6.6.3 FIFO Interrupt Mode Operation

In FIFO interrupt mode (FIFO control register FCR[0] = 1, relevant interrupts
enabled via IER), an interrupt signal (UART_nIRQ) informs the processor of
the receiver and transmitter status. These interrupts are raised when
receive/transmit FIFO thresholds (respectively, TLR[7:4] and TLR[3:0], or
FCR[7:6] and FCR[5:4]) are reached. The interrupt signals instruct the local
host to transfer data to the destination (from the UART module in receive mode
and/or from any source to the UART FIFO in transmit mode).

Note that when the UART flow control is enabled along with the interrupt
capabilities, the user must ensure that the UART flow control FIFO threshold
(TCR[3:0]) is greater than, or equal to, the receive FIFO threshold.

Figure 70 and Figure 71 respectively depict receive and transmit operations.

Figure 70. Receive FIFO IT Request Generation

Programmable FIFO threshold

Receive FIFO level

Zero byte
Time

Interrupt request

Time

Interrupt request active low

Programmable flow control threshold

LH acknowledged IT request
and transferred enough bytes to
recover FIFO level below
threshold

In receive, no interrupt is generated until receive FIFO reaches its threshold.
Once low, the interrupt can only be deasserted when the local host has
handled enough bytes to make the FIFO level below threshold. The flow
control threshold is set at a higher value than FIFO threshold.

UARTs

Serial Interfaces186 SPRU760C

Figure 71. Transmit FIFO IT Request Generation

Number
of
spaces

Programmable FIFO threshold

Transmit FIFO level

Zero byte
Time

Interrupt request

Time

Interrupt request
active low

Full level

In transmit mode, an interrupt request is automatically asserted when FIFO is
empty. This request is deasserted when the FIFO crosses the threshold level.
The interrupt line is deasserted until a sufficient number of elements has been
transmitted to go below FIFO threshold.

6.6.4 FIFO Polled Mode Operation

In FIFO polled mode (FCR [0] = 0, relevant interrupts disabled via interrupt
enable register (IER)), the status of the receiver and transmitter are checked
by polling the line status register (LSR). This mode is an alternative to the FIFO
interrupt mode of operation in which the status of the receiver and transmitter
is automatically known by means of interrupts sent to the LH.

6.6.5 FIFO DMA Mode Operation

DMA Signaling

The four modes of DMA operation, DMA modes 0/1/2/3, are selected as
follows:

When SCR[0] = 0: Setting FCR[3] to 0 enables DMA mode 0.

Setting FCR[3] to 1 enables DMA mode 1.

When SCR[0] = 1: SCR[2:1] determine DMA mode 0 to 3 according to
supplementary control register (SCR) description.

UARTs

187Serial InterfacesSPRU760C

For example:

� If no DMA operation is desired: Set SCR[0] to 1 and SCR[2:1] to 00
(FCR[3] is discarded).

� If DMA mode 1 is desired: Either set SCR[0] to 0 and FCR[3] to 1 or set
SCR[0] to 1 and SCR[2:1] to 01 (FCR[3] is discarded).

If the FIFOs are disabled (FCR[0] = 0), DMA occurs in single-character
transfers.

When DMA mode 0 has been programmed, the signals associated with DMA
operation are not active.

DMA Transfers (DMA Mode 1, 2, or 3)

Figure 72 through Figure 75 show the supported DMA operations.

Figure 72. Receive FIFO DMA Request Generation (32 Characters)

RX buffer
max

Zero level

Programmable
threshold

32 characters

Time

Data received while DMA
operation ongoing

DMA Active periods,this
does not represent the DMA
signalling

In receive mode, a DMA request is generated as soon as the receive FIFO
reaches its threshold level as defined in the trigger level register (TLR). (See
Table 88.) This request is deasserted when the system DMA reads the number
of bytes defined by the threshold level.

UARTs

Serial Interfaces188 SPRU760C

In transmit mode, a DMA request is automatically asserted when the FIFO is
empty. This request is deasserted when the system DMA writes the number
of bytes defined by the number of spaces in the trigger level register (TLR). If
an insufficient number of characters is written, the DMA request remains
active.

Figure 73. Transmit FIFO DMA Request Generation (56 Spaces)

Programmable
threshold

TX buffer max

Zero byte

DMA Active periods,this
does not represent the

DMA signalling
Example, DMA disabled to
illustrate the end of the
transfer

Time

56 spaces

The DMA request is again asserted if the FIFO is able to receive the number
of bytes defined by the TLR register. (See Table 88.)

The threshold can be programmed in a number of ways. See Figure 73 for an
example of a DMA transfer that operates with a space setting of 56, which
could arise from the use of the autosettings in the FCR[5:4] or the use of the
TLR[3:0] concatenated with the FCR[5:4]. The setting of 56 spaces in the
UART_IrDA should correlate with settings of the system DMA so that the buffer
does not overflow (program the DMA request size of the local host controller
to be equal to the number of spaces value in the UART).

Figure 74 shows another example with 8 spaces, to illustrate the buffer level
crossing the space threshold. Again, the local host DMA controller settings
must correspond to those of the UART_IrDA.

UARTs

189Serial InterfacesSPRU760C

Figure 74. Transmit FIFO DMA Request Generation (8 Spaces)

TX buffer
max

Zero byte

Programmable
threshold

8 spaces

Example, DMA disabled to
illustrate the end of the

transfer

Time

DMA Active periods,
this does not represent
the DMA signalling

1 character transmitted

The final example in Figure 75 illustrates the setting of 1 space that uses the
DMA for each transfer of 1 character to the transmit buffer. The buffer is filled
at a faster rate than the BAUD rate transmits data to the TX pin. Eventually,
the buffer is completely full and the DMA operation stops transferring data to
the transmit buffer.

The buffer holds the maximum amount of data words on 2 occasions. Shortly
after that the DMA is disabled to illustrate the slower transmission of the data
words to the TX pin. Eventually, the buffer is emptied at the rate specified by
the baud-rate settings of the DLL and DLH registers.

Again, the DMA settings must correspond to the local host DMA controller
settings to ensure the correct operation of this logic.

UARTs

Serial Interfaces190 SPRU760C

Figure 75. Transmit FIFO DMA Request Generation (1 Space)

TX buffer max

Zero byte

Programmable
threshold

Characters transmitted from
the UART

Example, DMA disabled to illustrate the
end of the transfer and the tx buffer
emptying

1 space

Time

DMA active periods,this
does not represent the

DMA signalling

6.6.6 Sleep Mode

UART Modes

In UART modes, sleep mode is enabled by writing a 1 to IER[4] (when EFR[4]
= 1).

Sleep mode is entered when

� The serial data input line, RX, is idle.

� The TX FIFO and TX shift register are empty.

� The RX FIFO is empty.

� There are no interrupts pending except THR interrupts.

Sleep mode is a good way to lower power consumption of the UART, but this
state can be achieved only when the UART is set in modem mode. Therefore,
even if the UART has no functional key role, it must be initialized in a functional
mode to take advantage of sleep mode.

In sleep mode, the module clock and baud rate clock are stopped internally.
Because most registers are clocked using these clocks, the power
consumption is greatly reduced. The module wakes up when any change is
detected on the RX line; if data is written to the TX FIFO, it occurs with any
change in the state of the modem input pins. An interrupt is generated on a
wake-up event by setting SCR[4] to 1.

UARTs

191Serial InterfacesSPRU760C

Note:

Writing to the divisor latches, DLL and DLH, to set the baud clock, BCLK,
must not be done during sleep mode. Therefore, it is advisable to disable
sleep mode using IER[4] before writing to DLL or DLH.

IrDA Modes

In IrDA modes, sleep mode is enabled by writing a 1 to MDR1[3].

Sleep mode is entered when

� The serial data input line, RXIR, is idle.

� The TX FIFO and TX shift register are empty.

� The RX FIFO is empty.

� There are no interrupts pending except THR interrupts.

The module wakes up when any change is detected on the RXIR line, if data
is written to the TX FIFO.

6.6.7 Idle Modes

Sleep and autoidle modes are embedded power-saving features. At the
system level, power reduction techniques are applied by shutting down certain
internal clock and power domains of the device.

