EVM User's Guide: LMX1214EVM LMX1214 评估模块

TEXAS INSTRUMENTS

说明

LMX1214 评估模块 (EVM) 旨在评估 LMX1214 的性能,后者是一款四输出、超低附加抖动射频 (RF) 缓冲器和分频器。该器件可以缓冲高达 16GHz 的射频频率,并将输出分频至 6.4GHz。该板包含 LMX1214 器件和集成 USB2ANY 编程器。

特性

- 300MHz 至 16GHz 输出频率
- 4 个高频时钟
 - 由 2、3、4、5、6、7 和 8 共享分频
- 2.5V 工作电压

- 40°C 至 +85°C 工作温度
- 可选引脚模式控制,无需寄存器编程

应用

- 通用:
 - 数据转换器时钟
 - 时钟分配/倍频/分频
- 航空航天与国防:
 - 雷达
 - 电子战
 - 导引头前端
 - 相控阵天线/波束形成

1 评估模块概述

1.1 引言

LMX1214 EVM 是一款超低附加抖动射频缓冲器和分频器。该器件可以缓冲高达 16GHz 的射频频率,并将输出分频至 6.4GHz。可以对 FPGA 或其他逻辑 IC 使用单独的辅助时钟分频器。该器件由 2.5V 单电源供电,并通过 1.8V、2.5V 或 3.3V 总线控制器的数字 SPI 进行编程。

当使用板载 LDO 时, EVM 可以在 3.3V 电源电压下运行。可以绕过 LDO,在这种情况下,电源电压为 2.5V。该 EVM 包含 LMX1214、一个 LDO、一个微控制器和一个 IO 扩展器。

1.2 套件内容

每个评估套件包含:

- 一个具有集成 USB2ANY 控制器的 LMX1214EVM 板 (DC302)
- 1条 Micro USB 电缆

1.3 规格

参数	值	工作条件	
电源电压 (VCCIN SMA)	3.1V 至 3.5V	板载稳压器输出为 2.5V	
电源电流	700mA(最大值) 多种配置		
松)叶柏蓝萝	300MHz 至 16GHz	缓冲模式	
	300MHz 至 12.8GHz	分频器模式	

表 1-1. LMX1214 EVM 规格

1.4 器件信息

该器件具有高频功能和极低的抖动特性,可在不降低信噪比的情况下,很好地解决时钟精度、高频数据转换器的问题。LMX1214 包含四个高频时钟输出和一个附加 AUXCLK 输出,其分频器范围比所有时钟输出更大。务必使时钟的抖动小于数据转换器的孔径抖动。在需要对 4 个以上数据转换器进行时钟控制的应用中,可以使用多个器件开发各种级联架构,以分配所需的所有高频时钟。凭借其低抖动和低本底噪声,该器件可与超低噪声基准时钟源相结合,是时钟控制型数据转换器的典型设计,尤其是以高于 3GHz 的频率采样时。

2 硬件

2.1 评估设置要求

缓冲器模式的评估至少需要:

- 支持至少 3.3V、2A 的直流电源
- 高质量的信号源,例如 SMA100B
- 频谱分析仪或信号分析仪
- 带 USB 端口的 PC,运行 Windows 7 或较新版本的 Windows
- 德州仪器 (TI) 时钟和合成器 TICS Pro 软件

全面评估需要以下额外硬件:

- 高速 4 通道示波器
- 2 通道任意函数发生器或其他能够输出互补 LVDS 脉冲和直流电平(1.25V±0.2V,差分,到100Ω直流负载)的脉冲源
- 相位噪声分析系统,能够以高达 16GHz 的频率进行测量

