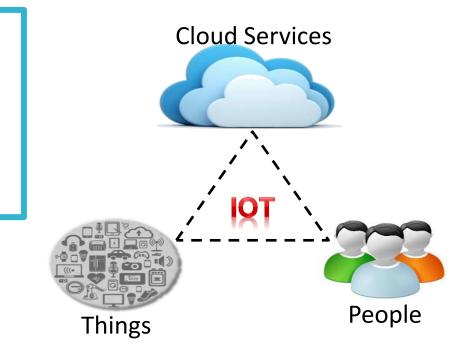
Which solution should you use to enable Long Range IoT?

Tony Cave Low Power Connectivity Texas Instruments

June 2016



What is the IoT ?

Things, People and Cloud services get connected using the Internet

TI Wireless Connectivity Portfolio

Largest wireless selection

Support for all key technologies and standards for industrial, automotive and consumer

A solution for any application. Future proof. Leverage your investment

Bluetooth Bluetooth

Sub-1GHz

RF

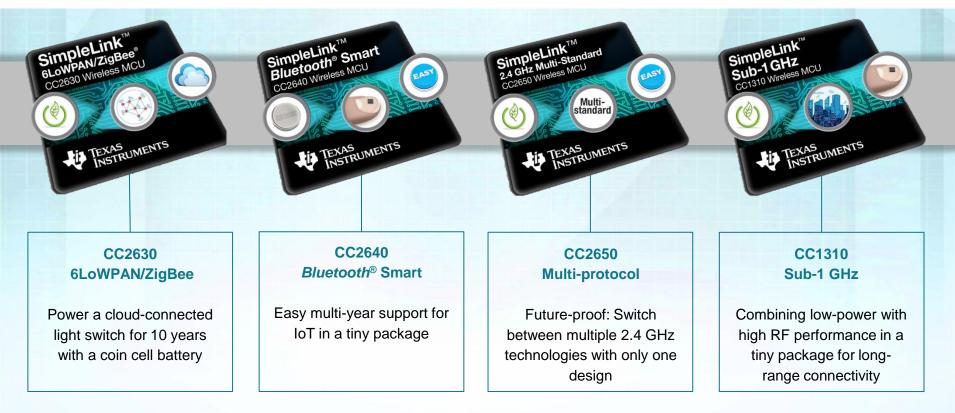
wifi

Lowest power consumption

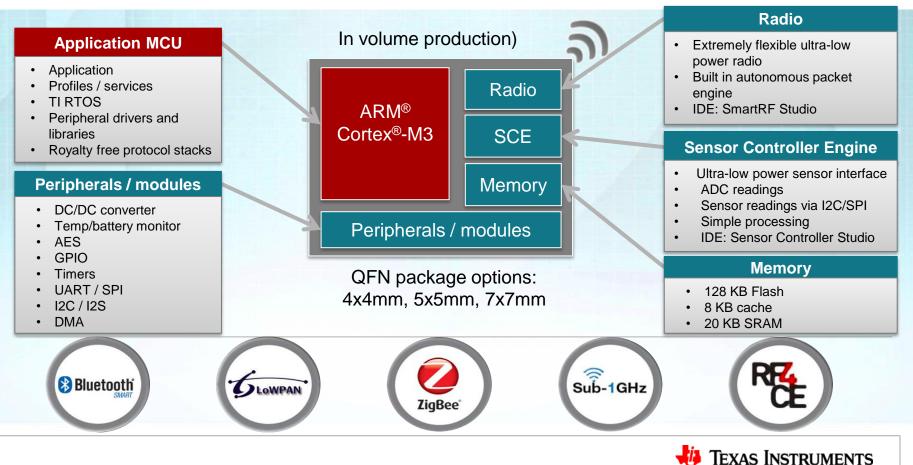
Use a coin cell or for multiyear, always-on operation or go battery-less with energy harvesting