The UART supports REQ_IDLE ACK handshaking protocol. This protocol is
used at system level to shut down UART clocks in a clean and controlled
manner, and to switch the UART from the interrupt generation mode to a
wake-up generation mode for unmasked events (Refer to SYSC[2] and WER.)

For a software programming guide, refer to the OCP Design Guidelines for Idle
Mode Control.

UARTs

Serial Interfaces192 SPRU760C

6.6.8 Break and Time-Out Conditions

Time-Out Counter

An RX idle condition is detected when the receiver line, RX, has been high for
a time equivalent to 4X programmed word length+12 bits. The receiver line is
sampled midway through each bit.

For sleep mode, the counter is reset when there is activity on the RX line.

For the timeout interrupt, the counter only counts when there is data in the RX
FIFO. The count is reset when there is activity on the RX line or when the RHR
is read.

Break Condition

When a break condition occurs, the TX line is pulled low. A break condition is
activated by setting LCR[6]. Be aware that the break condition is not aligned
on word stream, that is, a break condition can occur in the middle of a
character. The only way to send a break condition on a full character is:

� Reset transmit FIFO (if enabled).

� Wait for transmit shift register to become empty (LSR[6] = 1).

� Take a guard time according to stop bit definition.

� Set LCR[6] to 1.

Break condition is asserted as long as LCR[6] is set to 1.

The above functionality (time-out counter and break condition) applies only to
the UART modem operation and does not extend to the UART IrDA modes of
operation.

6.6.9 Programmable Baud Rate Generator

The UART/IrDA module contains a programmable baud generator and a set
of fixed dividers that take the 48-MHz clock input and divide it down to the
expected baud rate.

The baud rate generator and associated controls are depicted in Figure 76.

UARTs

193Serial InterfacesSPRU760C

Figure 76. Baud Rate Generator

IrDA modes only

FIR modes only

UART/SIR/MIR modes only

48-MHz

Mhz

/ [1:(2^14 −1)]

/ 6 TX FIR

RX FIR (6x)

/ 16 (SIR)

/41,42 (MIR)
TX SIR/MIR

RX SIR (16x),

RX MIR (41,42x)

/16 or /13 TX UART

RX UART (16x/13x)
DLH,DLL

1.6/7.1µs SIP

(MIR/FIR),

or

1.6µs pulse

(SIR)

CG

CG

CG

CG

CG

/77(1.6µs—ON),

/341(7.1µs—OFF)

16x/13x

CG

(UART/
SIR/MIR
modes)

(UART
autobauding

mode)

(FIR
mode)

(IR
modes)

(UART
mode)

(SIR/MIR
modes)

(MODE_SELECT
=

UART16x or
UART13x)

Before Modifying Clock Parameters

It is recommended that MODE_SELECT = DISABLE (MDR1[2:0] = 111)
be set before attempting to initialize or modify clock parameters controls
(DLH, DLL). Nonobservance of this rule may result in an unpredictable
behavior of the module.

UARTs

Serial Interfaces194 SPRU760C

Choosing the appropriate divisor value:

� UART 16x mode: Divisor value = Operating Freq/(16x baud rate)

� UART 13x mode: Divisor value = Operating Freq/(13x baud rate)

� SIR mode: Divisor value = Operating Freq/(16x baud rate)

� MIR mode: Divisor value = Operating Freq/(41x/42x baud rate)

� FIR mode: Divisor value = none.

Table 111. UART BAUD Rate Settings (48-MHz Clock)

Baud Rate
(b/s)

Baud
Multiple

DLH,DLL
(Decimal)

DLH,DLL (Hex) Actual Baud Rate
(b/s)

Error (%)

0.3 K 16 x 10000 0x27, 0x10 0.3 K 0

0.6 K 16 x 5000 0x13, 0x88 0.6 K 0

1.2 K 16 x 2500 0x09, 0xC4 1.2 K 0

2.4 K 16 x 1250 0x04, 0xE2 2.4 K 0

4.8 K 16 x 625 0x02, 0x71 4.8 K 0

9.6 K 16 x 313 0x01, 0x39 9.6153 K +0.16

14.4 K 16x 208 0x00, 0xD0 14.423 K +0.16

19.2 K 16 x 156 0x00, 0x9C 19.231 K +0.16

28.8 K 16 x 104 0x00, 0x68 28.846 K +0.16

38.4 K 16 x 78 0x00, 0x4E 38.462 K +0.16

57.6 K 16 x 52 0x00, 0x34 57.692 K +0.16

115.2 K 16 x 26 0x00, 0x1A 115.38 K +0.16

230.4 K 16 x 13 0x00, 0x0D 230.77 K +0.16

460.8 K 13 x 8 0x00, 0x08 461.54 K +0.16

921.6 K 13 x 4 0x00, 0x04 923.08 M +0.16

1.8342 M 13 x 2 0x00, 0x02 1.1846 M +0.16

3.6864 M 13 x 1 0x00, 0x01 3.6923 M +0.16

UARTs

195Serial InterfacesSPRU760C

Table 112. IrDA Baud Rate Settings (48-MHz Clock)

Baud Rate
(b/s)

IR
Mode

Baud
Multi-

ple

En-
coding

DLH,
DLL

Actual Baud
Rate (* = Avg)

(b/s)

Error
(%)

Source
Jitter
(%)1

Pulse
Duration

2.4 K SIR 16x 3/16 1250 2.4 K 0 0 78.1 µs

9.6 K SIR 16x 3/16 312 9.6153 K +0.16 0 19.5 µs

19.2 K SIR 16x 3/16 156 19.231 K +0.16 0 9.75 µs

38.4 K SIR 16x 3/16 78 38.462 K +0.16 0 4.87 µs

57.6 K SIR 16x 3/16 52 57.692 K +0.16 0 3.25 µs

115.2 K SIR 16x 3/16 26 115.38 K +0.16 0 1.62 µs

0.576 M MIR 41x/42
x

1/4 2 0.5756 M* 0 +1.63/
−0.80

416 ns

1.152 M MIR 41x/42
x

1/4 1 1.1511 M* 0 +1.63/
−0.80

208 ns

4 M FIR 6x 4 PPM − 4 M 0 0 125 ns

6.6.10 Hardware Flow Control

Hardware flow control is composed of auto-CTS and auto-RTS. Auto-CTS and
auto-RTS can be enabled/disabled independently by programming EFR[7:6].

With auto-CTS, CTS must be active before the module can transmit data.

Auto-RTS only activates the RTS output when there is enough room in the
FIFO to receive data, and deactivates the RTS output when the RX FIFO is
sufficiently full. The HALT and RESTORE trigger levels in the TCR determine
the levels at which RTS is activated/deactivated.

If both auto-CTS and auto-RTS are enabled, data transmission does not occur
unless the receiver FIFO has empty space. Thus, overrun errors are
eliminated during hardware flow control. If they are not enabled, overrun errors
occur when the transmit data rate exceeds the receive FIFO latency.

UARTs

Serial Interfaces196 SPRU760C

Auto-RTS

Auto-RTS data flow control originates in the receiver block (see Figure 61,
Functional Block Diagram). The receiver FIFO trigger levels used in auto-RTS
are stored in the TCR. RTS is active if the RX FIFO level is below the HALT
trigger level in TCR[3:0]. When the receiver FIFO HALT trigger level is
reached, RTS is deasserted. The sending device (for example, another UART)
may send an additional byte after the trigger level is reached because it may
not recognize the deassertion of RTS until it has begun sending the additional
byte. RTS is automatically reasserted once the receiver FIFO reaches the
RESUME trigger level programmed via TCR[7:4]. This reassertion requests
the sending device to resume transmission.

Auto-CTS

The transmitter circuitry checks CTS before sending the next data byte. When
CTS is active, the transmitter sends the next byte. To stop the transmitter from
sending the following byte, CTS must be deasserted before the middle of the
last stop bit that is currently being sent. The auto-CTS function reduces
interrupts to the host system. When auto-CTS flow control is enabled, the CTS
state changes need not trigger host interrupts because the device
automatically controls its own transmitter. Without auto-CTS, the transmitter
sends any data present in the transmit FIFO and a receiver overrun error can
result.