2.2 连接图

板载 TCA9555 IO 扩展器允许用户更改引脚状态,而无需手动翻转开关的位置。这使用户也可以通过 GUI 切换引 脚模式。

表 2-1. SPI 测试点

测试点	网
TP1	SDO
TP5	SCK
TP6	SDI
TP9	SCL
TP8	SDA
TP4	CSB

表 2-2. IO 扩展器的 I2C 测试点

测试点	网
TP8	SDA
TP9	SCL

表 2-3. 电源电压测试点

测试点	网
TP2	VCCIN
TP3	GND
TP7	VCC01
TP10	VCC23
TP11	VCLK
TP12	VAUX
TP13	VPINM

表 2-4. VCC 电源跳线

接头	网	短接位置	配置
J28 使用 LDO 或 VCCIN 旁路 LD	使用 I DO 或 VCCIN 旁路 I DO	1-2	旁路 LDO 并直接使用 VCCIN
	使用 LDO 或 VCCIN 方町 LDO	2-3(EVM 默认设置)	使用板载 LDO
		1-2	旁路 LDO
525		2-3(EVM 默认设置)	使用板载 LDO

表 2-5. 开关

开关	网	开关位置	配置	结果
60		高	通过 10kΩ 上拉电阻拉高至 VPINM	CLK0 己启用 - 可通过 SPI 禁用
52	CLKU_EN	低	通过 10kΩ 下拉电阻短接至 GND	CLK0 已禁用且不能通过 SPI 启用
63	CLK1 EN	高	通过 10kΩ 上拉电阻拉高至 VPINM	CLK1 已启用 - 可通过 SPI 禁用
00	OERT_ER	低	通过 10k Ω 下拉电阻短接至 GND	CLK1 已禁用且不能通过 SPI 启用
		高	通过 10kΩ 上拉电阻拉高至 VPINM	CLK2 和 CLK3 已启用 - 可通过 SPI 禁用
S4	CLK23_EN	低	通过 10k Ω 下拉电阻短接至 GND	CLK2 和 CLK3 已禁用,无法通过 SPI 启 用
95		高	通过 10kΩ 上拉电阻拉高至 VPINM	设置为 1
	DIVGLED	低	通过 10kΩ 下拉电阻短接至 GND	设置为 0
56		高	通过 10kΩ 上拉电阻拉高至 VPINM	设置为 1
30	DIVGELI	低	通过 10k Ω 下拉电阻短接至 GND	设置为 0
87	MUYSEI	高	通过 10kΩ 上拉电阻拉高至 VPINM	将器件设置为分频器模式
37	WOAGEL	低	通过 10kΩ 下拉电阻短接至 GND	将器件设置为缓冲器模式

表 2-6. 引脚模式搭接				
模式	开关位置	DIVSELx 位置	分频器值	
缓冲模式	MUXSEL[1] = 低电平 MUXSEL[0] = 低电平	不适用	不适用	
分频器模式	MUXSEL[1] = 高电平 MUXSEL[0] = 低电平	DIVSEL[1] = 低电平 DIVSEL[0] = 低电平	SPI 控制	
		DIVSEL[1] = 低电平 DIVSEL[0] = 高电平	2 分频	
		DIVSEL[1] = 高电平 DIVSEL[0] = 低电平	3 分频	
		DIVSEL[1] = 高电平 DIVSEL[0] = 高电平	4 分频	

	备注	
在引脚模式下只能使用 2/3/4 分频器值。	分频值 5、6、7 和 8 仅在 SPI 模式下有效。	S

2.3 电源要求

对 VCCIN SMA 连接器施加 3.3V 电压。可接受的电源电压范围为 3.1V 至 3.5V。在运行过程中,该电路板可汲取 的电流最高为 700mA,因此电缆的电阻很重要。板载 LDO 可汲取大约 20mA 的接地电流,可将 3.3V 电源转换为 2.5V 电源。此外,启用或禁用各种系统功能可减少电流消耗。

2.4 如何实现完全 SPI 控制

表 2-7. 实现完全 SPI 控制的开关位置

T *			
ガ天	一 开天位直	能直	
S2 (CLK0_EN)	高	CLK0 已启用并可通过 SPI 禁用	
S3 (CLK1_EN)	高	CLK1 已启用并可通过 SPI 禁用	
S4 (CLK23_EN)	高	CLK2 和 CLK3 已启用并可通过 SPI 禁用	
S5 (DIVSEL0)	低	通过 SPI 控制分频器值	
S6 (DIVSEL1)	低	通过 SPI 控制分频器值	
S7 (MUXSEL)	低	通过 SPI 控制器件模式	