Ultra-low power by design

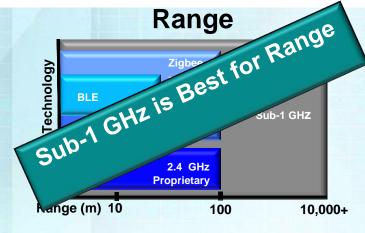
Easiest to design with

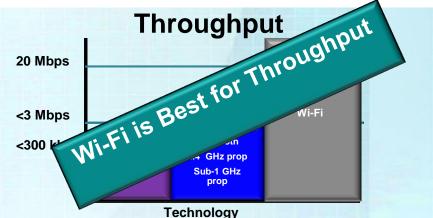

Quickest learning-curve and development time with full broad market ecosystem

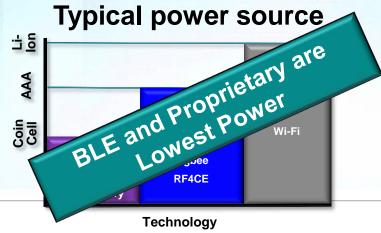
Software, tools, E2E, certified TI modules, TI Designs, SensorTag, online trainings, Cloud



SimpleLink[™] Ultra-Low Power Platform






Ultra Low Power Wireless MCU's

Choosing the Right Technology



CC1310 Why was this part developed?

Improving the three key challenges for a Sub-1 GHz Wireless MCU

Lowest Power

- 22.6 mA @ +14 dBm , 12.9 mA @ +10 dBm, Radio TX current
- 51 µA / MHz ARM Cortex M3
- 0.6 µA sleep current w/RTC + full memory retention

Up to 20 year battery life for sensor nodes and flow meters

Long Range

- High sensitivity
 - -110 dBm @ 50 kbps
 - -124 dBm @ 0.625 kbps
- Strong co-existence
 - Up to 90 dB blocking
- +14 dBm output power

Full building to city-wide RF coverage

Most Integrated

- Sensor Controller Engine (SCE)
- 4x4 QFN
- Integrated DCDC
- On-Chip Flash
- TI-RTOS + RF Driver

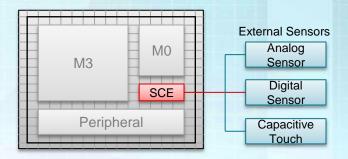
Complete 315 / 433 / 490 / 779 / 868 / 915 / 920 MHz wireless MCU in a finger-tip size

Sensor Controller Engine (SCE)

Ultra low power controller to offload the M3

Key features

- Handles sensor polling and performs simple processing
- Operates while the rest of the system is powered down


Examples of sensors that will greatly benefit from using the Sensor Controller:

- PIR (motion detector)
- Capacitive touch keys
- Proximity sensors
- Accelerometers
- ADC measurements
- Pulse counting
- Use Sensor Controller Studio for configuration

