Demonstrating
Simple Open Real-Time Ethernet Protocol (SORTE)
Master & Slave on PRU-ICSS using
Processor SDK RTOS

*jﬁ TEXAS INSTRUMENTS

Presenter
Presentation Notes
DR0000_1017.mp3 (rerecord)

Hello everyone. This video demonstrates how to setup and test SORTE, Simple Open Real Time- Ethernet Protocol Master and Slave implementation on the Programmable Real-time Unit and Industrial Communication Subsytem(PRU-ICSS).

SORTE functionality is supported on Processor Software Development Kits for RTOS, also known as the Processor SDK RTOS

SORTE support

SORTE on PRU-ICSS

Processor Hardware RTOS
AM572x AMS572x Industrial Development Kit (IDK) v
AMS571x AMS571x Industrial Development Kit (IDK) v
AM437x AMA437x Industrial Development Kit (IDK) v
AM335x AM335x Industrial Communications Engine (ICE) v
66AK2Gx K2G Industrial Communications Engine (ICE) v

Presenter
Presentation Notes
DR0000_1021.mp3 (rerecord)

Starting with the Processor SDK 4.0 release, SORTE protocol for Master and Slave devices is supported on TI Sitara processor families listed in the table above on various industrial EVMs.

We will be using PRU-ICSS for this demonstration using the AM335x ICE EVM.

Agenda

e SORTE Overview
e SORTE State Machine

e ARM Processor Overview

Hardware Y Software Y Build SORTE Load & Run Verify SORTE

: : . —> SORTE —>) .
Requirements Requirements Applications Applications Functionality

e SORTE Source Code

Presenter
Presentation Notes
DR0000_1005.mp3

Before we demonstrate SORTE protocol, we will provide a brief overview of SORTE protocol and its state machine. We will also give a overview of the Application running on the ARM processor.

We will then discuss the hardware and setup requirements for the SORTE demonstration. Next, we will discuss the required software and show how to build the ARM application.

Then we will load the SORTE applications to the hardware and run the applications. We will verify functionality. Finally we show how the SORTE code is organized and how to make changes to the

firmware source code and re-compile the firmware.

Simple Open Real-Time Ethernet (SORTE) overview

e Fast and efficient real-time Ethernet protocol implementation on PRU-ICSS:
— Master and device(s) network line topology
— 4us cycle time for process data exchange with one master and up to four slave devices
— 100 Mbit, full-duplex

e Removes external ASIC or FPGA support and integrates industrial Ethernet.

e Training and programming example for real-time Ethernet on PRU-ICSS:
— Fully-customizable PRU firmware
— PRU firmware provided in source code
— Reference PRU firmware with User’s Guide, PRU firmware, and ARM driver software.

Presenter
Presentation Notes
DR0000_0947.mp3

Let’s start with the SORTE overview.

The SORTE protocol is a fast and efficient real-time ethernet protocol, which is implemented on the programmable real-time unit and industrial communication sub system found on many TI application processors.

The protocol consists of one master and multiple slave devices in a line topology. We can achieve a 4 micro-second cycle time for exchanging process data with the master and up to four slave devices. The protocol is 100-megabit ethernet.

And it's full duplex. The benefits are that it removes any external ASIC or FPGA because you integrate the industrial ethernet into the application processor.

We have training and program example for the real-time ethernet on PRU-ICSS. That means for you it is fully customizable PRU firmware. You are getting the PRU firmware in source code. And there is a reference PRU firmware with a user guide,
PRU firmware itself, and an ARM driver software.

S SORTE state machine

Timing State Description

Detect slaves

i ,
n*1ms ~p Discovery e Report 0 structure

Set network parameters
n*1ms Parameterization . Set application parameters

Set diagnostic/error parameters
Run port line delay measurement
Synch ronization L] Run network time synchronization
Report sync status
e Cyclic IO data exchange
cycle time |0 Exchange e Cyclic time synchronization
. Continuous network monitor

async Alarm, Link-Loss,
event Reconnect

n* 1ms
(100 syncs)

Detect packet error
Detect timing error
Detect topology change
Report and reconnect

Presenter
Presentation Notes
DR0000_0955.mp3

Now lets discuss the SORTE protocol state machine.

