mmWave Sensor Raw Data Capture Using the TSW1400 Board

Steps

Requirements

- Hardware
 - <u>xWR1443 EVM</u>, 5 V / >2.5 A <u>power supply</u>, micro USB cable
 - <u>TSW1400 EVM</u>, 5 V / 4 A <u>power supply</u>, mini USB cable
 - mmWave DevPack, micro USB cable
- Software
 - <u>mmWave DFP</u> (Device Firmware Package)
 - For an EVM with ES1.0 silicon (prior to 16-May-2017): use DFP 00.06.00.05
 - For an EVM with ES2.0 silicon (post 16-May-2017): use DFP 00.07.00.04 or above
 - High Speed Data Converter Pro (HSDC Pro) 4.50 or above
 - <u>UniFlash</u> 4.1 or above
 - Matlab Runtime Engine v8.5.1
 - If you do not have Code Composer Studio v7.1 or higher installed:
 - XDS Emulation Software Package v6.0.579.0 or higher
- The above links are in clear at the end of this presentation.

Software installation (1)

- If you do not have Code Composer Studio v7.1 or higher installed:
 - Install the XDS Emulation Software Package.
- Connect the DevPack and the EVM to your PC through USB cables. Connect a
 power supply to the EVM and power it up.
- In the Windows Device Manager, the COM ports should appear as this when their drivers are installed:
- The FTDI device ports of the DevPack board will appear with a yellow label -- basel when the driver is not installed.
 - In this case, right-click on this symbol, select "Update Driver Software", "Browse my computer for driver software", select the below directory, and tick "Include subfolders".
 C:\ti\mmwave_dfp_00_07_00_04\rf_eval\ftdi
 - This needs to be done for each of the 4 ports.

Software installation (2)

 1.
 2
 3
 4

 Requirements & Software setup
 2
 3
 4

- Install the Matlab v8.5.1 runtime.
 - If you already have a more recent of the full Matlab installed, the path to the above runtime should come first in the PATH system variable.
 - In Windows, go into Control Panel > System > Advanced system settings > Environment variables > System variables, then edit PATH so this pathname comes first: c:\Program Files (x86)\MATLAB\MATLAB Runtime\v851\runtime\win32
- Install the UniFlash software.
- Install the HSDC Pro software.
- Patch the HSDC Pro software as described in the file: C:\ti\mmwave_dfp_00_07_00_04\rf_eval\radarstudio\HSDCProFiles\ReadMe.txt
- The RadarStudio runtime is located here:

C:\ti\mmwave_dfp_00_07_00_04\rf_eval\radarstudio\RunTime\Radar Studio.exe For convenience, install a shortcut of this file on your Windows Desktop.

Erasing the EVM flash

- The xWR1443 EVM flash memory should be blank in this setup.
- Using the standalone EVM, put the SOP2 jumper in place.
- Connect the xWR1443 EVM to the PC and power it.
- The EVM appears as 2 COM ports. Note the Application/User port number.
- Run UniFlash, then do the following in it:
 - Select the relevant device, e.g., IWR1443.
 - Select the Serial Connection, then click the Start button.
 - In Settings & Utilities, enter the Application/User port number and click on Format SFLASH.
- Close UniFlash, power off the EVM and remove the SOP2 jumper.

Hardware setup

Hardware setup (1)

• Connect the board stack. This is what it should look like:

Hardware setup (2)

- Connect the 3 USB cables to the same PC.
- Connect the 2 power supplies to the xWR1443 EVM and the TSW1400 EVM.

2.

Hardware setup

Capturing the radar data (1)

- Run HSDC Pro.
- Select the TSW1400 board.
- In the firmware drop down menu, select AWR12xx_lvds_4Channel_ddr_4bit_par_centre_16_bit
- Wait for the firmware to be downloaded.
- For the future, note the difference between a busy and a ready HSDC Pro window:

2

3.

Capturing the radar data

Capturing the radar data (2)

- Run Radar Studio.
- The Connection window should show up with FTDI Connectivity highlighted in green. If in red, install the FTDI drivers (see section 2).
- Select SOP Mode 2. Click Set.
- Select the Application/User port number, Baud rate 115200.
- Click Set. If the RS232 Connectivity stays red, make sure you erased the xWR1443 EVM flash memory. If Device Status stays blank, you may have a mismatch between the DFP version and the silicon revision.