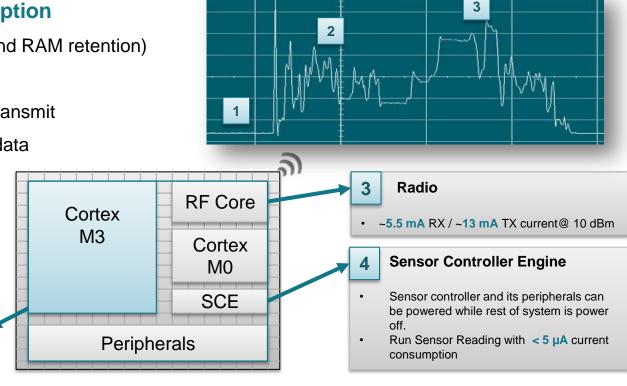
Data Sheet – Key Features

- 2 KB SRAM (code + data)
- 8.2 uA/MHz

Example: 1 Hz ADC sampling: 0.85 uA

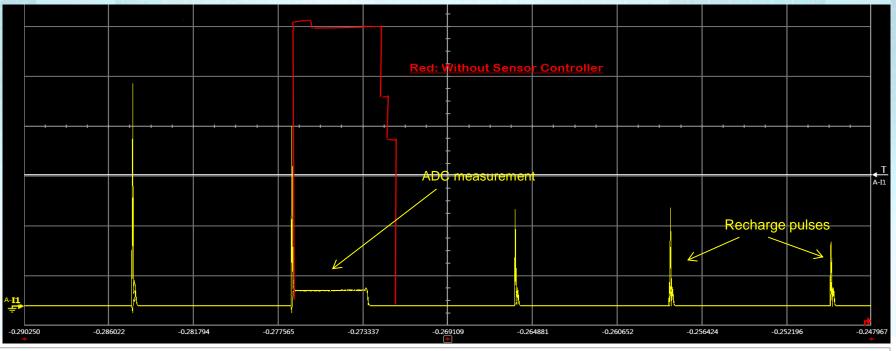
Power Consumption

Low average power consumption


- 1. When in Standby (with RTC and RAM retention)
- 2. When processing with MCU
- 3. When radio is in Receive or Transmit
- 4. When peripheral is polled for data

- O.6 µA Standby with RTC and full retention
- Less than 0.2 µA in Shutdown

2 ARM Cortex M3


- Fast processing using 2.5 mA @ 48MHz
- Less time used for stack and application processing and BLE connection events

ADC Reading: SCE vs CM3

- Current profile, ADC sampling 4 samples / second
 - Sensor Controller vs Waking up the full system

CC1310/50, Software & Tools Overview

CC13xx TIRTOS SimpleLink SDK

- Starting point examples showing how to use radio, pin, LCD, UART
- RF examples for peer-to-peer type of applications, great tools integr.
- Provided in the TI-RTOS SimpleLink bundle, <u>http://www.ti.com/tool/TI-RTOS</u>

• TI-MAC 2.0 SDK

- Sub-1 GHz (IEEE 802.15.4g, ETSI & FCC, including FHSS)
 - Star network applications

Contiki OS

- Open Source IP/6LoWPAN IEEE 802.15.4g mesh stack
- CC1310, CC2630, CC2650, and CC2538 supported, CC1350 (1Q16)
- Available at Github: <u>https://github.com/contiki-os/contiki</u>

Software Tools

- SmartRF Studio
- SmartRF Flash Programmer 2.0
- Sensor Controller Studio
- CCS and IAR Embedded Workbench

CC1310/50, Software & Tools Overview

CC13xx TIRTOS SimpleLink SDK

- Starting point examples showing how to use radio, pin, LCD, UART
- RF examples for peer-to-peer type of applications, great tools integr.
- Provided in the TI-RTOS SimpleLink bundle,
 - http://www.ti.com/tool/TI-RTOS

TI-MAC 2.0 SDK

- Sub-1 GHz (IEEE 802.15.4g, ETSI & FCC, including FHSS)
 - Star network applications

Contiki OS

- Open Source IP/6LoWPAN IEEE 802.15.4g mesh stack
- CC1310, CC2630, CC2650, and CC2538 supported, CC1350 (1Q16)
- Available at Github: <u>https://github.com/contiki-os/contiki</u>

Software Tools

- SmartRF Studio
- SmartRF Flash Programmer 2.0
- Sensor Controller Studio
- CCS and IAR Embedded Workbench

This Training Session will focus on the CC13xx SDK's developed by TI

What is CC13xx TIRTOS SimpleLink SDK? Proprietary RF Example Tool Box

Flexible

- Supports a large range of Phy and modulation settings
 - 00K
 - GFSK
 - High Speed Mode
 - Long Range Mode
 - Narrow Band
- Generate custom Phy settings from SmartRF Studio dirrectly into the examples