The SORTE protocol operates on different states, which are shown above.

We have the Discovery state, the Parameterization state, the Synchronization state, and the IO Exchange state.
In addition, we have an alarm, Link-Loss, and reconnect state. So let's look at each of the state in a bit more detail.

During Discovery state, the master is detecting the slaves. And the slaves report the IO structure.

In Parameterization state, the Master is distributing the network parameter, the application parameters,
as well as the diagnostic and error parameters to the Slave devices.
After that, Master and Slave devices transition to the Synchronization state. In this state the Master and the Slave devices both report port line delay
measurement, they do a network time synchronization, and they report this to each other.

The Master and Slave devices then enter IO exchange state where the devices can exchange data. This is the four-microsecond cycle time where you have cyclic IO data exchange
between the Slave devices and the master. You also continue the cyclic time synchronization. And the master is continuously monitoring the network.

When there is a problem detected by the master or by the slave, then the protocol goes into the alarm and Link-Loss, or reconnect state. So for example, if there is a lot of packet errors, or if there's a timing error,
or if there's a topology change error, then it is getting reported. And the state machine goes back to the Discovery stage to restart the training.

ARM application overview

The SORTE master and slave applications running on the ARM support the following:

Board level initialization

Initialization of PRU-ICSS subsystem, which includes clearing PRU-ICSS shared memory
and pru0/prul data RAM memory, configuration of PRU-ICSS registers, and
initialization of the 8-bit CRC table

Initiation of PRU shared memory with PRU-ICSS PHY addresses and enabling MDIO link
interrupts for each PRU-ICSS PHY

Downloading Master/Slave protocol firmware

Displaying status information through the on-board UART console

Presenter
Presentation Notes
DR0000_1014.mp3

Now Lets briefly discuss the responsibilities of the Master and Slave applications running on the ARM A8 core.

The applications are responsible for
Board level initialization
Initialization of PRU_ICSS subsystem which includes clearing pru-icss shared memory and pru0/pru1 data ram memory, configuration of pru-icss registers and initialization of 8 bit crc table.
Initiation of pru shared memory with pru-icss PHY addresses and enabling MDIO link interrupts for pru-icss phys.
Downloading Master/Slave protocol firmware
Displaying status information via the board UART console.

2 SORTE demonstration: Hardware requirements

Hardware
Requirements

Software
Requirements

Build SORTE
Applications

Load & Run
SORTE
Applications

Verify SORTE
Functionality

Presenter
Presentation Notes
DR0000_0969.mp3

Now let’s take a look at the Hardware requirements.

< SORTE demonstration: Hardware requirements

AM335x ICE

AM335x ICE AM335x ICE

AM3359 Industrial Communications Engine (ICE): http://www.ti.com/tool/tmdsice3359

Presenter
Presentation Notes
DR0000_0959.mp3

For this demonstration, we will use 3 AM335x Industrial Communication Engine evaluation modules, which features the Sitara AM335x processor with an ARM A-8 core.

http://www.ti.com/tool/tmdsice3359
http://www.ti.com/tool/tmdsice3359

Presenter
Presentation Notes
DR0000_0960.mp3

We will be using the PRU_ICSS port for this demonstration. To enable these ports , connect pin2 and pin3 of both jumpers J18 and J19 on each board.

Slavel

Slave?2

Presenter
Presentation Notes
DR0000_0960.mp3

Connect an Ethernet cable from the Master’s RJ45 J2 PRU_ICSS port to the Slave Device 1 RJ45 J2 PRU_ICSS port.

Slave?2

Slavel

£00052dPELLE

[27134P 250003

5

Master

Presenter
Presentation Notes
DR0000_0960.mp3

Then connect an Ethernet cable from the Slave Device 1 RJ45 J1 PRU_ICSS port to the Slave Device's 2 RJ45 J2 PRU_ICSS port.

