## User's Guide **TPS51220A** 降压控制器评估模块用户指南

# TEXAS INSTRUMENTS

| 内容                 |    |
|--------------------|----|
| 1 引言               | 3  |
| 2 说明               | 3  |
| 2.1 典型应用           | 3  |
| 2.2 特性             | 3  |
| 3 电气性能规格           | 3  |
| 4 原理图              | 5  |
| 5 测试设置             | 6  |
| 5.1 测试设备           | 6  |
| 5.2 建议的测试设置        | 6  |
| 5.3 测试点列表          | 7  |
| 6 测试步骤             | 8  |
| 6.1 线路/负载调节和效率测量步骤 | 8  |
| 6.2 输出纹波测试         | 9  |
| 6.3 测量提高的轻负载效率     | 9  |
| 6.4 控制架构和 OVP 选择   | 10 |
| 6.5 过流跳闸电平和输出放电选择  | 10 |
| 7 性能数据和典型特性曲线      | 11 |
| 7.1 效率             | 11 |
| 7.2 负载调节           | 11 |
| 7.3 波特图            | 12 |
| 7.4 瞬态响应           | 12 |
| 7.5 输出纹波和开关节点      | 13 |
| 7.6 导通波形           | 13 |
| 7.7 关断波形           | 14 |
| 8 EVM 装配图和 PCB 布局  | 15 |
| 9 物料清单             | 21 |
| 10 修订历史记录          | 21 |

## 插图清单

| 图 4-1. TPS51220A EVM-476 原理图                                  | 5              |
|---------------------------------------------------------------|----------------|
| 图 5-1. 建议用于 TPS51220A EVM-476 的测试设置                           | 6              |
| 图 5-2. 推荐用于测量输出纹波电压的尖端和接地筒方法                                  | <mark>6</mark> |
| 图 7-1. 效率,12V <sub>IN</sub> ,5.0V 输出                          | 11             |
| 图 7-2. 效率,12V <sub>Ⅳ</sub> ,3.3V 输出                           | 11             |
| 图 7-3. 12V <sub>IN</sub> , 5.0V 负载调节                          | <b>11</b>      |
| 图 7-4. 12V <sub>IN</sub> , 3.3V 负载调节                          | <b>11</b>      |
| 图 7-5. CCM 模式 5V 环路响应增益和相位,f <sub>CO</sub> = 95kHz,PM = 48°   | 12             |
| 图 7-6. CCM 模式 3.3V 环路响应增益和相位,f <sub>CO</sub> = 90kHz,PM = 63° | 12             |
| 图 7-7. 5V CCM 模式负载瞬态                                          | 12             |
| 图 7-8. 5V D-CAP 模式负载瞬态                                        | 12             |
| 图 7-9. 5V CCM 模式输出纹波和开关节点                                     | 13             |
| 图 7-10. 3.3V CCM 模式输出纹波                                       | 13             |
| 图 7-11. 启用导通波形                                                | 13             |
| 图 7-12. 启用有放电关断波形                                             | 14             |
| 图 7-13. 启用无放电关断波形                                             | 14             |
| 图 8-1. 顶层装配图 ( 顶视图 )                                          | 15             |
| 图 8-2. 底层装配图 ( 顶视图 )                                          | 16             |

ZHCU984B - SEPTEMBER 2009 - REVISED FEBRUARY 2022 Submit Document Feedback TPS51220A 降压控制器评估模块用户指南 1

#### TEXAS INSTRUMENTS www.ti.com.cn

| 商标           |     |   |  |
|--------------|-----|---|--|
| 图 8-3. 顶层铜 ( | 顶视图 | ) |  |

| 图 8-3. 顶层铜 ( 顶衬  | 见图)1 | 7 |
|------------------|------|---|
| 图 8-4. 内层 1 ( 顶视 | 图)1  | 8 |
| 图 8-5. 内层 2 (顶视  |      | 9 |
| 图 8-6. 底层铜 (顶衬   | 见图)  | 0 |