6.6.11 Software Flow Control

The enhanced feature register (EFR) and the modem control register (MCR)
enable software flow control. Different combinations of software flow control
are enabled by setting different combinations of EFR[3:0].

Two other enhanced features relate to software flow control:

� XON any function (MCR[5]): The operation will resume after receiving any
character, after recognizing the XOFF character.

The XON-any character is written into the RX FIFO even if it is a software
flow character.

� Special character (EFR[5]): Incoming data is compared to XOFF2.
Detection of the special character sets the XOFF interrupt (IIR[4]) but does
not halt transmission. A read of the IIR clears the XOFF interrupt. The
special character is transferred to the RX FIFO.

UARTs

197Serial InterfacesSPRU760C

Receive (RX)

When the software flow control operation is enabled, the UART compares
incoming data with XOFF1/2 programmed characters (in certain cases,
XOFF1 and XOFF2 must be received sequentially). When the correct XOFF
characters are received, transmission is halted after completing transmission
of the current character. XOFF detection also sets IIR[4] (if enabled via IER[5])
and causes UART_nIRQ to go low.

To resume transmission an XON1/2 character must be received (in certain
cases XON1 and XON2 must be received sequentially). When the correct
XON characters are received, IIR[4] is cleared and the XOFF interrupt
disappears.

If a parity, framing, or break error occurs while receiving a software flow control
character, the character is treated as normal data and is written to the RX
FIFO.

When XON-any and special character detect are disabled and software flow
control is enabled, no valid XON or XOFF characters are written to the RX
FIFO. For example, in EFR[1:0] = 10, if the XON1 and XOFF1 characters are
received they are not written to the RX FIFO.

In the case where pairs of software flow characters are programmed to be
received sequentially (EFR[1:0] = 11), the software flow characters are not
written to the RX FIFO if they are received sequentially. However, received
XON1/XOFF1 characters must be written to the RX FIFO if the subsequent
character is not XON2/XOFF2.

Transmit (TX)

XOFF1: Two characters are transmitted when the RX FIFO passes the
programmed trigger level TCR[3:0].

XON1: Two characters are transmitted when the RX FIFO reaches the
programmed trigger level via TCR[7:4].

If an XOFF character has been sent, software flow control is disabled and the
module transmits XON characters automatically to enable normal
transmission to proceed. The transmission of XOFF/XON (s) follows the same
protocol as transmission of an ordinary byte from the FIFO. This means that
even if the word length is set to be 5, 6, or 7 characters, then the 5, 6, or 7
least-significant bits of XOFF1,2/XON1,2 are transmitted. Note that the
transmission of 5, 6, or 7 bits of a character is seldom done, but this
functionality is included to maintain compatibility with earlier designs.

UARTs

Serial Interfaces198 SPRU760C

It is assumed that software flow control and hardware flow control will never
be enabled simultaneously.

6.6.12 Autobauding Mode

In autobaud mode, UART extracts transfer characteristics (speed, length and
parity) from an AT command. These characteristics are used to receive data
following an at and to send data.

Here are valid AT commands:

AT DATA <CR>
AT DATA <CR>
A/
a

The line break during the acquisition of the sequence AT is not recognized and
echo functionality is not implemented in hardware.

A/ and a/ are not used to extract characteristics, but they have to be recognized
because of their special meaning. They are used to instruct the software to
repeat the last received AT command. Therefore, an a/ always comes after an
AT, and transfer characteristics are not expected to change between an AT and
an a/.

As soon as a valid at (AT) is received, it and all subsequent data are saved into
FIFO, including final <CR> (0x0D). Then, the autobaud state machine waits
for the next valid AT command. If an a/ (AI) is received, it is saved into FIFO
and the state machine waits for next valid AT command.

Upon the first successful detection of the baud rate, the UART activates an
interrupt to signify that the AT(upper- or lowercase) sequence has been
detected. The UASR register reflects the correct settings for the baud rate that
has been detected. The interrupt activity continues in this fashion each time
a subsequent character is received. Therefore, it is recommended that the
software enable the RHR interrupt when using the autobaud mode.

The following settings are detected in autobaud mode with a module clock of
48 MHz:

� Speed:115.2K bauds, 57.6K bauds, 38.4K bauds, 28.8K bauds, 19.2K
bauds, 14.4K bauds, 9.6K bauds, 4.8K bauds, 2.4K bauds, or 1.2K bauds

� Length: 7 or 8 bits

� Parity: Odd, even, or space

Note:

The combination of 7-bit character + space parity is not supported.

UARTs

199Serial InterfacesSPRU760C

The method used to identify the speed is:

1) Detect the transition 1 → 0 on the received data. This happens as soon
as a stop-to-start bit transition occurs. The transition is valid after a
majority vote on 3 sampling periods.

2) Sample the start bit duration with 115 200 *16-Hz clock frequency as long
as there is no rising edge. A transition 0 → 1 is considered as valid after
a majority vote on 3 sampling periods.

3) Compare the sampled value with a table. If the sampled value is outside
a valid range, an error is reported (no speed identified) and the hardware
goes back to the first state (1).

4) Else store the first data bit in the received register (for serial to parallel
conversion) and go to frame format identification.

The next received bits are sampled according to the programmed baud rate.
However, after 7 bits reception, the speed identification must be restarted
because several a or A characters may have been received before a valid t or
T character.

The autobauding mode is selected when MDR1[2:0] = 010. In the UART
autobauding mode, DLL, DLH, and LCR[5:0] settings are not used. Instead,
UASR is updated with the configuration detected by the autobauding logic.

UARTs

Serial Interfaces200 SPRU760C

Figure 77. Autobaud State Machine

!(A a T)

Wait T
(Baud rate
acquired)

Wait a or A

Wait t
(Baud rate
acquired)

Reception

Aa

!<CR>

T
t

!(A a)

!(A a t)
<CR>
no PE

a

A

a A

6.6.13 Frame Closing

A transmission frame is properly terminated in one of two ways:

� Frame-length method: The frame-length method is selected when MDR1[7]
= 0. The local host writes the frame-length value to the TXFLH and TXFLL
registers. The device automatically attaches end flags to the frame once
the number of bytes transmitted becomes equal to the frame-length value.

� Set-EOT bit method: The Set-EOT bit method is selected when MDR1[7]
= 1. The local host writes 1 to ACREG[0] (EOT bit) just before it writes the
last byte to the TX FIFO. When the local host writes the last byte to the TX
FIFO, the device internally sets the tag bit for that particular character in
the TX FIFO. As the TX state machine reads data from the TX FIFO, it uses
this tag-bit information to attach end flags and properly terminate the
frame.

UARTs

201Serial InterfacesSPRU760C

6.6.14 Store and Controlled Transmission (SCT)

In SCT the local host first starts writing data into the TX FIFO. Then, after it
writes a part of a frame for a bigger frame, or a whole frame (a small frame,
that is, a supervisory frame), it writes a 1 to ACREG[2] (deferred TX start) to
start transmission. SCT is enabled when MDR1[5] = 1. This method of
transmission differs from the normal mode, where transmission of data starts
immediately after data is written to the TX FIFO. SCT is useful for sending short
frames without TX underrun.

6.6.15 Underrun During Transmission

Underrun in transmission occurs when the TX FIFO becomes empty before
the end of the frame is transmitted. When underrun occurs, the device closes
the frame with end flags but attaches an incorrect CRC value. The receiving
device detects a CRC error and discards the frame; it can then ask for a
retransmission. Underrun also causes an internal flag to be set, which disables
further transmission. Before the next frame can be transmitted the system (LH)
must:

� Reset the TX FIFO.

� Read the RESUME register. This clears the internal flag.

This functionality is disabled with ACREG[4], compensated by the extension
of the stop bit in transmission in case the TX FIFO is empty.

6.6.16 Overrun During Receive

Overrun occurs during receive if the RX state machine tries to write data into
the RX FIFO when it is already full. When overrun occurs, the device interrupts
the local host with IIR[3] and discards the remaining portion of the frame.
Overrun also causes an internal flag to be set, which disables further
reception. Before the next frame can be received the system (LH) must:

� Reset the RX FIFO.