SORTE demonstration: Software requirements

Hardware
Requirements

Software
Requirements

Build SORTE
Applications

Load & Run
SORTE
Applications

Verify SORTE
Functionality

Download Processor SDK: http://www.ti.com/tools-software/processor-sw.html|

Processor SDK Developer’s Guide - PRUSS SORTE:
http://processors.wiki.ti.com/index.php/Processor SDK RTOS PRUSS SORTE

Presenter
Presentation Notes
DR0000_0962.mp3

Now let’s take a look at the software requirements.

Processor SDK RTOS includes source code for both the SORTE Master and Slave protocol firmware as well as the SORTE Master and Slave ARM applications. You can test Sorte using SBL or CCS. For this demonstration we will be using CCS.

To run the applications, download and install Processor SDK RTOS with all required components. Makefile infrastructure is provided to build both the SORTE protocol firmware and ARM applications.

For purposes of this demonstration, it is assumed that CCS and the Processor SDK are already installed on the host. For further details about CCS and Processor SDK RTOS, please refer to the For More Information links at the end of this video.

For additional details of how to build the SORTE firmware and ARM example please refer to the PRUSS_SORTE developers guide:

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_PRUSS_SORTE

http://www.ti.com/tools-software/processor-sw.html
http://www.ti.com/tools-software/processor-sw.html
http://www.ti.com/tools-software/processor-sw.html
http://www.ti.com/tools-software/processor-sw.html
http://www.ti.com/tools-software/processor-sw.html
http://www.ti.com/tools-software/processor-sw.html
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_PRUSS_SORTE
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_PRUSS_SORTE

SORTE demonstration: Build applications

Hardware
Requirements

Software
Requirements

Build SORTE
Applications

Load & Run
SORTE
Applications

Verify SORTE
Functionality

Presenter
Presentation Notes
DR0000_0965.mp3

Next, we will the build the ARM application for Master and Slave. The SORTE firmware binaries are pre-compiled and provided as part of the processor sdk release.

Console:
Navigate to /packages
Run pdksetupenv.bat

Console: Build ARM Application for Master
and Slave Devices
Navigate to /packages/ti/drv/pruss
Run gmake apps

Presenter
Presentation Notes
DR0000_0970.mp3

After installing Processor SDK RTOS and all of the required components, navigate to the installation directory.

Don’t Need to say this: In this example, the directory is C:\ti\pdk_am335x_1_0_8\packages.

Run the setup environment script “pdksetupenv.bat” to setup the build environment.

Change directory (CD) to ti\drv\pruss directory

Once in the pruss directory, execute the following command : gmake apps

This is will build the ARM examples for both Master and Slave Devices and the following output binaries will be created:
pruss_app_sorte_master_a8host_release.xa8fg which can be found under the examples folder in \example\apps\sorte\master\icev2AM335x

and

pruss_app_sorte_slave_a8host_release.xa8fg which can be found in C:\ti\pdk_am335x_1_0_8\packages\ti\drv\pruss\example\apps\sorte\slaver\icev2AM335x

As previously mentioned Master and Slave firmware binaries are pre-compiled and provided as part of the Process SDK RTOS release . We will discuss the location of the firmware sources and binaries in the subsequent slides.

~ SORTE demonstration: Load & run applications

Hardware
Requirements

Software
Requirements

Build SORTE
Applications

Load & Run
SORTE
Applications

Verify SORTE
Functionality

Presenter
Presentation Notes
DR0000_0971.mp3

Next, we will run the SORTE applications we just created for Master and Slave.

CCS:

Launch target configuration

CCS:

Connect cores
Load gel
Load master binary
Load slave binary
Run the demo

Presenter
Presentation Notes
DR0000_0981.mp3

Using CCS Launch a target configuration for the icev2AM335x boards. THE target configuration file shown has connections to 3 boards.