View Too	ls ToolBars <u>W</u> indov	v <u>H</u> elp								
RadarAPI	Connection StaticCor	nfig DataConfig	TestSource	SensorConfig	RegOp	ContStream	m BPMConfig	AdvFram	eConfig	RampTimingCalcu
dConfig	Board Control			BS333 (Operation	20	No.ot	f Devices D)etecter 1	
dooring	SOP Control	A (D	Flash	COM P	ort COM	4 -	FTDI	Connectivi	ty Stat C	onnected
/eConfig	SOP Modemode	2 (Developr •		Boud Pr	ato [1152]	00 -	SPI	Connectivit	ty Stati D	isconnected
		Set		Daug Ra	ale mozi	00 •	DC	Device	Status:	
SetUp					C	onnect	MS	S firmware	version:	
	-							GUI V	ersion: 1.	6.2.0
							F	Radar Link	Versior 00	0.06.01.08 (09/02/1
							DS	Post Proc P firmware	Version	4.41.00.00
							0	n Board Te	mperatur	e Sensor
							To	p near RX1	0.0	
							Bo	ttom near T	X2 0.0	
							Bo	ttom near F	2X1 0.0	
	Files						То	p near TX3	0.0	Get
	Files								ori Opera	luons
	BSS FW:					14	- Load	1 🔳 🖉		
	MSS FW:					14	Load		SPI Cor	nnect
	Config File						- Load		RF Pow	ver-up

2

Capturing the radar data

Capturing the radar data (3)

- Still in the Radar Studio Connection tab, load the BSS, then MSS firmware.
 - For ES2.0 silicon, use these files: BSS: c:\ti\mmwave_dfp_00_07_00_04\rf_eval\rf_eval_firmware\radarss\xwr12xx_xwr14xx_radarss.bin MSS: c:\ti\mmwave_dfp_00_07_00_04\rf_eval\rf_eval_firmware\masterss\xwr12xx_masterss.bin
 - For ES1.0 silicon, use these files: BSS: c:\ti\mmwave_dfp_00.06.00.05\firmware\bss\ar12xx_bss.bin MSS: c:\ti\mmwave_dfp_00.06.00.05\firmware\mss\binary\ar1xxx_mss.bin
- Click the SPI Connect button.
 If SPI Connectivity stays red, see Common issues in section 4.
- The Connection tab should now look like this:

Capturing the radar data (4)

- In the Radar Studio Static Config tab, do the below:
 - Select the desired TX and RX channels. A maximum of 2 TX channels may be enabled at once.
 - In ADC Config, select 16 bits / Complex2x, I First.
 - Click the Set button.
 - Click the Advanced Configuration Set button.
 - Click the RF Init Done button.
- In the DataConfig tab, select the values as shown on the right and click each Set button.
- Note the number of LVDS channels should be:
 - 1 if 1 RX antenna was selected above.
 - 4 if more than 1 RX antenna were selected.

onnection	StaticConfig	DataConfig	TestSource	SensorConfig	RegOp	ContStream	BPMConfig	AdvFrameConfig	RampTiming
ata Config	guration								
Data Pa	ath Configural	tion							
Data Pa	ath	LVDS	• V	irtual Channel N	lo				
Packet 0		ADC_ONLY	•	0					
Packet	1	Suppress Pa	cket 🔻	0					
				Set					
Clock	Configuration								
Lane C	lock D	DR Clock	•						
Data R	late 60	00 Mbps	•						
		Set							
LVDSL	ane Configur	ation		CSI2 Lane Con	figuration				
I ano Er	ormat E	armat 0	-	Lane0 Positi	on Lar	ne0 Polarity	Lane1 Po	sition Lane1	Polarity
Lanery		Lane1	Lane2	1		+/- Pin Order	2	* +/-	Pin Order
Lane C	onfig	Lane3	Lane4	Lane2 Positi	on Lar	e2 Polarity	Lane3 Po	sition Lane3	Polarity
MS	B First		C	4		+/- Pin Order	5	*/-	Pin Order
Pac	ket End Puls	e		Clock Positio	n Clo	ck Polarity			
				3		+/- Pin Order			
									Set

Texas Instruments

Capturing the radar data (5)

• In the SensorConfig tab, configure the Profile, Chirp and Frame and click the corresponding Set buttons. Select the Dump file pathname.

Sel TSW

- Then click in sequence the following buttons: SetUp TSW1400, TSW1400 ARM, Trigger Frame.
 Before to click on these buttons,
 - make sure the HSDC Pro window is in ready state.
- Then retrieve the dump file for further processing or click the PostProc button for viewing.
 - The Radar Studio documentation describes the post-processing capabilities.
- It is possible to repeat the 6-7-8 steps multiple times.