图 2-1. 完全 SPI 控制

2.5 参考时钟

将 CLKINP SMA 连接器连接到高质量信号源,例如 SMA100B 信号发生器。两个 CLKIN 输入均通过 50 Ω 内部端 接至 AC-GND(即,GND 连接由内部电容器形成),因此不需要或不建议使用外部端接。输入可以采用差分驱 动;例如,将 CLKINP 和 CLKINN SMA 连接器连接到平衡-非平衡变压器或差分时钟源。

默认 EVM 配置文件将器件配置为缓冲器模式。如果需要,可以根据所需运行模式的工作范围修改输入频率。本 EVM 设置指南和相关图假设 CLKIN 处的输入为 3200MHz。

SYNC 输入的 EVM 连接是直流耦合的,并提供内部 100 Ω 端接和多个偏置选项。

为了评估 SYNC 模式,拥有一个能够始终满足输入时钟单个周期的建立和保持要求的 SYNC 输入源至关重要。这 在较高频率下可能变得非常具有挑战性,其中建立和保持要求可能 < 50ps。另一种具有皮秒精度定时脉冲的器件 (例如 LMX2820 或 LMX2594)可用作 CLKIN 和 SYNC 的基准输入,以评估这些功能。

2.6 输出接头

所有 CLKOUT 连接都是交流耦合的,并且可以直接连接到具有 0VDC 要求的 RF 仪器;不需要额外的直流块。如 果使用 CLKOUT 单端,则必须将未使用的 CLKOUT SMA 连接器与 50 Ω 负载端接。如果具有适当频率范围的平 衡-非平衡变压器可用,则可以使用 CLKOUT 的差分连接。

推荐的示波器连接包括一个 CLKOUT 和 AUXOUT。

其他未使用的 CLKOUT SMA 连接器需要使用 50 Ω 单端或 100 Ω 差分负载端接,或者需要在软件中禁用,以尽量减少未端接输出对性能的影响。

2.7 开关信息

LMX1214 EVM 可在引脚模式或 SPI 模式下运行。引脚模式无需微控制器即可对 LMX1214 器件进行基本配置。 SPI 模式可实现对 LMX1214 器件的全面访问。运行模式通过板载开关 SW2 至 SW7 进行设置。接头用于选择电源。

2.8 默认配置

LMX1214 EVM 默认模式将器件配置为缓冲器模式。在此模式下,AUXCLK也将启用,分频值固定为128。

2.9 分频器模式示例

要通过 SPI 将 LMX1214 设置为分频器模式,请执行以下操作:

设置 CLK_MUX (R25[2:0]) = 分频器 (0x2)。

图 2-2. 设置模式

针对各自的 CLKIN 频率,将 CLK DIV (R25[5:3]) 设置为相应的分频器值。

图 2-3. 分频器值

现在可以查看 CLKIN 频率除以 CLKOUTx 上各自的分频器值。

提交文档反馈

2.10 混合模式: SPI 和引脚模式

用户必须首先将所有开关设置为低电平。

用户接下来必须配置 IO 扩展器。可通过按下 GUI 中浅绿色 PIN MODES 部分下的 Configure Driver 按钮来完成 此操作。

图 2-4. 如何配置 IO 扩展器

如果成功配置 IO 扩展器,则会返回确认消息。

MX1214 User Controls Raw Registers Main Page Calculations Burst Mode	CLKIN PHILE SCORE STREET	PWR: 6 [2] +7.4 dBm - 5200.0 Metr. CLKOUT0_EN
	Estimate Current 574 mA	► PWR: 6 +7.4 dBm 2200 0 MHz
	PIN MODES Configure Driver TEMPERATURE SENSOR CLK0_EN MUXSEL Read Image: Configure Driver CLK1_EN DONSELI TS_CNT	VI CLKOUT1_EN
	MUXOUT_EN_OVRD	Ø CLKOU12_EN
	Read SYSWIN Position 0 CLKPOS_CAPTURE_EN 0	PWR: 6 +7.4 dBm - 3200.0 MHz 0
eneral Context	SYNC Delay SYNC Delay Chick B ps v + Chick LapleR Doders	Ø CLKOUT3_EN
	SYNC_EN SYNC_LATCH @SYNC_CLR	PRE-DIV DIVIDER MT: UOS AUXCLKOUT PH: 4.00 3.00 PMR: 3.00 PWR: 0.00 VCM: 1.0 V AUXCLKOUT_EN Use Divider
		AUXULA_UIV_BTP3