## 表格清单

| 本面の十                                           |    |
|------------------------------------------------|----|
| 表 3-1. TPS51220A EVM-476 电气性能规格                | 3  |
| 表 5-1. TPS51220A EVM-476 上的测试点功能               | 7  |
| 表 6-1. SKIPSEL1 或 SKIPSEL2 ( 跳线 JP1 和 JP4 ) 选择 | 9  |
| 表 6-2. FUNC(跳线 JP2)选择                          | 10 |
| 表 6-3. TRIP (JP3) 选择                           | 10 |
| 表 9-1. 基于图 4-1 所示原理图的 EVM 元件列表                 | 21 |
|                                                |    |

## 商标

所有商标均为其各自所有者的财产。

## 1 引言

此 EVM 采用德州仪器 (TI) 的双路输出设计 TPS51220A。此器件包含许多测试点,有助于工程师监控和评估 TPS51220A 的控制特性。TPS51220A 是一款具有三个线性稳压器的双峰值电流模式、同步降压控制器。该 EVM 还可让工程师配置 TPS51220A 控制器的多个功能。

#### 2 说明

TPS51220A EVM-476 提供两个 8A 输出:3.3V 和 5V。接受的输入电压范围为 8V 至 20V。用户可使用若干跳线 和开关来评估 TPS51220A 的各种控制功能。通过开关,可轻松地独立启用和禁用 EVM 或两个输出。两个跳线块 使用户能够选择每个输出的操作模式。一个跳线块使工程师能够选择控制架构和 OVP 功能。另一个跳线块可用于 选择过流跳闸电平以及输出是否由转换器放电。请参阅以下章节了解更多详情。

#### 2.1 典型应用

- 笔记本电脑和 I/O 总线
- 数字电视和多功能打印机等应用中的负载点

#### 2.2 特性

- 输入电压范围:8V至20V
- 双路 8A 输出: 3.3V 和 5V
- 3.3V 和 5V 输出的单个启用功能
- 可选轻负载运行
- 可选控制架构
- 电感器电流感测
- **OVP** 禁用功能
- 输出放电禁用功能
- 测量主要参数的易接触测试点

#### 3 电气性能规格

#### 表 3-1. TPS51220A EVM-476 电气性能规格

| 参数                                    | 测试条件                       | 最小值 | 典型值   | 最大值 | 单位   |  |
|---------------------------------------|----------------------------|-----|-------|-----|------|--|
| ····································· |                            |     |       |     |      |  |
| 电压范围                                  |                            | 8   | 12    | 20  | V    |  |
| 最大输入电流                                | 12V <sub>IN</sub> ,输出均为 8A |     | 5.8   |     | А    |  |
| 输出特性                                  |                            |     |       |     |      |  |
| 输出电压 VOUT 1                           |                            |     | 5     |     | V    |  |
| 输出负载电流 IOUT1                          |                            | 0   |       | 8   | А    |  |
| 於山市工油共                                | 线路调节:输入电压 = 8V 至 20V       |     | ±0.5% |     |      |  |
|                                       | 负载调节:输出电流 = 0A 至 8A        |     | ±1%   |     |      |  |
| 输出电压纹波                                | IOUT1 = 8A                 |     |       | 50  | mVpp |  |
| 输出过流                                  |                            |     | 12    |     | А    |  |
| 开关频率                                  |                            |     | 330   |     | kHz  |  |
| 峰值效率                                  |                            |     | 97.8% |     |      |  |
| 满负载效率                                 |                            |     | 96.9% |     |      |  |
| 输出电压 VOUT 2                           |                            |     | 3.3   |     | V    |  |
| 输出负载电流 IOUT2                          |                            | 0   |       | 8   | А    |  |
| <u>换山市区)用井</u>                        | 线路调节:输入电压 = 8V 至 20V       |     | ±0.5% |     |      |  |
| 输出电压调节<br>                            | 负载调节:输出电流 = 0A 至 8A        |     | ±1%   |     |      |  |
| 输出电压纹波                                | IOUT = 8A                  |     |       | 50  | mVpp |  |
| 输出过流                                  |                            |     | 12    |     | А    |  |
| 开关频率                                  |                            |     | 330   |     | kHz  |  |
| 峰值效率                                  |                            |     | 96%   |     |      |  |