� Read the RESUME register. This clears the internal flag.

6.6.17 Status FIFO

In IrDA modes, a status FIFO is used to record the received frame status.
When a complete frame is received, the length of the frame and the error bits
associated with it are written into the status FIFO.

The frame length and error status can be determined by reading SFREGL/H
and SFLSR. Reading the SFLSR causes the read pointer to be incremented.
The status FIFO is eight entries deep and therefore can hold the status of eight
frames.

UARTs

Serial Interfaces202 SPRU760C

The LH uses the frame-length information to locate the frame-boundary in the
received frame data. The LH screens bad frames using the error-status
information and later requests the sender to resend only the bad frames.

This status FIFO is used effectively in DMA, as the LH need not be interrupted
each time a frame is received but only when the programmed status FIFO
trigger level is reached.

6.7 UART Configuration Example

This section outlines the programming stages for operating one UART module
with FIFO, interrupt, and no DMA capabilities. This is a three-step procedure
that ensures a quick start of these modules (obviously, it does not cover every
UART module feature). The first stage covers the software reset of the module
(interrupts, status, and controls). The second stage deals with FIFO
configuration and enable. The last stage with deals with the baud rate data and
stop configuration. The procedure below is programming language agnostic.

6.7.1 UART Software Reset

Goal:

To clear IER and MCR registers, remove UART breaks (LCR[6] = 0) and put
module in reset (MDR1[2:0] = 0x07).

Procedure:

To write into both the IER and MCR register EFR[4] must first be set to 1.

To be able to access the EFR register, 0xBF must be first be written to LCR
register. Hence,

1) LCR = 0xBF; First write to the LCR register.

2) EFR[4] = 1; When LCR = 0xBF, enable the enhanced feature register.

3) LCR[7] = 0; Here, access to IER and MCR is allowed.

4) IER = 0x00; Disable interrupt.

5) MCR = 0x00; Force control signals inactive.

6) LCR[6] = 0; Here, remove UART breaks.

7) MDR1 = 0x07; Here, UART is in reset or disabled.

Alternatively, the SYSC[1] can be set to one to instigate a hardware reset from
the generic synchronous reset module. The reset progress can be monitored
via the SYSS[0]. Once complete, the above sequence should ensure that the
UART is in the equivalent disabled mode with reference to MDR1[2:0].

UARTs

203Serial InterfacesSPRU760C

6.7.2 UART FIFO Configuration

Goal:

To set trigger level for halt/restore (TCR register), set trigger level for
transmit/receive (TLR register), and configure FIFO (FCR register).

Procedure:

To write into both the TLR and TCR registers, EFR[4] must be set to 1 and
MCR[6] to 1. To write into FCR, EFR[4] must be set to 1. Note that EFR[4] =
1 was already done in the previous section. Therefore, a simple write to
MCR[6] is necessary.

MCR[6] = 1; Sets TCR TLR and FCR to the desired value.

Here accesses to TCR, TLR, and FCR must be disabled to avoid any further
undesired write to these registers. Hence,

� LCR = 0xBF; Provides access to EFR

� EFR[4] = 0

� LCR[7] = 0

� MCR[6] = 0

6.7.3 Baud Rate Data and Stop Configuration

Goal:

To configure UART data, stop (LCR register) baud rate (DLH and DLL
registers), and enable UART operation. In case interrupt capability is added,
configuration must be added right before UART enable.

Procedure:

� Set LCR to desired value.

LCR[7] to 1; Gives access to DLH and DLL registers

� Set DLH and DLL;

LCR[7] = 0; Removes access to DLH and DLL registers

� Set IER to desired value. Sets interrupts.

MDR1[2:0] = 0; Enables UART without autobauding

The UART module is operational.

HDQ and 1-Wire Protocols

Serial Interfaces204 SPRU760C

7 HDQ and 1-Wire Protocols

This module implements the hardware protocol of the master function of the
HDQ and the 1-Wire protocol.

This module works off a command structure that is programmed into transmit
command registers. The received data is in the receive data register. The
firmware is responsible for performing correct sequencing in the command
registers. The module only implements the hardware interface layer of the
protocols.

The HDQ and the 1-Wire modes are selectable in software and must be
chosen before any transmit and receive from the module is performed. The
mode is assumed static during operation of the device. The 1-Wire and the
HDQ protocols both use HDQ timing.

7.1 Functional Description

The module works with both HDQ and the 1-Wire protocols. The protocols use
a single wire to communicate between the master and the slave. The protocols
employ a return-to-1 mechanism, where after any command, the line is pulled
up to a high. This requires an external pullup.

An open-drain configuration is used on the wire. The DX is connected to the
GZ pin of an external 3-state output driver, and the input pin is connected to
a zero level.

A control bit determines whether the HDQ or the 1-Wire protocol is to be used.
Although this bit can be modified at any point, it is recommended that it be
modified only as part of boot-up configuration. For the design, the bit is
assumed static. By default, the configuration complies with the HDQ spec.

7.1.1 Receive and Transmit Operation

The receive and transmit operations are performed according to the timing
specified in the HDQ protocol. This is done to keep the hardware interface
section compatible between the two devices. In essence, the 1-Wire mode
runs at slower speeds than the capabilities of the mode. The differences
between the protocol at the hardware layer are described in the following
subsections.

HDQ and 1-Wire Protocols

205Serial InterfacesSPRU760C

7.1.2 HDQ Mode (Default)

In HDQ mode, the firmware does not require the host to create an initialization
pulse to the slave. However, the slave can be reset using an initialization pulse
(also referred to as a break pulse). The pulse is created by setting the
appropriate bit in the control and status register. The slave does not respond
with a presence pulse, as it does in the 1-Wire protocol.

In a typical write to the slave, 2 bytes of data are sent to the slave. This is the
command/address byte followed by the data that must be written. In a typical
read, 1 command/address byte is sent to the slave, and the slave returns 1
byte of data.

The master implementation is a byte engine. The firmware is responsible for
sending the ID, command/address, and data. The master engine provides
only one data TX register.

HDQ is a return-to-1 protocol. This means that after a data byte (either
command/address + write data for writes, or just command/address for reads)
is sent to the slave, the host pulls the line high. This is accomplished in the
device by setting the line to high (with an external pullup). The slave pulls the
line low to initiate a transaction. This is the case when a read occurs, and the
slave must send the read data back to the host.

If the host initiates a read and data is not received in a specified interval (the
slave does not pull the line low within this time), a time-out status bit is set. This
indicates that a read was not successfully completed. On successful
completion, the time-out bit is cleared. The bit remains set or cleared until the
next transaction by the host.

An interrupt condition indicates either a TX complete, RX complete, or time-out
condition. The read of the interrupt status register clears all of the interrupt
conditions. Only one interrupt signal is sent to the microcontroller, and only an
overall mask bit exists for the enabling and disabling of the interrupt. The
interrupt conditions cannot be individually masked.

The programmer must perform the following sequence for the reads and writes
to the slave:

Write operation:

1) Write the command or data value to the TX write register.

2) Write 0 to the R/W bit of the control and status register to indicate a write.

3) Write 1 to the go bit of the control and status register to start the actual
transmit. This step and the above step can be done at the same time.

HDQ and 1-Wire Protocols

Serial Interfaces206 SPRU760C

� The hardware sends the byte from the TX data register.
� The time-out bit is always cleared in a write, because the hardware

has no acknowledge mechanism from the slave.
� The completion of the operation sets the TX complete flag in the

interrupt status register. If interrupts are masked, no interrupt is
generated. The interrupt status register is always cleared at the
beginning of any read or write operation.

� At the end of the write, the go bit is cleared.

4) Software must read the interrupt status register to clear the interrupt.

5) Repeat for each successive byte.

Read operation:

1) Write the command value to the TX write register.

2) Write 0 to R/W bit, 1 to the go bit, and wait for TX complete interrupt.

3) Write 1 to the R/W bit of the control and status register to indicate a read.

4) Write 1 to the go bit of the control and status register to start the actual
read. This step and the above step can be done at the same time.