First, connect to the 1st A8 core which is Slave Device 1. Ensure the GEL files are loaded on the core.
Navigate to the location of the Slave application and load it onto the A8 core.

Now connect to the 2nd A8 core which is Slave Device 2. Ensure the GEL files are loaded on the core.
Load the Slave application and load it onto the A8 core

Now, connect to the 3rd A8 core which is the Master device. Ensure the GEL files are loaded on the core.
Navigate to the location of the Master application and load it onto the A8 core

Once all cores are loaded, hit resume to run the application on Slave 1, then Slave2 and finally Master.

~ SORTE demonstration: Verify SORTE functionality

Hardware Y Software Y Build SORTE Load & Run Verify SORTE

. : . —> SORTE —> . :
R R .
equirements equirements Applications Applications Functionality

Presenter
Presentation Notes
DR0000_0982.mp3 (missing)

Now let’s verify that the SORTE is working.

~ SORTE demonstration: Verify SORTE functionality

Hardware Y Software Y Build SORTE Load & Run Verify SORTE

. : . —> SORTE —> . :
R R .
equirements equirements Applications Applications Functionality

Presenter
Presentation Notes
DR0000_0991.mp3

We will use the UART console available on each board to verify the communication between the Master and Slave devices.

Once the application start to run on the Master, you will see via the UART console that the MASTER is waiting detection of 2 slave devices.

Once the application start to run on the Slave devices, you will see via the UART console that each Slave reports that the no packets have been received.

The master will then report that it is now connected to 2 slave devices.

At this time ,The Slave devices will start reporting the number of packets they have received. The slave devices will continue to report the number of packets received until PASS criteria for the demo is reached. At that time, The slave devices will display a “All tests have passed” message.

Presenter
Presentation Notes
DR0000_0991.mp3

Visual inspection of the ethernet port LEDs will also indicate that even though the application test is finished, the Master and slave devices are still in the IO exchange state. The LED will be solid GREEN indicating ongoing cyclic IO packet exchange.

SORTE code organization

The SORTE ARM applications and firmware sources are located in the following directory:

<PDK>\packages\ti\drv\pruss\example\apps\sorte

The \sorte directory layout:

\firmware
\bin
\src
\include
\master
\slave

\master
\slave

\src
README.txt

Pre-compiled SORTE firmware binaries

SORTE firmware common header files
README.txt, firmware sources, and header files for MASTER device
README.txt, firmware sources, and header files for SLAVE device

SORTE makefile for MASTER application running on ARM
SORTE makefile for SLAVE application running on ARM
SORTE ARM application source and build-related files

Overview of protocol and directory structure.

Presenter
Presentation Notes
DR0000_1015.mp3

Lets take a look at where to find the SORTE code in processor SDK RTOS release.

DR0000_0999.mp3

SORTE is delivered as a PRUSS driver example and can be found in the example\apps\sorte folder.

There is a top level README.txt which provided high level overview of the protocol and directory layout. Directory layout is depicted above.

Under the top level firmware directory you will find the following:
The bin directory contains pre-compiled SORTE protocol firmware binaries for both Master and Slave.
The src directory contains an include directory for all common firmware header files for both Master and Slave.
The src directory also contains sub-directories for both Master and Slave firmware source files. There is also a README.txt for Master and Slave which provides a high level overview of the firmware sources as well as state machine.

The top level master directory contains the makefile for the Master application running on ARM.

The top level slave directory contains the makefile for the slave application running on ARM.

The top level src directory contains the SORTE ARM application source files and build related files.

Let take a deeper look in the SLAVE firmware sources. TMANNAN: cd to firmware\src\slave directory and open up readme
This README lists all the source files which comprise the Slave SORTE firmware. A brief description of what is implemented in each file is also provided.

Similar README is provide for the Master Sorte Firmware.

Modify the source code

21

{i TEXAS INSTRUMENTS

Presenter
Presentation Notes
DR0000_1000.mp3

Now that we covered how the SORTE code is organized, lets talk about modifying the SORTE firmware and re-compiling it.