ZHCU984B - SEPTEMBER 2009 - REVISED FEBRUARY 2022 Submit Document Feedback



## 表 3-1. TPS51220A EVM-476 电气性能规格 (continued)

| 参数    | 测试条件 | 最小值 | 典型值 | 最大值 | 単位 |
|-------|------|-----|-----|-----|----|
| 满负载效率 |      |     | 95% |     |    |

#### 4 原理图



图 4-1. TPS51220A EVM-476 原理图

## 5 测试设置

#### 5.1 测试设备

电压源:电源必须能够在最高 10A 的电流下提供 8VDC 到 20VDC 的电压。

**万用表:**至少需要三个电压表。其他电压表可用来监控某些测试点。

输出负载:建议使用两个恒定电流电子负载。当输出为 3.3V 或 5V 时,它们必须能够提供高达 10A 的灌电流。 示波器:需要一个最低 50MHz 的数字示波器和一个电压探头。示波器可用来测量输出纹波并监控某些测试点。 风扇:测试 EVM 时不需要风扇。

建议线规:负载和输入应使用最低线规为 AWG #16 的导线连接。所有这些连接线都应尽可能短。

#### 5.2 建议的测试设置



#### 图 5-1. 建议用于 TPS51220A EVM-476 的测试设置







| 测试点  | 名称    | 说明                                   |  |  |  |
|------|-------|--------------------------------------|--|--|--|
| TP1  | VIN   | 相对于 TP18 的输入电压测量点                    |  |  |  |
| TP2  | VOUT1 | 相对于 TP7 的输出 1 电压测量点                  |  |  |  |
| TP3  | VOUT2 | 相对于 TP8 的输出 2 电压测量点                  |  |  |  |
| TP4  | SW1   | 相对于 TP20 的输出 1 开关节点                  |  |  |  |
| TP5  | VREG5 | 使用开关 S3 启用 EN 时,5V/100mA 输出将为高电平     |  |  |  |
| TP6  | SW2   | 相对于 TP21 的输出 2 开关节点                  |  |  |  |
| TP7  | GND1  | VOUT1 的接地基准                          |  |  |  |
| TP8  | GND2  | VOUT2 的接地基准                          |  |  |  |
| TP9  | VREG3 | 对 EVM 施加输入电压时,应存在 3.3V/10mA 输出。      |  |  |  |
| TP10 | EN1   | 通过开关 S1 启用输出时,输出 1 使能信号将为高电平         |  |  |  |
| TP11 | EN2   | 通过开关 S2 启用输出时,输出 2 使能信号将为高电平         |  |  |  |
| TP12 | PG1   | 调节输出时,输出1电源正常信号将为高电平                 |  |  |  |
| TP13 | PG2   | 调节输出时,输出2电源正常信号将为高电平                 |  |  |  |
| TP14 | EN    | 使用开关 S3 启用 EVM 时,5V 和 2V 基准使能信号将为高电平 |  |  |  |
| TP15 | VREF2 | 使用开关 S3 启用 EN 时, 2V 内部基准信号将为高电平      |  |  |  |
| TP16 | -     | 未使用                                  |  |  |  |
| TP17 | -     | 未使用                                  |  |  |  |
| TP18 | GNDIN | VIN 的接地基准                            |  |  |  |
| TP19 | GNDS  | 一般接地                                 |  |  |  |
| TP20 | GND   | SW1 的接地基准                            |  |  |  |
| TP21 | GND   | SW2 的接地基准                            |  |  |  |
| TP22 | GND   | 一般接地                                 |  |  |  |
| TP23 | GND   | 一般接地                                 |  |  |  |
| TP24 | SYNC  | 未使用                                  |  |  |  |