Extreme flexibility

 Get going quickly with feature rich Out of Box Example
Applications

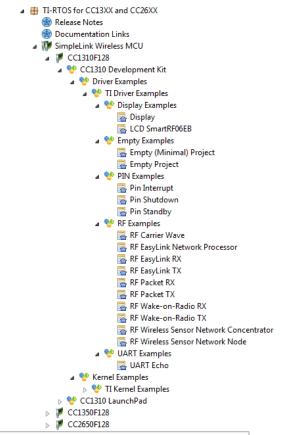
Fully integrated in to TIRTOS

Easy

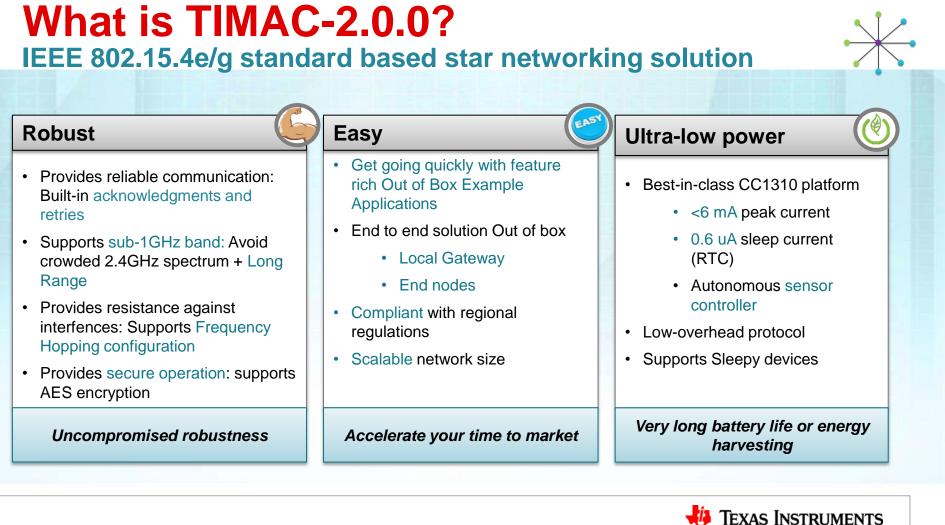
- Tool Box of examples for building a propreitory RF protocol
- AT Network Processor Example for ultra easy integration with Host MCU/MPU

Accelerate your time to market

Ultra-low power


- Best-in-class CC1310 platform
 - <6 mA peak current
 - 0.6 uA sleep current (RTC)
 - Autonomous sensor controller
- Integrate Power Manager Driver

Very long battery life or energy harvesting



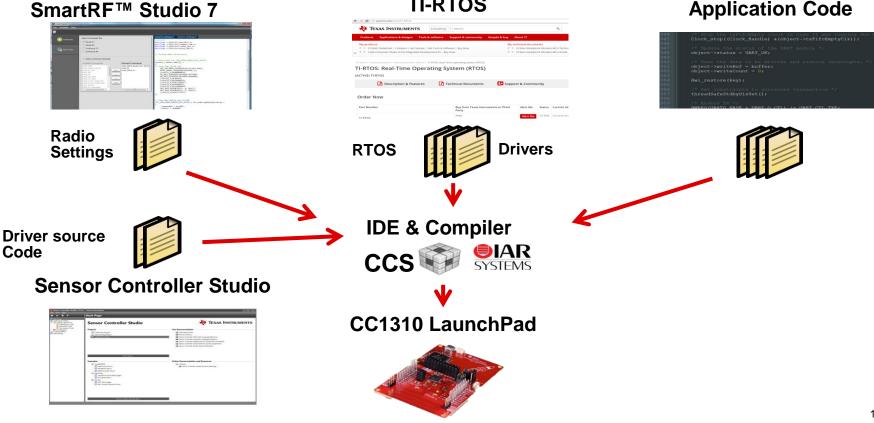
TI-RTOS Getting Started Examples

- Bundled in TI-RTOS Simplelink
 - IAR & CCS support
 - CCS Cloud (dev.ti.com)
- Platforms supported: SRF06EB/CC1310EM, CC1310 LaunchPad
- RF examples in TI-RTOS SimpleLink bundle:
 - Packet RX
 - Packet TX
 - Carrier Wave (mod, unmod)
 - Wake On Radio
 - ETSI compliant Listen Before Talk
 - PER test supporting IEEE802.15.g FSK, LRM, OOK, HS
 - EasyLink RX
 - EasyLink TX
 - EasyLink Network Processor
 - Wireless Sensor Network, based on EasyLink,
 - Node + Concentrator

Choosing the right SDK

- The Following customers should find the TI RTOS SimpleLink SDK a better match to there needs:
 - Customers that already have a good knowledge or RF and their own proprietary protocols
 - Customers wanting low level access to the RF commands
 - Customer that want to support Phy configurations such as GFSK, On Off keying, long range and High Speed mode
 - Customers that need to control over Phy settings such as BW and Bit Rate.
- The following customers should find TI MAC 2 SDK a better match to there needs :
 - Customers with little knowledge of RF, who need a networking solution
 - Customers who needs to deploy networks scalable in size
 - Customers wanting to support the 802.15.4g standard.
 - Customers that want to bridge IP to RF using a Linux based Gateway.