� The hardware detects a low-going edge of the line (created by the
slave) and receives 8 bits of data in the RX receive buffer register. The
first bit that is received from the slave is the LSB and the last bit is the
MSB of the byte. The master performs this step as soon as the slave
sends the data, irrespective of the state of the go bit. However, an RX
complete interrupt is generated only when the software writes the go
bit.

� If a time-out occurs, a time-out bit is set in the control and status
register.

� The completion of the operation sets the RX complete flag in the
interrupt status register. If interrupts are masked, no interrupt is
generated. The interrupt status register is always cleared at the
beginning of either a read or a write operation.

� At the end of the read, the go bit is cleared. It is also cleared if a
time-out is detected.

5) Software must read the interrupt status register to determine whether RX
was complete or whether a time-out occurred.

6) Software does a read of the RX buffer register to retrieve the read data
from slave.

HDQ and 1-Wire Protocols

207Serial InterfacesSPRU760C

7) Repeat for each successive byte.

In HDQ16 mode, the address/command is only written once to the slave.
However, after the first byte is received, if an RX complete interrupt is received,
the software must initiate the read of the second byte by writing the go bit of
the control and status register. The first byte that was received is shadowed
and provided to the software while the hardware is fetching the second byte
of data.

7.2 1-Wire Mode (SDQ)

This section highlights the primary differences between the HDQ and the
1-Wire protocols.

In the 1-Wire mode, the firmware must send an initialization pulse to the
multiple slaves that can be connected on the interface. If any slave is present,
the slave responds with a presence pulse.

The initialization pulse is sent by setting the appropriate bit in the control and
status register. A presence detect is indicated in the appropriate bit of the
register. If no presence is received, a time-out bit is set in the status register.
The initialization bit is cleared at the end of the initialization pulse. Also, the
presence detect and the time-out bits are cleared at the end of the initialization
pulse, if a presence detect is received. The time-out bit has no other
significance in this mode; that is, unlike in HDQ mode, it is always cleared
during a read operation.

1-Wire mode is a bit-by-bit protocol for a read. Unlike HDQ, which sends eight
bits of data on a read, the slave must be clocked by the host in 1-Wire protocol
for each bit. At the end of the command/address byte, the line is pulled high
and the host creates a low-going edge to initiate a bit read from the slave. The
host then pulls the line high, and the slave either pulls the line low to indicate
a 0 or does not drive the line to indicate a 1. The host repeats the operation
for the next bit that need to be read.

The first bit that is received is the LSB and the last bit is the MSB in the RX data
register.

An interrupt condition indicates either a TX complete, RX complete, or time-out
condition. The read of the interrupt status register clears all of the interrupt
conditions. Only one interrupt signal is sent to the microcontroller, and only an
overall mask bit exists for the enabling and disabling of the interrupt. The
interrupt conditions cannot be individually masked.

The programmer must perform the following sequence for the reads and writes
to the slave:

HDQ and 1-Wire Protocols

Serial Interfaces208 SPRU760C

Write operation:

1) Write the ID, command, or data value to the TX write register.

2) Write 0 to the R/W bit of the control and status register to indicate a write.

3) Write 1 to the go bit of the control and status register to start the actual
transmit. This step and the above step can be done at the same time.

� The hardware sends the one byte of the TX write data register.

� The time-out bit is always cleared in a write.

� The completion of the operation sets the TX complete flag in the
interrupt status register. If interrupts are masked, no interrupt is
generated. The interrupt status register is always cleared at the
beginning of any read or write operation.

� At the end of the write, the go bit is cleared.

4) If interrupt is enabled, software must read the interrupt status register to
clear the interrupt.

5) Repeat for each successive byte.

Read operation:

1) Write the ID value to the TX write register.

2) Write 0 to R/W bit and 1 to the go bit and wait for TX complete interrupt.

3) Write the command value to the TX write register.

4) Write 0 to R/W bit and 1 to the GO bit and wait for TX complete interrupt.

5) Write 1 to the R/W bit of the control and status register to indicate a read.

6) Write 1 to the go bit of the control and status register to start the actual
read. This step and the above step can be done at the same time.

� The hardware creates a low-going edge of the line (created by the
slave), and clocks 8 bits of data into the RX receive buffer register. The
first bit that is received from the slave is the LSB and the last bit is the
MSB of the byte.

� The time-out bit is always cleared in a read.

� The completion of the operation sets the RX complete flag in the
interrupt status register. If interrupts are masked, no interrupt is
generated. The interrupt status register is always cleared at the
beginning of any read or write operation.

HDQ and 1-Wire Protocols

209Serial InterfacesSPRU760C

� At the end of the read, the go bit is cleared. It is also cleared if a
time-out is detected.

7) If interrupt is enabled, software must read the interrupt status register to
determine if RX was completed or whether there was a time-out.

8) Software does a read of the RX buffer register to retrieve the read data
from the slave.

9) Repeat for each successive byte.

7.3 1-Wire Bit Mode Operation

A single-bit mode can be entered by writing to the appropriate bit in the control
and status register. In this mode, only one bit of data is received each time from
the slave. After the bit is received, an RX complete interrupt is generated. Bit
0 of the receive buffer is updated each time a bit is received.

The mode has no effect in HDQ mode, as HDQ does not support single-bit
protocol.

7.3.1 Timing Diagrams

Figure 78 shows the timing diagram for the read, reset, and write. In the HDQ,
the reset pulse contains only the initialization and not the presence pulse. The
timing required for the various signals are specified in Single-Wire Advanced
Battery Monitor IC for Cellular and PDA Applications (SLUS480).

The master works at the timing of the HDQ interface, which encompasses the
HDQ and the 1-Wire timing. Therefore, in 1-Wire mode, the master runs slower
than the full performance capability of the protocol.

HDQ and 1-Wire Protocols

Serial Interfaces210 SPRU760C

Figure 78. Read Timing Diagram

Must be driven low by host for DS,
driven low by slave on HDQ

tCYC

tODHO

tODD

Read 0

Read 1

tRECtRSTRB

Figure 79. Reset Timing Diagram

Sent by host

tRSTREC

tPPtPDtRST

Sent by host

Figure 80. Write Timing Diagram

tCYC

tWDH

tWDSU

Write 0

Write 1

tRECtWSTRB

HDQ and 1-Wire Protocols

211Serial InterfacesSPRU760C

7.3.2 Write State Diagram

Figure 81. Write State Machine #1

Reset

Time out = 0
Go = 0

IDLE

TX
write data

TX complete

Bits sent < 8

Rnw = 0, Go = 1

TX complete = 1
Time out = 0

TX complete = 0
Time out = 0

7.3.3 Read State Diagram

Figure 82. Read State Machine #1
Reset

Time out = 1
Go = 1

IDLE

Time out
Receiving

 < 8 bits

Rnw = 0, Go = 1

Go = 0

Time out, HDQ = 1

HDQ and 1-Wire Protocols

Serial Interfaces212 SPRU760C

7.3.4 Status Flags

The status register contains status flags from the transmitter, the receiver, and
the presence detect logic.

The presence-condition-detected status flag is contained in the status register.
This is valid only in 1-Wire mode. It is cleared when the host sends an
initialization pulse and then is set to 1 if a pulse is received. Otherwise, it stays
cleared at 0.

7.3.5 Interrupts

The module provides the following interrupt status:

� Transmitter complete

A write of one byte was completed. Successful or unsuccessful comple-
tion is not indicated, because there is no acknowledge from the slave in
either HDQ or 1-Wire mode. Cleared at beginning of write command.

� Read complete

Indicates successful completion of a byte read in both modes. Cleared at
beginning of read command.

� Presence detect/time-out

� In 1-Wire mode, it indicates that it is now valid to check the presence
detect received bit. Cleared at beginning of initialization sequence.

� In HDQ mode, it indicates that after a read command was issued by
the host, the slave did not pull the line low within the specified time. In
HDQ mode, the bit is cleared at beginning of the read command.

Only one interrupt is generated to the microcontroller, based on any of the
above interrupt status conditions. A read to the interrupt status register clears
all of the status bits that have been set.

The interrupt can be masked by setting the appropriate bit in the control and
status register.

A read of the interrupt status register clears the interrupt. If there is a pending
interrupt, the interrupt line stays low and no low-high-low transition is created.
The interrupt therefore must be handled as a level interrupt (where a low-going
edge is not needed) in an upstream interrupt handler (or processor).