## 6 测试步骤

#### 6.1 线路/负载调节和效率测量步骤

- 1. 确保开关 S1 (EN1)、S2 (EN2) 和 S3 (EN) 处于"OFF"位置。
- 确保按如下方式设置分流跳线,请参阅节 6.3、节 6.4 和节 6.5,了解关于如何更改这些设置的详细信息:
  a. JP1 (SKIPSEL1): 跳线 3 引脚到 4 引脚 (AS)
  - b. JP2 (FUNC): 跳线 1 引脚到 2 引脚 (CMODE ON)
  - c. JP3 (TRIP): 跳线 7 引脚到 8 引脚 (LV\_D-ON)
  - d. JP4 (SKIPSEL2): 跳线 3 引脚到 4 引脚 (AS)
- 3. 将直流电源电流限值设置为 10A。将 VIN 电压从 0V 增加到 8VDC。应使用 V3 验证 VIN。
- 4. 使用 V4 测量 VREG3 (TP9) 电压。它应当介于 3.2V 到 3.4V 之间。
- 5. 将 S3 (EN) 设在"ON"位置。使用 V5 测量 VREG5 (TP5) 电压,它应当介于 4.9V 到 5.1V 之间。使用 V6 测量 VREF2 (TP15) 电压,它应当介于 1.98V 到 2.02V 之间。
- 6. 确保将电子负载 1 设置为灌入 0A 电流。将 S1 (EN1) 设为 "ON" 位置, S3 保持在 "ON" 位置。
- 7. 记录 VOUT1 电压 (使用 V1)、IOUT1 电流、VIN (使用 V3) 和来自源极的输入电流。
- 8. 以 0.5A 的阶跃将电子负载 1 的电流从 0A 增加到 8A。对于每个阶跃,记录 VOUT1 电压(使用 V1)、 IOUT1 电流、VIN(使用 V3)和来自源极的输入电流。
- 9. 将输入电压设置为 20V。
- 10. 将电子负载 1 的电流从 8A 降低到 0A,以 0.5A 的阶跃将电子负载 1 的电流从 0A 增加到 8A。对于每个阶 跃,记录 VOUT1 电压 (使用 V1)、IOUT1 电流、VIN (使用 V3)和来自源极的输入电流。
- 11. 对 VOUT2 可使用类似的方法。使用 S2 启用 VOUT2。

#### 6.2 输出纹波测试

- 1. 按照节 6.1 中的步骤 1 至 6 开始输出。
- 2. 如下所示设置范围:
  - a. 水平扫描:2µs/div
  - b. 触发模式:自动,上升沿
  - c. 触发源: Ch1
  - d. CH1:50mV/div,交流耦合,带宽20MHz
- 3. 在测试步骤中,使用图 5-2 所示的尖端和接地筒测量方法探测 VOUT1 和 VOUT2。

#### 6.3 测量提高的轻负载效率

- 1. 所有跳线改动都应该在 EVM 不通电的情况下进行
- 2. SKIPSEL1 和 SKIPSEL2 使用户能够选择 EVM 如何在轻负载下运行。表 6-1 描述了每种可能的选择。

#### 表 6-1. SKIPSEL1 或 SKIPSEL2 ( 跳线 JP1 和 JP4 ) 选择

| 跳线位置             | 模式             | 说明                         |  |
|------------------|----------------|----------------------------|--|
| CCM(1 和 2 短接)    | ССМ            | EVM 保持为连续电流模式              |  |
| AS (3 和 4 短接) 默认 | 自动跳跃           | EVM 在轻负载下进入自动跳跃模式,可产生可闻噪声。 |  |
| OOA_L(5 和 6 短接)  | OOA (< 400kHz) | EVM 进入跳跃模式,听不到噪声           |  |
| OOA_H(7 和 8 短接)  | OOA (> 400kHz) | 不推荐                        |  |

3. 选择一种模式后,可重新进行效率和调节测量。重复节 6.1 的步骤 3 至 11。当输出小于 1A 时,工程师应减 小阶跃电流。节 7 展示了各种工作模式的典型数据

#### 6.4 控制架构和 OVP 选择

- 1. 所有跳线改动都应该在 EVM 不通电的情况下进行。
- 2. FUNC 跳线 (JP2) 允许用户选择 EVM 用来控制输出的控制架构。它还可启用或禁用 OVP 功能。表 6-2 描述 了每种可能的选择。