Backup Slides

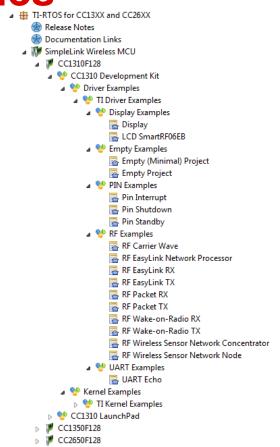


CC13xx TIRTOS Simple Link SDK

TI-RTOS – **Proprietary tools example**

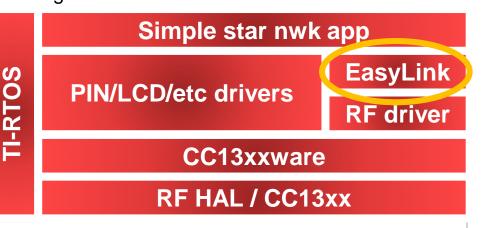
SmartRF[™] Studio 7

TI-RTOS



TI-RTOS Getting Started Examples

- Bundled in TI-RTOS Simplelink
 - IAR & CCS support
- Platforms supported: SRF06EB/CC1310EM, CC1310 LaunchPad
- RF examples in TI-RTOS CC13XX and CC26XX bundle:
 - Packet RX
 - Packet TX
 - Carrier Wave (mod, unmod)
 - EasyLink RX
 - EasyLink TX
 - EasyLink Network Processor
 - Wireless Sensor Network, based on EasyLink,
 - Node + Concentrator
 - Wake On Radio
- New in TI-RTOS 2.20.x


- ETSI compliant LBT
- PER test supporting IEEE802.15.g FSK, LRM, OOK, HS
- CC1350 examples (BLE beacons)

EasyLink Abstraction Layer

- Simple to use abstraction layer, abstract RF complexity EasyLink_init()
 EasyLink_transmit(), EasyLink_receive()
- Distributed in TI-RTOS Simplelink bundle
- Support for different PHY settings
 - IEEE802.15.4g (GFSK 50kbps), Long Range Mode (LRM) 625bps
 - Custom settings exported from SmartRF Studio
- Muli purpose: 1) abs layer example/start 2) building block
- Platforms:
 - srf06/cc13xx,
 - cc1310/50 launchpad,
 - cc1350 sensortag
- CCS cloud & TI-RTOS based

EasyLink API and Packet format

• EasyLink API:

#	Supported Functions # Generic API function	Description	
İ	EasyLink_init()	Init's and opens the RF driver and configures the specified modulation	
Í.	EasyLink_transmit()	Blocking Transmit	
	EasyLink_transmitAsync()	Nonblocking Transmit	
	EasyLink_receive()	Blocking Receive	
	EasyLink_receiveAsync()	Nonblocking Receive	
	EasyLink_abort()	Aborts a non blocking call	
	<pre>EasyLink_EnableRxAddrFilter()</pre>	Enables/Disables RX filtering on the Addr	
	EasyLink_GetIeeeAddr()	Gets the IEEE Address	
	EasyLink_SetFreq()	Sets the frequency	
	EasyLink_GetFreq()	Gets the frequency	
	EasyLink_SetRfPwr()	Sets the Tx Power	
	EasyLink_GetRfPwr()	Gets the Tx Power	

- Frame format
 - The EasyLink implements a basic header for transmitting and receiving data. This header supports addressing for a star or point-to-point network.