HDQ and 1-Wire Protocols

213Serial InterfacesSPRU760C

7.4 Power-Down Mode

Writing to the appropriate bit in the control and status register shuts the clock
to the state machine. The state machines are reset when the clock is disabled,
and if any transaction is being performed, it is aborted into the reset state. The
register values are not affected by disabling the clock. No register access must
be performed to the module registers after the software puts the module in
power-down mode by setting bit 5 of the control and status register to 0, other
than a write to the power-down bit to take it out of power-down mode.

7.5 HDQ and 1-Wire Battery Monitoring Serial Interface

The HDQ and 1-Wire battery monitoring serial interface module implements
the hardware protocol of the master function of the Benchmarq HDQ and the
Dallas Semiconductor 1-Wire protocol. The module works off a command
structure that is programmed into transmit command registers. The received
data is in the received data register. The firmware is responsible for correct
sequencing in the command registers. The module implements only the
hardware interface layer of the protocols.

The HDQ and the 1-Wire mode are selectable in software, which must be done
before any transmit and receive from the module is performed. The mode is
assumed static during operation of the device.

Figure 83. HDQ and 1-Wire Overview

Interrupt

MPU TIPB
(public)

HDQ / 1-Wire

0
TI

BQxxxx
device

Pin multiplexing for
GPIO11 device pin

HDQ and 1-Wire Protocols

Serial Interfaces214 SPRU760C

7.6 Software Interface

Mapping the registers to the TI peripheral bus (TIPB) address signals is shown
in Table 113. The memory map identifies the 2K space associated with the
peripheral.

The hardware provides no synchronization between the register clock domain
and the state machine domain. This means that during a read, the hardware
has the capability to modify the receive buffer. It is also possible that any
access to the transmit write data register corrupts the data that is being sent
if a TX is being performed.

However, these hazards can be avoided in software by observing the following
limitations:

� A read is not performed from the interrupt status register or receive buffer
register unless the processor has been interrupted by the peripheral.

� After the release of the go bit in the control and status register, no access
to the TX write data buffer or the control and status registers is performed
until the processor has been interrupted by the peripheral.

� Software is not allowed to poll the interrupt status register to determine
whether an interrupt was generated.

� No register access can be done to the module registers after the software
puts the module in power-down mode (by setting bit 5 of the control and
status register to 0), except to reenable the clock.

Table 113. HDQ and 1-Wire Registers

Base Address = 0xFFFB C000

Register Description Type Address

HDQ1W_TX TX write data R/W FFFB:C000

HDQ1W_RX RX receive buffer R FFFB:C004

HDQ1W_CTRL Control and status R/W FFFB:C008

HDQ1W_INTS Interrupt status, read to clear R FFFB:C00C

HDQ and 1-Wire Protocols

215Serial InterfacesSPRU760C

Table 114. HDQ/1−Wire TX Write Data Register (HDQ1W_TX)

Base Address = 0xFFFB C000, Offset Address = 0x00

Bit Name Function R/W Reset

31:24 Reserved Reserved − read aliased to bit 7:0, writes ignored R/W 0x00

23:16 Reserved Reserved − read aliased to bit 7:0, writes ignored R/W 0x00

15:8 Reserved Reserved − read aliased to bit 7:0, writes ignored R/W 0x00

7:0 WD Write data (used in both HDQ and 1−Wire modes) R/W 0x00

Table 115. HDQ/1−Wire RX Receive Buffer Register (HDQ1W_RX)

Base Address = 0xFFFB C000, Offset Address = 0x04

Bit Name Function R/W Reset

31:24 Reserved Reserved − read aliased to bit 7:0, writes ignored R U

23:16 Reserved Reserved − read aliased to bit 7:0, writes ignored R U

15:8 Reserved Reserved − read aliased to bit 7:0, writes ignored R U

7:0 RD Next received character R U

Table 116. HDQ/1−Wire Control Register (HDQ1W_CTRL)

Base Address = 0xFFFB C000, Offset Address = 0x08

Bit Name Function R/W Reset

31:24 Reserved Reserved − read aliased to bit 7:0, writes ignored R/W 0x00

23:16 Reserved Reserved − read aliased to bit 7:0, writes ignored R/W 0x00

15:8 Reserved Reserved − read aliased to bit 7:0, writes ignored R/W 0x00

7 SBM Single-bit mode for 1-Wire R/W 0

6 IM Interrupt mask (1: Enable, 0: Disable interrupts) R/W 0

5 PDM Power-down mode (1: Enable clocks, 0: Disable clocks) R/W 0

4 GB Go bit

Write 1 to send the appropriate commands.
Bit returns to 0 after the command is complete.

R/W 0

HDQ and 1-Wire Protocols

Serial Interfaces216 SPRU760C

Table 116. HDQ/1−Wire Control Register (HDQ1W_CTRL) (Continued)

Base Address = 0xFFFB C000, Offset Address = 0x08

Bit ResetR/WFunctionName

3 PD Presence detect received, 1-Wire mode only.

0: Not detected.
1: Detected.

R 0

2 IP Write 1 to send Initialization pulse. Bit returns to 0 after pulse
is sent.

R/W 0

1 RWB R/W bit (determines if next command is read or write)

0: Write.
1: Read.

R/W 0

0 MODE Set mode

0: HDQ.
1: 1-Wire.

R/W 0

Table 117. HDQ/1−Wire Interrupt Status Register (HDQ1W_INTS)

Base Address = 0xFFFB C000, Offset Address = 0x0C

Bit Name Function R/W Reset

31:24 Reserved Reserved − read aliased to bit 7:0, writes ignored R 0x00

23:16 Reserved Reserved − read aliased to bit 7:0, writes ignored R 0x00

15:8 Reserved Reserved − read aliased to bit 7:0, writes ignored R 0x00

7:3 Reserved Reserved − reads 0, writes ignored R 0x0

2 TC TX completed R/C 0

1 RC Read complete R/C 0

0 DTO Presence detect/time-out: In 1-Wire mode this is due to
presence detect, and in HDQ mode this is due to time-out on
read

R/C 0

Note: R/C − read clears bit

Frame Adjustment Counter

217Serial InterfacesSPRU760C

8 Frame Adjustment Counter

The frame adjustment counter counts the number of rising edges of one signal
(start of frame interrupt of the USB function) during a programmable number
of rising edges of a second signal (transit frame synchronization of McBSP2).
System-level software uses this count value to adjust the duration of the two
time domains with respect to each other to reduce overflow and underflow. If
the data being transferred is audio data, this module can be part of a solution
that reduces pops and clicks.

8.1 Features

The frame adjustment counter (FAC) is a module that consists of a
frame-synchronization capture pin and a frame-start capture pin. System-level
software uses the respective count values to adjust the duration of the two time
domains with respect to each other to reduce the overflow and underflow.

A frame-adjustment reference count (FARC) register is programmed with the
number of frame-synchronization pulses over which the frame-start pulses are
to be counted. A frame-start count (FSC) register is updated with the number
of frame-start rising edges that occur during the programmable FARC period.
A control and configuration (CTRL) register allows for the module to be put into
either continuous or halt mode. In continuous mode, the FSC register is
periodically updated with a new value each time the FARC register value is
met, and a new count is automatically initiated. In halt mode, the FSC register
is updated with a new value when the FARC register value is met, counting
halts, and an interrupt is generated. In halt mode, a new count is initiated upon
software servicing the interrupt by reading the FSC register. The RUN bit in the
control and configuration register can enable and disable the counters. If the
RUN bit is set to 0, the counters are reset immediately, even though the count
is not finished. The software can use this bit as a software reset. Additionally,
a status register (STATUS) containing a FSC_FULL bit indicates to the system
software whether FSC has been read subsequent to the last FSC update.