表 6-2. FUNC ( 跳线 JP2 ) 选择

| 跳线位 <u>置</u>         | MODE              |
|----------------------|-------------------|
| CMODE_ON(1 和 2 短接)默认 | 电流模式控制并启用 OVP     |
| DCAP_OFF(3 和 4 短接)   | D-Cap 模式控制并禁用 OVP |
| DCAP_ON(5 和 6 短接)    | D-Cap 模式控制并启用 OVP |
| CMODE_OFF(7 和 8 短接)  | 电流模式控制并禁用 OVP     |

3. 选择一种模式后,可重新进行效率和调节测量。重复节 6.1 的步骤 3 至 11。当输出小于 1A 时,工程师应减 小阶跃电流。节 7 展示了各种工作模式的典型数据

#### 6.5 过流跳闸电平和输出放电选择

- 1. 所有跳线改动都应该在 EVM 不通电的情况下进行。
- 2. TRIP 跳线 (JP3) 使用户能够选择由 EVM 使用的电压电平来实现电流限制。它还可启用或禁用输出放电功 能。表 6-3 描述了每种可能的选择。

| 跳线位置                  | 模式                                |  |  |
|-----------------------|-----------------------------------|--|--|
| UL_D-ON(1 和 2 短接)     | 过流采用超低的电压阈值 ( 典型值为 31mV ) 并启用输出放电 |  |  |
| UL_OFF(3 和 4 短接)      | 过流采用超低的电压阈值 ( 典型值为 31mV ) 并禁用输出放电 |  |  |
| LV_OFF(5 和 6 短接)      | 过流采用低电压阈值 ( 典型值为 60mV ) 并禁用输出放电   |  |  |
| LV_D-ON (7 和 8 短接) 默认 | 过流采用低电压阈值 ( 典型值为 60mV ) 并启用输出放电   |  |  |

表 6-3. TRIP (JP3) 选择

3. 选择一种模式后,可重新进行效率和调节测量。重复节 6.1 的步骤 3 至 11。当输出小于 1A 时,工程师应减 小阶跃电流。节 7 展示了各种工作模式的典型数据

ÈXAS

STRUMENTS

www.ti.com.cn



#### 7 性能数据和典型特性曲线

7.1 效率



7.2 负载调节





## 7.3 波特图



#### 7.4 瞬态响应





## 7.5 输出纹波和开关节点



#### 7.6 导通波形





## 7.7 关断波形



## 8 EVM 装配图和 PCB 布局

下图(图 8-1 至图 8-6)显示了 TPS51220A EVM-476 印刷电路板的设计。PCB 厚度为 0.062"。它有四层镀铜。中间两层各有 2oz 铜,外层各有 1oz 铜。



图 8-1. 顶层装配图(顶视图)











图 8-3. 顶层铜(顶视图)





图 8-4. 内层 1 (顶视图)



EVM 装配图和 PCB 布局



图 8-5. 内层 2 (顶视图)

EVM 装配图和 PCB 布局





图 8-6. 底层铜(顶视图)