图 2-5. IO 扩展器成功确认消息

用户现在可以通过 IO 扩展器更改引脚模式接头的状态,方法是直接将引脚拉至低电平或高电平,而无需物理移动 开关。

3 软件

3.1 软件安装

从 www.ti.com.cn/tool/cn/ticspro-sw 下载并安装 TICS Pro 软件。

3.2 软件说明

德州仪器 (TI) 时钟和合成器 (TICS) Pro 软件用于通过板载 USB2ANY 接口对此评估模块 (EVM) 进行编程。

3.3 USB2ANY 接口

板载 USB2ANY 接口提供了 TICS Pro 软件和 LMX1214 器件之间的桥梁。当板载 USB2ANY 控制器首次连接到 PC 时,或者如果控制器的固件版本与 TICS Pro 使用的版本不匹配,则需要对控制器进行固件更新。

- 1. 使用 USB 电缆将 PC 连接到 EVM。USB 接口提供启用板载 USB2ANY 控制器所需的电源。
- 2. Windows 设置 USB 器件后,在 PC 中运行 TICS Pro。
- 3. 此时会出现一个弹出窗口,如下所示。

	_	
USB2ANY Firmware Requirement	×	
The connected USB2ANY requires a firmware update to version 2.9.1.1.		
Serial Number: 8C4D5C510B002900 Current version is: 2.7.0.0		
The update takes only a few seconds and does not require an Internet connection.		
OK Cancel		

图 3-1. 固件更新

4. 点击 OK,将出现下一个窗口,如下所示。点击 Update Firmware。

USB2ANY Firmware Loader		×
The USB2ANY is ready for download. Click the Update Firmware button to start the update process.	Update Firmware	

图 3-2. 固件加载程序

5. 然后,将显示下一个窗口,如下所示。

图 3-3. 固件升级完成

6. 点击 Close 按钮关闭窗口。

7.	弹出 TICS Pro 默认器件。检查	以确保 GUI 底部的	Connection Mode 亮;	起绿灯。
	C F S	Connection Mode: USB2ANY Protocol: SPI Serial #: 8C4D5C510B002900		ITS
8.	转到菜单栏,点击 USB Commu	图 3-4 unications,然后选 Interface Write All R	Ⅰ. 连接模式 择 Interface。 聞 TICS Pro - LMX2572 File USB Communications egisters Ctrl+L	
9.	点击 <i>Identify</i> 按钮,USB2ANY	图 3-5 接口的 LED 灯开始	i. USB 通信 访/沃。	
	Commu Interface USB TiHe FTD	nication Setup Select USB2ANY 2ANY 8C4D5C510B002900 Irra USB Connected	v Identify Protocol	SPI v

图 3-6. 识别 USB2ANY 控制器

10. 现在, USB2ANY 就可以使用了。点击 Close 按钮关闭窗口。

4 实现结果

4.1 评估设置

4.1.1 缓冲器和分频器模式

从顶部菜单中,点击 Default Configuration。这会自动加载缓冲器模式系统配置。

如果没有在所有输出引脚上应用端接,则使用 CLKOUTx_EN/AUXCLKOUT_EN 字段手动禁用未使用的输出。关断未使用的通道可大大降低电流消耗,特别是对逻辑时钟而言,可减少杂散干扰。

加载系统配置后,如果需要进行任何更改,信号分析仪会显示 3200MHz 信号,单端信号约为 +6dBm,差分信号 约为 +9dBm。

要激活分频器模式,请更改 CLK_MUX 字段以指定分频器,并更改 CLK_DIV 字段以指定频率缩放因子。为了确 保器件干净地进入每个模式,必须在 GUI 中准备所需的配置。然后,在 *User Controls* 页面中,通过切换 RESET 字段来复位器件。最后,必须使用 USB Communications → Write All Registers 菜单选项或按加速键 CTRL + L 来重新加载寄存器。