HDQ and 1-Wire Protocols / Frame Adjustment Counter

Frame Adjustment Counter

Serial Interfaces218 SPRU760C

Figure 84. FAC Top-Level Diagram

USB function

 MPU interrupt handler level 2

Irq0

 ULPD

DS_WAKE_REQ_ON

ULPD_

Irq24

WKUP_REQ

12 MHz

CLKINPERCLK

Clock generation and management

OMAP5912

MPU_PER_RST

Gating
Reset

Reset

FAC_IRQ

ARMXOR_CLK

FAC

Registers

FARC

FSC

CTRL

STATUS

SYNC

Start

Frame

Frame

McBSP2

FSX

IRQ_ISO_ON

start
counter

SYNC
counter

The main FAC features are:

� Frame-synchronization capture pin (SYNC)

� Frame-start capture pin (START)

� Programmable frame-adjustment reference count register (FARC)

� Read-only frame-start count register (FSC)

� Interrupt generation logic

� Configuration and control register (CTRL)

� Status register (STATUS)

8.2 Synchronization and Counter Control

Because the frame-start and frame-synchronization signals are from different
time domains, the FAC module synchronizes them to the system clock domain
and uses the synchronized signals as the count enables. The actual counters
for frame synchronization and frame start are clocked by the system clock.

Frame Adjustment Counter

219Serial InterfacesSPRU760C

8.2.1 Synchronization

The synchronization mechanism is based on the assumption that the system
clock is running at least eight times faster than frame synchronization and
frame start. Figure 85 and Figure 86 show the synchronization logic and the
counter hookup.

Figure 85. FAC Module Counters and Clock Synchronization

FARC
REG

FSC Frame start

Sync circuit

EN
Sync circuit

FSM

EN Frame sync

Frame start

System clock

REG counter

Frame sync
counter

Frame Adjustment Counter

Serial Interfaces220 SPRU760C

Figure 86. Synchronization Circuit for Frame Synchronization and Frame Start Signals

DFF3Frame sync/ DFF2DFF1TFFframe start

System clock

XOR Synced
signal

Figure 87 shows the actual waveforms at the output of each flip-flop and the
XOR output.

Figure 87. Synchronization Circuit Waveforms

DFF1 output

TFF output

Frame start/sync

DFF2 output

DFF3 output

XOR output

System clock

8.3 FAC Interrupt

The FAC generates one interrupt, FAC_IRQ (in halt mode when the FARC
value is met), connected to the MPU level 2 interrupt handler, line 0
(level-sensitive).

Frame Adjustment Counter

221Serial InterfacesSPRU760C

8.4 FAC Clocks and Reset

The FAC works with a clock (PCLK) provided by the ULPD from a request
generated by the USB function (DS_WAKE_REQ_ON).

The DS_WAKE_REQ_ON request does not wake up the system itself.

The ULPD module uses this request to generate an interrupt (ULPD_nIrq) to
the MPU, which wakes up the system via its wake-up request (WKUP_REQ).

Once the system is awakened (12 MHz provided to the MPU), the MPU
programmable peripheral clock (PERCLK) is used as the source clock for the
FAC clock.

The MPU TIPB reset (MPU_PER_RST) resets the FAC.

8.5 Software Interface

Table 118 lists the FAC registers. Table 119 through Table 122 describe the
register bits.

Table 118. FAC Registers

Register Description Type Address

FARC Frame adjustment reference count R/W FFFB:A800

FSC Frame start count R FFFB:A804

CTRL Control and configuration R/W FFFB:A808

STATUS Status R FFFB:A80C

SYNC CNT Frame synchronization counter R FFFB:A810

START CNT Frame start counter R FFFB:A814

The FAC module is a word16 module with 32-bit aligned addresses.

The frame-adjustment counter register (FARC) is programmed with the
number of frame synchronization counts over which the frame start pulses are
counted. This is a 16-bit programmable fixed reference in the range of
0-65536. A value of 0 disables the count operation.

Table 119. Frame Adjustment Reference Count Register (FARC)

Base Address = 0xFFFB A800, Offset Address = 0x00

Bit Name Function R/W Reset

15:0 FARC 16-bit value in the range 0-65536: 0—disable counting R/W 0x0000

Frame Adjustment Counter

Serial Interfaces222 SPRU760C

The frame-start count (FSC) register is a 16-bit read-only register that contains
the number of frame-start rising edges that occur during the programmable
FARC period. The frame-start counting can be in one of two modes. When the
CNT bit in the control and configuration (CTRL) register is set to 1, the counting
is in continuous mode and this register is updated periodically (every time the
frame adjustment reference count is met) with the new count value. If CNT is
0, the counting is in halt mode. The frame-start count register is updated when
the frame adjustment reference count is met, and the counting halts until the
software reads the FSC register.

A level-sensitive interrupt can be generated to indicate that the frame-start
counting is finished, and the FSC register is loaded with a new count value.
The interrupt is controlled by the INT_ENABLE bit in the control and
configuration (CTRL) register. If this bit is set to 1, an interrupt is generated
when the FSC register is updated. Because the interrupt is level-sensitive, the
interrupt signal is kept low until the software reads the FSC register, or the RUN
bit in the control register is set to 0. When the FSC is read or RUN bit in control
register is set to 0, the interrupt signal is reset to 1. When the IN_ENABLE bit
is set to 0, no interrupt is generated. The interrupt can be enabled or disabled
for both continuous mode and halt mode.

Table 120. Frame Start Count Register (FSC)

Base Address = 0xFFFB A800, Offset Address = 0x04

Bit Name Function R/W Reset

15:0 FS 16-bit value R 0x0000

The control and configuration (CTRL) register is a R/W register used to
configure the module. The RUN bit enables the frame-start counter. If this bit
is set to 0, the frame-start counting is disabled immediately. The software can
use this bit as a software reset for the FAC module by setting the RUN bit to 0.
When the RUN bit is set to 0, the frame-start counter, the frame-synchronization
counter, and the FSC register are reset to 0. The software reset also clears the
status register FSC_FULL bit to 0. If an interrupt has been generated and the
FAC module is waiting for an FSC register read, a software reset puts the
counter control back to idle state. This means that after the software has been
reset the counter starts counting again, regardless of whether the FSC register
has been read or not.

Frame Adjustment Counter

223Serial InterfacesSPRU760C

Table 121. FAC Control and Configuration Register (CTRL)

Base Address = 0xFFFB A800, Offset Address = 0x08

Bit Name Function R/W Reset

15:3 Reserved Reserved R 0x0000

2 INT_ENABLE The INT_ENABLE bit is independent of the CNT bit. The
interrupt can be enabled or disabled in either continuous
mode or halt mode.

0: No interrupt is generated.
1: An interrupt is generated when FSC is updated.

R/W 0

1 RUN Enables operation of the counter.

0: The frame start counter, the frame-synchronization
counter, and the FSC are reset to 0. Any pending interrupt
also is cleared when RUN is set to 0.
1: Enables the frame start counter.

R/W 0

0 CNT 0: Halt mode− updates FSC value when the
frame-adjustment reference count is met and halts operation
until FSC is read.
1: Continuous mode− periodically updates FSC value each
time the frame-adjustment reference count is met.

R/W 0

Table 122. FAC Status Register (STATUS)

Base Address = 0xFFFB A800, Offset Address = 0x0C

Bit Name Function R/W Reset

15:1 Reserved Reserved R 0x0000

0 FSC_FULL This bit is set to a 1 when FSC is updated. This bit is set
back to a 0 when the FSC has been read or RUN bit in
control is 0.

R/C 0

The status register (STATUS) contains an interrupt status bit.

Frame Adjustment Counter

Serial Interfaces224 SPRU760C

Table 123. SYNC Counter Register (SYNC_CNT)

Base Address = 0xFFFB A800, Offset Address = 0x10

Bit Name Function R/W Reset

15:0 SC Sync count value R 0x0000

Table 124. Start Counter Register (START_CNT)

Base Address = 0xFFFB A800, Offset Address = 0x14

Bit Name Function R/W Reset

15:0 SC Start count value R 0x0000

225Multichannel Serial Interface (MCSI)SPRU760C

����	������	����

Table 125 lists the changes made since the previous version of this document.

Table 125. Document Revision History

Page Additions/Modifications/Deletions

114 Modified introduction to section 4, Multichannel Serial Interfaces.

Multichannel Serial Interface (MCSI)226 SPRU760C

This page is intentionally left blank.