## 9 物料清单

#### 表 9-1. 基于图 4-1 所示原理图的 EVM 元件列表

| 数量 | 引用标识符                                                | 说明                                               | 制造商         | 器件型号            |
|----|------------------------------------------------------|--------------------------------------------------|-------------|-----------------|
| 4  | C1、C2、C4、C5                                          | 电容器,陶瓷,10 μ F,25V,X7R,±10%,1210                  | MuRata(村田)  | GRM32DR71E106K  |
| 2  | C10、C11                                              | 电容器,POS-CAP,330 $\upmu$ F,6.3V,18m $\Omega$ ,20% | SANYO(三洋)   | 6TPE330MIL      |
| 2  | C14、C15                                              | 电容器,POS-CAP,470 $\upmu$ F,4.0V,15m $\Omega$ ,20% | SANYO(三洋)   | 4TPE470MFL      |
| 3  | C16、C17、C21                                          | 电容器,陶瓷,0.01 μ F,50V,X7R,±10%,0603                | Std         | Std             |
| 4  | C20、C23、C26、<br>C27                                  | 电容器,陶瓷,100pF,50V,C0G,±5%,0603                    | Std         | Std             |
| 1  | C22                                                  | 电容器,陶瓷,2.2 μ F,6.3V,X5R,±10%,0603                | Std         | Std             |
| 1  | C28                                                  | 电容器,陶瓷,47pF,50V,C0G,±5%。0603                     | Std         | Std             |
| 6  | C3、C6、C18、<br>C19、C24、C25                            | 电容器,陶瓷,0.1 μ F,50V,X7R,±10%,0603                 | Std         | Std             |
| 1  | C8                                                   | 电容器,陶瓷,0.22 μ F,25V,X7R,±10%,0603                | Std         | Std             |
| 1  | C9                                                   | 电容器,陶瓷,10 μ F,6.3V,X5R,±10%,0805                 | TDK         | C2012X5R0J106K  |
| 2  | D1、D2                                                | 二极管,肖特基,40V,30mA,SOD-323                         | Rohm ( 罗姆 ) | RB751x-40       |
| 2  | L1、L2                                                | 电感器,3.3µH,12A                                    | Vishay(威世)  | IHLP5050CEER3R3 |
| 2  | Q1、Q2                                                | MOSFET,N 沟道,30V,14A,9.7mΩ                        | ТІ          | CSD17307Q5A     |
| 2  | Q3、Q4                                                | MOSFET,N 沟道,30V,21A,4.5mΩ                        | ТІ          | CSD17310Q5A     |
| 11 | R1、R2、R9、R12、<br>R13、R14、R16、<br>R17、R23、R34、<br>R37 | 电阻器,贴片,0Ω,1/16W,±5%,0603                         | Std         | Std             |
| 1  | R20                                                  | 电阻器,贴片,300kΩ,1/16W,±1%,0603                      | Std         | Std             |
| 1  | R21                                                  | 电阻器,贴片,8.20k Ω,1/16W,±1%,0603                    | Std         | Std             |
| 1  | R22                                                  | 电阻器,贴片,7.50kΩ,1/16W,±1%,0603                     | Std         | Std             |
| 2  | R24、R25                                              | 电阻器,贴片,5.60kΩ,1/16W,±1%,0603                     | Std         | Std             |
| 2  | R26、R29                                              | 电阻器,贴片,51.1 Ω,1/16W,±1%,0603                     | Std         | Std             |
| 1  | R27                                                  | 电阻器,贴片,120kΩ,1/16W,±1%,0603                      | Std         | Std             |
| 1  | R28                                                  | 电阻器,贴片,62.0k Ω,1/16W,±1%,0603                    | Std         | Std             |
| 1  | R30                                                  | 电阻器,贴片,30.0k Ω,1/16W,±1%,0603                    | Std         | Std             |
| 1  | R31                                                  | 电阻器,贴片,27.0k Ω,1/16W,±1%,0603                    | Std         | Std             |
| 1  | R38                                                  | 电阻器,贴片,15.0kΩ,1/16W,±1%,0603                     | Std         | Std             |
| 1  | R39                                                  | 电阻器,贴片,12.0k Ω,1/16W,±1%,0603                    | Std         | Std             |
| 2  | R5, R6                                               | 电阻器,贴片,15.4 Ω,1/16W,±1%,0603                     | Std         | Std             |
| 2  | R7、R15                                               | 电阻器,贴片,470kΩ,1/16W,±1%,0603                      | Std         | Std             |
| 1  | U1                                                   | 固定频率 99% 占空比, 双路降压控制器                            | ТІ          | TPS51220ARTV    |

## 10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

| Changes from Revision A (May 2011) to Revision B (February 2022) |                          | Page |
|------------------------------------------------------------------|--------------------------|------|
| •                                                                | 更新了整个文档中的表格、图和交叉参考的编号格式。 | 3    |
| •                                                                | 更新了用户指南标题                | 3    |

#### 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司