	n										
Profile									Chirp Cyc	ole Time	
Profile Id		0		HPF1 Corner Freq	175K	•	Tun OfTX	Ramp Start SI	AI ADC Sampling	DC Sampling Tim	-
Start Freq (GHz)		77.000000		HPF2 Corner Freq	350K	•	1.	ADIC Valid S	tart Time	-	EnsADC Sensing
Frequency Slope	(MHz/µs)	29.982		O/p Pwr Backoff TX1	(dB) 0	4	Idle Tim	•	-)Freq 5	Slope
Idle Time (µs)		100.00	-	O/p Pwr Backoff TX2	(dB) 0	A V	10-	0	Ran	np End Time	
TX Start Time (µs))	0.00		O/p Pwr Backoff TX3	(dB) 0	4	T)	Start Time	Transm	itter is ON	
ADC Start Time (J	IS)	6.00		Phase Shifter TX1 (de	eg) 0.0		BLUE -	Not a register. Shi	own for information	only	otes PALO
ADC Samples		256		Phase Shifter TX2 (de	eg) 0.0	(A)	ORANG	E = Configurable p	er chirp to one of 4	values, one per C	hirp Profile
Sample Rate (ksp	s)	10000		Phase Shifter TX3 (de	eg) 0.0		Capture a	and Post Pro	cessing		
Ramp End Time (us)	60.00	•	Bandwidth(MH	lz) 17	8.92	C ARM	400	Trigger Frame	PostProc	Real
PX Gain (dB)		20					0		6	50	
NX Oain (db)		30	V	Set	Manage	Profile	Dump Fi	le: d:\adc_d	ata bin	1	▼ Br
3			1						4		
				_		Frame	9				
Chirp						-	Chim TX	0	No of (Chirp Loops	8
Chirp Profile Id	0		Frequence	cy Slope Var (MHz/µs)	0.000	Start	oninp 17		the second se		
Chirp Profile Id	0	A V	Frequent	cy Slope Var (MHz/µs)	0.000	Start	thirp TX	0	Period	icity (ms)	2 000000
Chirp Profile Id Start Chirp for Cfg	0	4	Frequend	cy Slope Var (MHz/µs) e Var (µs)	0.000	End C	Chirp TX	0	Period	icity (ms)	2.000000
Chirp Profile Id Start Chirp for Cfg End Chirp for Cfg	0 0 0		Frequend Idle Time ADC Sta	cy Slope Var (MHz/µs) : Var (µs) irt Var (µs)	0.000	Start End C No of	Chirp TX Frames	0	Period	icity (ms) r Delay (µs)	2.000000 0.00
Chirp Profile Id Start Chirp for Cfg End Chirp for Cfg Start Freq Var (Mi	0 0 0 Hz) 0.00		Frequent Idle Time ADC Sta TX Enabl	cy Slope Var (MHz/μs) : Var (μs) irt Var (μs) le for current chirp	0.000	Start End C No of	Chirp TX Frames	0 32	Period Trigger	icity (ms) r Delay (µs) Cycle	2.000000 0.00 64 %
Chirp Profile Id Start Chirp for Cfg End Chirp for Cfg Start Freq Var (Mi	0 0 0 Hz) 0.00	4 V 4 V 4 V 4 V	Frequence Idle Time ADC Sta TX Enable	cy Slope Var (MHz/μs) e Var (μs) int Var (μs) le for current chirp ΓX1 □ TX2 □ 1	0.000	Start	Chirp TX Frames	0 32	Period Trigger Duty (icity (ms) r Delay (µs) Cycle	2.000000 0.00 64 %
Chirp Profile Id Start Chirp for Cfg End Chirp for Cfg Start Freq Var (Mi	0 0 0 Hz) 0.00	4 4 4 4 4 0000 4 4	Frequent Idle Time ADC Sta TX Enabl	cy Slope Var (MHz/µs) : Var (µs) irt Var (µs) le for current chirp IX1	0.000 0.00 0.00	End C	Chirp TX Frames	0 32	Period Period Trigger Duty (icity (ms) r Delay (µs) Cycle	2.000000 0.00 64 %
Chirp Profile Id Start Chirp for Clg End Chirp for Clg Start Freq Var (Mi	0 0 0 Hz) 0.00	4 4 4 4 4 4 4 4 7 00000 4 7	Frequence Idle Time ADC Sta TX Enable	cy Slope Var (MHz/µs) : Var (µs) Irt Var (µs) le for current chirp IX1 ITX2	0.000	Start End C	Chirp TX Frames	0 32	Period Trigger Duty (icity (ms) r Delay (μs) Cycle	2.000000 0.00 64 %

Texas Instruments

Additional information

- xWR12xx/14xx file format
- Common issues
- Useful links
- Radar Studio documentation (post-processing options...):
 - ES1.0 silicon: C:\ti\mmwave_dfp_00.06.00.05\docs\RadarStudio User's Guide.pdf
 - ES2.0 silicon: C:\ti\mmwave_dfp_00_07_00_04\rf_eval\docs\RadarStudio_User's_Guide.pdf
- This file
 - https://training.ti.com/mmwave-sensor-raw-data-capture-using-tsw1400-board

xWR12xx/14xx file format (1)