Index

227IndexSPRU760B

Index

A
Autotransmit mode protocol 111

B
Burst, mode, MCSI 115

C
Channel, MCSI, multichannel enable 116
Clock

frequency, MCSI transmit 117
polarity, MCSI (normal/inverted) 116

Communication, protocol 114
Continuous mode, MCSI 115

D
DMA

channel, operation (DSP) 122
public peripherals

receive 123
transmit 123

receive, public peripherals 123
transmit, public peripherals 123

DSP
DMA public peripherals, receive 123
management of MCSI 118
public peripherals

DMA channel operation 122
DMA transmit 123

DSP public peripherals, communication,
protocol 114

E
EEPROM interface, protocol, MicroWire

interface 106

F
Frame

duration error, MCSI 120
mode (MCSI), continuous/burst 115
size, MCSI 116
structure (MCSI)

multichannel 115
single−channel 115

synchronization, MPU public peripherals 217
synchronization (MCSI)

normal/alternate 115
normal/inverted 116
short/long frame 115

I
Interface

activation, MCSI 124
management, MCSI 118

Interrupt
associations, MCSI 118
mapping

MCSI1 138
MCSI2 140

program, MCSI 122

L
LCD controller, protocol 109

Index

228 Index SPRU760B

M
Master, mode (MCSI) 114
Master/slave control, MCSI 114
MCSI

chronograms 125
clock, normal/inverted polarity 116
communication protocol 114
configuration

example 117
frame size 116
parameters 114
word size 116

features 114
frame structure

multichannel 115
single−channel 115

frame−synchronization
normal/alternate 115
normal/inverted 116

interface
activation 124
management 118

interrupt
associations 118
frame duration error 120
generation 118
programming 122
receive 119
reset 122
transmit 119
unmasking 122
validating 122

multichannel mode, channel enable 116
received data loading 118
registers, write protection 130
short/long framing 115
slave/master control 114
software reset 125
start sequence 124
stop 118
stop sequence 125
transmission clock, frequency 117
transmit data loading 117

MCSI1
interrupt, mapping 138
request, mapping 139

MCSI2, interrupt, mapping 140
MPU, public peripherals

frame adjustment counter 216
frame synchronization 217

MPU public peripherals, MicroWire interface
protocol 106
registers 99

Multichannel
enable, MCSI 116
frame structure 115

N
notational conventions 3

P
Protocol

autotransmit mode, example 111
communication, DSP public peripherals 114
LCD controller, example 109
MicroWire interface 106
serial EEPROM, example 107

Public peripherals, MPU
frame adjustment counter 216
frame synchronization 217

R
Receive, interrupt, MCSI 119
related documentation from Texas Instruments 3
Request, mapping, MCSI1 139
Reset, software, MCSI 125

S
Serial EEPROM protocol 107
Short/long framing (MCSI) 115
Single−channel frame structure, MCSI 115
Slave mode, MCSI 114
Slave/master control, MCSI 114
Synchronization, frame, MPU public

peripherals 217

Index

229IndexSPRU760B

T

trademarks 3

Transmission, clock frequency, MCSI 117

Transmit, interrupt, MCSI 119

W
Word, size, MCSI 116

	Title Page - SPRU760C
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Serial Interface
	1 SPI Master/Slave
	1.1 Functional Description
	1.2 Interface
	1.3 SPI Registers
	1.4 Protocol Description
	1.4.1 MCU-DSP Protocol
	1.4.2 DMA Protocol
	1.4.3 Overflow/Underflow Interrupts
	1.4.4 Transmission Modes

	1.5 Idle and Wake-Up Feature
	1.6 Emulation Mode
	1.7 Reset

	2 I2C Multimaster Peripheral
	2.1 Overview
	2.2 Functional Overview
	2.3 I2C Controller Features
	2.4 I2C Master/Slave Controller Signal Pads
	2.5 Operational Details
	2.5.1 I2C Reset
	2.5.2 I2C Bit Transfer
	2.5.3 Data Validity
	2.5.4 START and STOP Conditions

	2.6 I2C Operation
	2.6.1 Arbitration
	2.6.2 I2C Clock Generation and I2C Clock Synchronization
	2.6.3 Prescaler (SCLK/ICLK)
	2.6.4 Noise Filter
	2.6.5 I2C Interrupts
	2.6.6 DMA Events

	2.7 Register Map
	2.7.1 Own Address (OA)

	2.8 Programming Guidelines
	2.8.1 Main Program

	2.9 Interrupt Subroutines
	2.10 Flow Diagrams

	3 MicroWire Interface
	3.1 MicroWire Registers
	3.2 Protocol Description
	3.3 Example of Protocol Using a Serial EEPROM (XL93LC66)
	3.3.1 Read Cycle
	3.3.2 Write Cycle

	3.4 Example of Protocol Using an LCD Controller (COP472-3)
	3.4.1 Loading Sequence

	3.5 Example of Protocol Using Autotransmit Mode
	3.6 Example of Autotransmit Mode With DMA Support

	4 Multichannel Serial Interfaces
	4.1 Communication Protocol
	4.1.1 Configuration Parameters
	4.1.2 Sample Setup for Communication
	4.1.3 Interface Management
	4.1.4 Interrupt Programming
	4.1.5 DMA Channel Operation
	4.1.6 Interface Activation
	4.1.7 Functional Mode Timing Diagrams

	4.2 MCSI Register Descriptions

	5 MCSI1 and MCSI2
	5.1 MCSI1 Pin Description
	5.2 MCSI1 Interrupt Mapping
	5.3 MCSI1 DMA Request Mapping
	5.4 MCSI2 Pin Description
	5.5 MCSI2 Interrupt Mapping
	5.6 MCSI2 DMA Request Mapping

	6 UARTs
	6.1 Main Features
	6.1.1 UART/Modem Functions
	6.1.2 IrDA Functions

	6.2 Control and Status Registers Description
	6.2.1 UART IrDA Registers Mapping

	6.3 Interrupt Enable Register (IER)
	6.3.1 Divisor Latches (DLL, DLH)

	6.4 Transmit Frame Length Register (TXFLL, TXFLH)
	6.4.1 Received Frame Length Register (RXFLL, RXFLH)
	6.4.2 Status FIFO Register (SFREGL, SFREGH)

	6.5 Different Modes of Operation
	6.5.1 UART Modes
	6.5.2 SIR Mode
	6.5.3 MIR Mode
	6.5.4 MIR Transmit Frame Format
	6.5.5 FIR Mode

	6.6 Functional Description
	6.6.1 Trigger Levels
	6.6.2 Interrupts
	6.6.3 FIFO Interrupt Mode Operation
	6.6.4 FIFO Polled Mode Operation
	6.6.5 FIFO DMA Mode Operation
	6.6.6 Sleep Mode
	6.6.7 Idle Modes
	6.6.8 Break and Time-Out Conditions
	6.6.9 Programmable Baud Rate Generator
	6.6.10 Hardware Flow Control
	6.6.11 Software Flow Control
	6.6.12 Autobauding Mode
	6.6.13 Frame Closing
	6.6.14 Store and Controlled Transmission (SCT)
	6.6.15 Underrun During Transmission
	6.6.16 Overrun During Receive
	6.6.17 Status FIFO

	6.7 UART Configuration Example
	6.7.1 UART Software Reset
	6.7.2 UART FIFO Configuration
	6.7.3 Baud Rate Data and Stop Configuration

	7 HDQ and 1-Wire Protocols
	7.1 Functional Description
	7.1.1 Receive and Transmit Operation
	7.1.2 HDQ Mode (Default)

	7.2 1-Wire Mode (SDQ)
	7.3 1-Wire Bit Mode Operation
	7.3.1 Timing Diagrams
	7.3.2 Write State Diagram
	7.3.3 Read State Diagram
	7.3.4 Status Flags
	7.3.5 Interrupts

	7.4 Power-Down Mode
	7.5 HDQ and 1-Wire Battery Monitoring Serial Interface
	7.6 Software Interface

	8 Frame Adjustment Counter
	8.1 Features
	8.2 Synchronization and Counter Control
	8.2.1 Synchronization

	8.3 FAC Interrupt
	8.4 FAC Clocks and Reset
	8.5 Software Interface

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	P
	R
	S
	T
	W