5 硬件设计文件

5.1 原理图

图 5-1. 电源、IO 控制、开关

J3

图 5-2. LMX1214

5.2 PCB 布局

图 5-4. 顶层

图 5-5. 第 2 层 (RF GND)

图 5-7. 底层

5.2.1 PCB 层堆叠

顶层是 2oz 铜。

	Name	Material		Туре	Weight	Thickness	Dk
	Top Overlay			Overlay			
	Top Solder	Solder Resist		Solder Mask		0.4mil	3.5
	Top Layer		•		2oz	2.8mil	
		RO4350B					3.48
	RF GND		•		1oz	1.4mil	
	Dielectric 2	FR-4 High Tg		Core		37.2mil	4.2
	Signal Layer		:		1oz	1.4mil	
	Dielectric 3	FR-4 High Tg	:	Prepreg			4.2
4	Bottom Layer		:	Signal	2oz	2.8mil	
	Bottom Solder	Solder Resist		Solder Mask		0.4mil	3.5

图 5-8. PCB 层堆叠

5.3 物料清单

表 5-1. 物料清单

位号	数量	说明	封装参考	器件型号	制造商
C1、C2、C8、C10、 C12、C14、C17、 C18、C19、C20、 C25、C26、C27、 C29、C31、C33、 C56、C57、C62、 C65、C66、C67	22	电容,陶瓷,0.1µF,10V,+/- 10%,X5R,0201	0201	530Z104KT10T	American Technical Ceramics(美国技术陶瓷公 司)
C4、C6、C21、C23、 C30、C34、C51、 C52、C53、C58、 C61、C63、C64	13	电容,陶瓷,10 μ F,10V,+/- 10%,X5R,0603	0603	GRM188R61A106KAALD	Murata
C5、C16、C22、 C24、C28、C36、 C42、C46、C47、 C48、C54	11	电容,陶瓷,0.1uF,16V,+/- 10%,X7R,0603	0603	885012206046	Wurth Elektronik
C9、C11、C13、 C15、C32、C59、C60	7	电容,陶瓷,1 μ F,25V,+/- 10%,X5R,0402	0402	GRM155R61E105KA12D	MuRata
C35、C41、C43	3	电容,陶瓷,1µF,16V,+/-10%,X7R,0603	0603	885012206052	Wurth Elektronik
C37	1	电容,陶瓷,2.2uF,16V,+/- 20%,X5R,0603	0603	885012106018	Wurth Elektronik
C38	1	电容,陶瓷,3300pF,50V,+/-10%,X7R,0603	0603	885012206086	Wurth Elektronik
C39、C40	2	电容,陶瓷,30pF,50V,+/-5%,C0G/NP0, 0603	0603	06035A300JAT2A	AVX
C44	1	电容,陶瓷,2200pF,16V,+/-10%,X7R,0603	0603	885012206036	Wurth Elektronik
C45、C50	2	电容,陶瓷,220pF,50V,+/-5%,C0G/NP0, 0603	0603	C0603C221J5GACTU	Kemet
C49	1	电容,陶瓷,0.47µF,16V,+/-10%,X7R,0603	0603	GRM188R71C474KA88D	Murata
C55	1	电容,陶瓷,4.7µF,16V,+/-10%,X7R,0603	0603	GRM188Z71C475KE21D	MuRata
D2	1	LED,绿光,SMD	1.6x0.8x0.8mm	LTST-C190GKT	Lite-On
H1、H2、H3、H4	4	BUMPER CYLIN 0.312" DIA	0.312" DIA	SJ61A6	3M