- Configuration:
 - n LVDS Lanes, complex data, n channels, chirping/continuous streaming mode
- Notation:
 - RxkIn: The nth in-phase sample corresponding to kth RX channel.
 - RxkQn: The nth quadrature-phase sample corresponding to kth RX channel.
 - N: The number of samples per chirp.
- Sample format:
 - 2 bytes long, 2's complement with an 2¹⁵ offset
 - 2's complement value = HSDC Pro value 2¹⁵

xWR1

2xx/14xx file format (2) 1 2 3 Additional										
Rx010	Rx0Q0	Rx1I0	Rx1Q0	Rx2I0	Rx2Q0	Rx3I0	Rx3Q0			
Rx0I1	Rx0Q1	Rx1I1	Rx1Q1	Rx2I1	Rx2Q1	Rx3I1	Rx3Q1			
Rx0IN-1	Rx0QN-1	Rx1IN-1	Rx1QN-1	Rx2IN-1	Rx2QN-1	Rx3IN-1	Rx3QN-1			
Rx010	Rx0Q0	Rx1I0	Rx1Q0	Rx2I0	Rx2Q0	Rx3I0	Rx3Q0			
Rx0I1	Rx0Q1	Rx1I1	Rx1Q1	Rx2I1	Rx2Q1	Rx3l1	Rx3Q1			
Rx0IN-1	Rx0QN-1	Rx1IN-1	Rx1QN-1	Rx2IN-1	Rx2QN-1	Rx3IN-1	Rx3QN-1			

Data is arranged in row-major-order. ٠

Chirp 1

Chirp 2

- The data format remains unchanged in the 'continuous streaming' mode where one can think of the data collected as belonging to a ٠ single large chirp. There is no sync packet at the start of an LVDS packet, as there is one lane for each channel, so one always knows which lane has which channel.
- If the number of enabled channels is less than 4, then the columns corresponding to the disabled channels will have zeroes in it. ٠ For example, if only channels 1 and 3 are enabled, then the data format will look as follows.

Chirp 1	0	0	Rx1I0	Rx1Q0	0	0	Rx3I0	Rx3Q0
	0	0	Rx1I1	Rx1Q1	0	0	Rx3l1	Rx3Q1
	0	0	Rx1IN-1	Rx1QN-1	0	0	Rx3IN-1	Rx3QN-1

Common issues

- Insufficient power supplies
 - Most user LEDs of the TSW1400 board should be on after the FPGA programming. If they are not, please use another power supply.
 - The ERROR LED of the xWR1443 EVM may be on after power up. If pressing the NTRST button does not switch it off, please use another power supply.
- Need to use a cable between the TSW1400 EVM and the DevPack
 - Refer to this e2e post: https://e2e.ti.com/support/sensor/mmwave_sensors/f/1023/t/595100
- Matlab initialization issue
 - Possible conflict with an existing Matlab installtion. Refer to section 2.
- SPI is not connected after having clicked on the SPI Connect button.
 - Make sure the DevPack board has a JP5 jumper fitted as shown.
- Sometimes the data file is empty after having clicked the Trigger Frame button.
 - Clicking on the TSW1400 ARM button should resolve the issue.
- The PostProc window shows no data.
 - Enable 1 LVDS lane only for 1 RX antenna, or 4 lanes for 4 RX.
- For other issues, please use the mmWave e2e forum: <u>http://e2e.ti.com/support/sensor/mmwave_sensors</u>

Additional information

Useful links

Additional information

- Online support ٠
- xWR1443 FVM
- mmWave DevPack ٠
- **TSW1400 EVM** ٠
- mmWave DFP ٠
- HSDC Pro
- UniFlash ٠
- XDS Emulation Software ٠
- Matlab runtime ٠
- Example power supply ٠

- https://e2e.ti.com/support/sensor/mmwave_sensors
- https://www.ti.com/tool/iwr1443boost
- https://www.ti.com/tool/mmwave-devpack
- https://www.ti.com/tool/tsw1400evm
- https://www.ti.com/tool/mmwave-dfp
- https://www.ti.com/tool/dataconverterpro-sw
- https://www.ti.com/tool/uniflash

http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package

https://www.mathworks.com/supportfiles/downloads/R2015a/deployment file s/R2015aSP1/installers/win32/MCR R2015aSP1 win32 installer.exe

2

3

https://www.digikey.com/product-detail/en/cuiinc/SMI36-5-V-P5/102-3589-ND/5415060

