Fast Fourier Transforms (FFTs) and Windowing TIPL 4302 TI Precision Labs – ADCs

Created by Luis Chioye, Art Kay

Presented by Peggy Liska

Definition for time to frequency transformations

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f[t] \cdot e^{-i\omega t} dt$$

Fourier Transform (continuous time)

Where

 $F[\omega]$ = frequency domain continuous function

f[**t**] = time domain continuous function

 $\mathbf{t} = time$

 $\boldsymbol{\omega}$ = angular frequency

Fast Fourier Transform (FFT)

Used for digitized waveforms

Where

- **F**[**k**] = sample in frequency
- **f**[**n**] = sample in time
- **n** = time index
- **k** = frequency index
- **N** = number of samples

N must be a power of 2 (e.g. 256, 512, 1024...)

FFT Basics: Alias and Frequency Resolution

FFT assumes time domain continues

- Number of points in time domain equals
- The alias region is normally hidden.
- Mirror image about fs / 2 "aliasing"
- Frequency Resolution = $\Delta f = fs / N$
- $\Delta f = fs / N = 1MHz / 16 = 62kHz$

Alias is a Mirror Image of Sampled Signal

Notice the symmetry around 500kHz

Square wave contains odd harmonics

FFT Example Calculation

Sampling Rate Number of Samples

Frequency Resolution

Sampling time

Input signal Frequency Bin Note: f_{in} is an exact integer multiple of Δf

FFT – Different Input Frequency

Sampling Rate Number of Samples Frequency Resolution Sampling time Input signal

Frequency Bin Note: f_{in} is an exact integer multiple of Δf

FFT – Spectral Leakage

Sampling Rate Number of Samples

Frequency Resolution

Sampling time

Input signal

Frequency Bin Note: f_{in} is NOT an exact integer multiple of Δf

Window: Eliminates discontinuity in sampled waves

Comparing Frequency Response of Different Windows

- in side lobes.
- For ADC characterization 7 term • Blackman Harris is most often used.

Ideally we would like a very narrow main lobe and very deep attenuation

Different Windows for Different Applications

Signal Content	Windo				
ADC characterization					
Sine wave or combination of waves					
Sine Wave (amplitude accuracy is important)					
Narrowband random signal (vibration data)					
Broadband random (white noise)					
Closely spaced sine waves					
Excitation signals (hammer blow)	Force				
Response signals	Expon				
Unknown content	Hann				
Two tones with frequencies close but amplitudes very different	Kaiser				
Two tones with frequencies close and almost equal amplitudes	Uniform				
Accuracy single tone amplitude measurements	Flat To				

Window Processing Errors

Parameters used to characterize frequency response of windowing functions								
Window	Highest side lobe level (dB)	Processing loss (dB)	Scalloping loss (dB)	Worst-case processing loss (dB)	6-dB bandwidth (bins)	Half main lobe width (bins)		
No window	-13	0.00	3.92	3.92	1.21	1		
Hann	-32	1.76	1.33	3.09	2.00	2		
Hamming	-43	1.34	1.76	3.10	1.82	2		
Four-term Blackmon Harris	-92	3.00	0.83	3.83	2.72	4		
Seven-term Blackmon Harris	-163	4.20	0.46	4.66	3.52	7		

Thanks for your time! Please try the quiz.

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

Quiz: Fast Fourier Transforms (FFTs) and Windowing TIPL 4302 TI Precision Labs – ADCs

Created by Art Kay

- A time domain signal has 1024 points in it. How many points will be in the FFT? 1.
 - 1024. a)
 - 2048. b)
 - This depends on the type of FFT used. C)
- The sampling rate of a particular converter is 1Msps. The FFT will contain data that extents to 2. what frequency.
 - 1MHz. However, the data from 500kHz to 1MHz is redundant and is normally ignored. a)
 - b) 2MHz. However, the data from 1MHz to 2MHz is an alias.
 - This depends on the number of points of the FFT. C)

- 3. What is the purpose of the windowing function?
 - The window function minimizes spectral leakage. a)
 - b) The window function eliminates the discontinuity between records by shaping the time domain signal.
 - The window function acts as a band stop filter to eliminate harmonic distortion. C)
 - The window function is used to convert time domain signals to frequency domain signals. d)
 - Both a and b are correct e)
 - **f**) Both c and d are correct
- What type of window is commonly used for ADC characterization? 4.
 - Hamming. a)
 - Hann. b)
 - The 4 term Blackman Harris. C)
 - The 7 term Blackman Harris. d)

- Convert the time domain signal below to its frequency domain equivalent. 5.
 - What is the frequency resolution? a)
 - What bins does the frequency domain signal fall in? b)
 - Does this FFT have spectral leakage? C)
 - Draw the FFT. d)

Solutions

- A time domain signal has 1024 points in it. How many points will be in the FFT? 1.
 - 1024. **a**)
 - 2048. b)
 - This depends on the type of FFT used. C)
- The sampling rate of a particular converter is 1Msps. The FFT will contain data that extents to 2. what frequency.
 - 1MHz. However, the data from 500kHz to 1MHz is redundant and is normally ignored. a)
 - b) 2MHz. However, the data from 1MHz to 2MHz is an alias.
 - This depends on the number of points of the FFT. C)

6

- 3. What is the purpose of the windowing function?
 - The window function minimizes spectral leakage. a)
 - b) The window function eliminates the discontinuity between records by shaping the time domain signal.
 - The window function acts as a band stop filter to eliminate harmonic distortion. C)
 - The window function is used to convert time domain signals to frequency domain signals. d)
 - Both a and b are correct e)
 - **f**) Both c and d are correct
- What type of window is commonly used for ADC characterization? 4.
 - Hamming. a)
 - Hann. b)
 - The 4 term Blackman Harris. C)
 - The 7 term Blackman Harris. d)

- 5. Convert the time domain signal below to its frequency domain equivalent.
 - What is the frequency resolution? $\Delta f = f_s/N_{samp} = 1MHz/128 = 7.8125kHz$ a)
 - What bins does the frequency domain signal fall in? $k_f = f_{in}/\Delta f = 40 kHz/7.8125 kHz = 5.12$ b)
 - Does this FFT have spectral leakage? Yes. You can clearly see the discontinuity at the end of each C) record.