EasyLink Network Processor

- An EasyLink AT Command Network Processor example
- The EasyLink API has been exposed over an AT Command UART Interface such that it can be exercised by Host SW (running on an PC, MPU or MCU) or by a human using a serial terminal emulator.
- The AT Command Interface uses ASCII characters so that a terminal emulator can send the commands, but also uses framing so that SW can format and parse the AT commands.
- AT Frame format

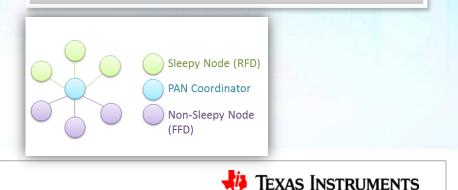
	Start of Frame	Command Type	Command ID	parameters	End Of Frame	
	 "AT"	 'P'/'+'	 "i"	"0001"		
i						Ĺ

• An example, to initialize the radio for IEEE802.15.4g 50kbps, the command is:

`AT+I 0000<CR>`

- The EasyLink AT Command Interface uses 2 command types:
 - Pxx: Parameters
 - +x: Control Commands

TIMAC-2.0.0

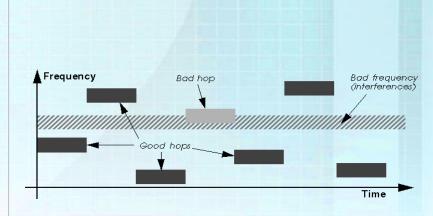

TIMAC-2.0.0 Example Applications

Collector Application

- Creates a TIMAC Low Power Network by starting the device as a PAN-Coordinator.
- Allows new devices to join the network.
- Configures the joining devices for how often to report the sensor data. For sleepy devices it also configures the sleepy node on how often to poll for data.
- Tracks if the devices are active/inactive in the network. It achieves this by sending the tracking request message in a round robin fashion to the connected devices. A device which responds to the command is marked as active while that does not is marked as inactive.

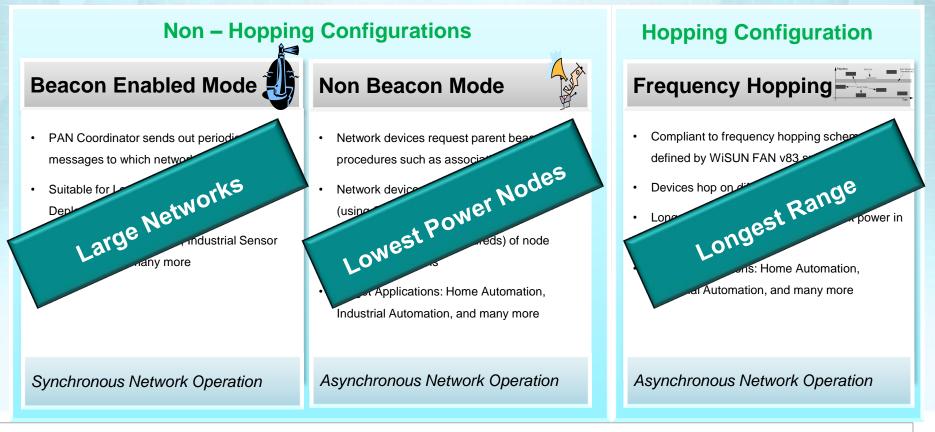
Sensor Application

- Joins a TIMAC Network
- Reports sensor data at configured interval
- If sleepy, polls for any buffered data from the PAN-Coordinator at configured interval
- Responds to the tracking request messages
- Can be battery powered



TIMAC-2.0.0

Uncompromised robustness


Designed for range & resilience

	Feature	Benefits		
802.15.4g sub-1GHz PHY		Longer range Better penetration Less crowded spectrum IEEE-defined Field-proven		
	Frequency Hopping Configuration	Protection against interferences Longer range in FCC Band		
CSMA/CA		Effective medium management		
	Acks & Retries	Automatic MAC error recovery		
	Strong link budget	Long range		
	MAC beacon mode configuration	Reduces collisions Enables very large networks		

TIMAC-2.0.0 Network Configurations

Q & A