位号	数量	说明	封装参考	器件型号	制造商
J1	1	插座,USB 2.0,Micro-USB Type B,R/A,SMT	USB-micro B USB 2.0, 0.65mm,5 Pos,R/A, SMT	10118194-0001LF	FCI
J2、J3、J6、J7、J8、 J9、J14、J15、J16、 J18、J20、J21、J24、 J25	14	连接器,末端发射 SMA,50 欧姆,TH	连接器,TH,末端发射 SMA	142-0761-881	Cinch Connectivity
J23	1	连接器,SMA,插孔,直式,边缘安装	CONN_JACK	CON-SMA-EDGE-S	RF Solutions Ltd.
J28、J29	2	接头,100mil,3x1,金,TH	3x1 接头	TSW-103-07-G-S	Samtec
L1、L2、L3、L4、L5	5	铁氧体磁珠,120 Ω @ 100MHz,2A,0603	0603	742792625	Wurth Elektronik
L6	1	电感,多层,空芯,18nH,0.3A,0.36 Ω,SMD	0402 极化	LQG15HS18NJ02D	MuRata
LBL1	1	热转印打印标签,0.650"(宽)x 0.200"(高)- 10,000/卷	PCB 标签, 0.650 x 0.200 英寸	THT-14-423-10	Brady
Q1	1	MOSFET,N 沟道,50V,0.22A,SOT-23	SOT-23	BSS138	Fairchild Semiconductor
R2、R6、R8、R12、 R13、R14、R46、 R47、R48、R49、 R51、R52	12	电阻,33,5%,0.063W,AEC-Q200 0 级,0402	0402	CRCW040233R0JNED	Vishay-Dale
R3、R9	2	电阻,0,5%,0.063W,AEC-Q200 0 级,0402	0402	CRCW04020000Z0ED	Vishay-Dale
R15	1	电阻,1.0M,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW06031M00JNEA	Vishay-Dale
R16、R23	2	电阻,1.5k,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW06031K50JNEA	Vishay-Dale
R17	1	电阻,330,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW0603330RJNEA	Vishay-Dale
R18	1	电阻,10k,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060310K0JNEA	Vishay-Dale
R19	1	电阻,33k,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060333K0JNEA	Vishay-Dale
R20、R27、R31、 R32、R35、R36、 R37、R38、R39、 R41、R42、R43、 R44、R45、R50	15	电阻,10k,5%,0.063W,AEC-Q200 0 级,0402	0402	CRCW040210K0JNED	Vishay-Dale
R21、R22	2	电阻,33,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060333R0JNEA	Vishay-Dale

硬件设计文件

表 5-1. 物料清单 (续)

位号	数量	说明	封装参考	器件型号	制造商
R24、R53、R54、 R55、R56	5 电阻,0,5%,0.1W,AEC-Q200 0 级,0603		0603	CRCW06030000Z0EA	Vishay-Dale
R25	1 电阻,1.2M,5%,0.1W,AEC-Q200 0 级,0603		0603	CRCW06031M20JNEA	Vishay-Dale
R26	1	电阻,133k Ω,1%,0.1W,AEC-Q200 0 级, 0603	0603	CRCW0603133KFKEA	Vishay-Dale
R28	1	电阻,12.4k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060312K4FKEA	Vishay-Dale
R40	1	电阻,16.5k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060316K5FKEA	Vishay-Dale
S1	1	开关,触控式,单刀单掷-常开,0.05A,12V,SMT	SW, SPST 6x6mm	FSM4JSMA	TE Connectivity
S2、S3、S4、S5、 S6、S7 6		开关,SPDT,滑动,开-开,2 位,TH	4x11.6mm	EG1218	E-Switch
SH-J28、SH-J29	2	分流器,100mil,镀金,黑色	分流器	SNT-100-BK-G	Samtec
TP1、TP4、TP5、 TP6、TP8、TP9	6	测试点,微型,白色,TH	白色微型测试点	5002	Keystone Electronics
TP2、TP7、TP10、 6 测试点 TP11、TP12、TP13		测试点,微型,红色,TH	红色微型测试点	5000	Keystone Electronics
ТР3	1	测试点,微型,黑色,TH	黑色微型测试点	5001	Keystone Electronics
U1	1	低噪声、高频缓冲器和分频器	VQFN40	LMX1214RHAR	德州仪器 (TI)
U2 1		25MHz 混合信号微控制器,具有 128KB 闪存、 8192 B SRAM 和 63 GPIO,-40 至 85°C,80 引脚 QFP (PN),绿色(符合 RoHS 标准,无锑/溴)	PN0080A	MSP430F5529IPN	德州仪器 (TI)
U3	1	适用于高速差分接口的 4 通道 ESD 解决方案, DRY0006A (USON-6)	DRY0006A	TPD4S009DRYR	德州仪器 (TI)
U4	1	用于射频/模拟电路的超低噪声、150mA 线性稳压器,无需旁路电容器,6引脚 LLP,无铅	NGF0006A	LP5900SDX-3.3/NOPB	德州仪器 (TI)
U5	1	线性稳压器 IC,可调节正电压,1 个输出,1A,10- WSON (3x3)	WSON10	TPS7A9401DSCR	德州仪器 (TI)
U6	6 1 具有中断输出和配置寄存器的远程 16 位 I2C 6 1 SMBus I/O 扩展器, 1.65 至 5.5V, -40℃ 至 24 引脚 QFN (RTW), 绿色 (RoHS, 无锑/考)		RTW0024B	TCA9555RTWR	德州仪器 (TI)
Y1	1	晶振,24.000MHz,20pF,SMD	晶体,11.4x4.3x3.8mm	ECS-240-20-5PX-TR	ECS Inc.