We will illustrate this using the SORTE Slave.

Let once again navigate to the installation directory and run the setup environment script in case you are working with a new command window.

Let now navigate to the directory where the Slave source files reside.

Let open up the README which lists each file along with a brief description used to compile the Slave firmware.

Let assume you wanted to make updates to the state machine, in particular how the discovery state is implemented or updates to the event handler to suit your protocol needs. You would just need to update the files and recompile the firmware.

We will need to navigate to the build directory and do a make firm_clean to clean out any existing build

Followed by a make firm.

For more information

Simple Open Real-Time Ethernet (SORTE) Master With PRU-ICSS Reference Design:
http://www.ti.com/tool/tidep-0085

Simple Open Real-Time Ethernet (SORTE) Slave With PRU-ICSS Reference Design:
http://www.ti.com/tool/tidep-0086

4-Axis CNC Router with 250 kHz Control Loop with PRU-ICSS based on SORTE Reference Design:
http://www.ti.com/tool/TIDEP0061

PRUSS SORTE Wiki: http://processors.wiki.ti.com/index.php/Processor SDK RTOS PRUSS SORTE
AM3359 Industrial Communications Engine: http://www.ti.com/tool/tmdsice3359

Processor SDK for AM335x Sitara Processors: http://www.ti.com/tool/processor-sdk-am335x

Download Code Composer Studio: http://processors.wiki.ti.com/index.php/Download CCS

Projects and Build Handbook for Code Composer Studio (CCS):
http://software-dl.ti.com/ccs/esd/documents/users guide/sdto ccs build-handbook.html

For questions about this training, refer to the E2E Community Forums for Sitara Processors at
http://e2e.ti.com/support/arm/sitara_arm/f/791/t/277411

Presenter
Presentation Notes
DR0000_1016.mp3

This concludes the demonstration for SORTE Master and Slave using Proc SDK RTOS.

Additional information is provided here for reference.

Thank you for taking the time to watch this demonstration. If you have any questions, please post them on the Texas Instrument E2E forum at e2e.ti.com

http://www.ti.com/tool/tidep-0085
http://www.ti.com/tool/tidep-0086
http://www.ti.com/tool/TIDEP0061
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_PRUSS_SORTE
http://www.ti.com/tool/tmdsice3359
http://www.ti.com/tool/processor-sdk-am335x
http://processors.wiki.ti.com/index.php/Download_CCS
http://software-dl.ti.com/ccs/esd/documents/users_guide/sdto_ccs_build-handbook.html
http://e2e.ti.com/support/arm/sitara_arm/f/791/t/277411

I3 TEXAS
INSTRUMENTS

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.
Use of this material is subject to TI's Terms of Use, viewable at Tl.com

Presenter
Presentation Notes
Outro music

	Demonstrating�Simple Open Real-Time Ethernet Protocol (SORTE) Master & Slave on PRU-ICSS using�Processor SDK RTOS
	SORTE support
	Agenda
	Simple Open Real-Time Ethernet (SORTE) overview
	SORTE state machine
	ARM application overview
	SORTE demonstration: Hardware requirements
	SORTE demonstration: Hardware requirements
	Slide Number 9
	Slide Number 10
	Slide Number 11
	SORTE demonstration: Software requirements
	SORTE demonstration: Build applications
	Console:�Navigate to /packages�Run pdksetupenv.bat ��Console: Build ARM Application for Master and Slave Devices�Navigate to /packages/ti/drv/pruss�Run gmake apps
	SORTE demonstration: Load & run applications
	CCS:�Launch target configuration��CCS:�Connect cores�Load gel�Load master binary �Load slave binary�Run the demo
	SORTE demonstration: Verify SORTE functionality
	SORTE demonstration: Verify SORTE functionality
	Slide Number 19
	SORTE code organization
	Modify the source code
	For more information
	Slide Number 23