6 其他信息

6.1 疑难解答指南

6.1.1 一般指导

- 在确定 EVM 正常工作之前,请勿修改 EVM 或更改默认设置。
- 寄存器回读要求编程 MUXOUT_SEL = 1。GUI 还提示配置此寄存器,然后再尝试任何回读操作。
- LMX12 EVM 的 POR 电流在绕过 LDO 时约为 296mA,在启用 LDO 时为 456mA。

默认模式为缓冲器模式,启用所有输出。

- CLKIN 不可用。
- EVM 的关断电流在绕过 LDO 时约为 15mA,在启用 LDO 时约为 33mA。

6.1.2 如果在 CLKOUT 上看不到输出

鉴于 EVM 默认为缓冲器模式且启用了所有输出,当 CLKIN 通电并启用时,CLKOUT 必须在 POR 后振荡。无需 进行 EVM 编程,即可从 CLKOUT 获取输出。

备注

- 确认 EVM 连接到 3.3V,并且在应用 CLKIN 之前消耗约 480mA。
- 确认基准输入已连接至 CLKIN,并且基准源已通电并启用。
- 确认基准频率至少为 300MHz, 输入功率至少为 0dBm。
- 确认启用 CLKIN 会将 EVM 电流增加至大约 630mA。

6.1.3 如果器件功能未激活

- 确认将 USB 线缆连接至 EVM。
- 确认连接模式是 SPI,并且 USB2ANY 接口在底部栏的 TICSpro 中显示为绿色。
- 如果连接了多个 USB2ANY 板,请使用 *Identify* 按钮从 USB Communications → Interface 弹出窗口确认是否 连接了正确的 USB2ANY。
- 确保已加载所有寄存器 (Ctrl+L),并确保器件电流的变化与器件中启用的功能块数量成正比。
- 如果怀疑器件存在通信问题,请尝试在 User Controls 页面中切换 POWERDOWN 位,并观察 EVM 电流。请注意,POR 之后对 R0 的第一次写入将被忽略。如果设置 POWERDOWN 后 EVM 电流没有降至约 33mA,则可能是通信问题导致编程受阻,或 IC 已损坏。

6.1.4 如果分频器频率不准确

主时钟输出分频器的设计预期寄存器设置仅在 POR 之后加载一次。在某些情况下,如果 POR 后值发生更改,主时钟输出分频器并不总是在分频值之间清晰地转换。要更改分频器值,请在 User Controls 页面上切换 RESET 位并再次加载所有寄存器 (Ctrl+L)。

• 鉴于没有用于指示时钟输入频率是否有效的 GUI,因此在引脚模式下进行调试更具挑战性。请参阅数据表 (SNAS866)以确保使用正确的输入频率。

6.2 商标

所有商标均为其各自所有者的财产。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司