High Volume Power Supply design meets collaboration

Designing reliable and high density power solutions with GaN

Created by: Masoud Beheshti Presented by: Paul L Brohlin

What will I get out of this presentation?

- Why GaN?
- Integration for System
 Performance and Reliability
- GaN Applications

- Relevant Part Numbers
 - LMG3410Rxxx/LMG3411Rxxx
 - LMG5200

GaN: Ready to Take you Beyond Silicon Today

- GaN devices are enabling solutions with twice the power density of what is possible with best-in-class superjunction FETs
- TI GaN solutions, such as LMG5200 and LMG3410R070, are in mass production and in many customer systems
- These systems are not only smaller and more efficient, but are also in cost and system parity with their silicon predecessors.
- Lets find out how!

GaN: Unmatched Power Density from AC-to-Motor

GaN 101: Key Advantages Over Silicon

Not All GaN is Created Equal

TI GaN: Fully Integrated

Discrete GaN

Driver	Integrated	External
EMI Control	Integrated	External
100ns OCP	Integrated	External
Added PCB Area	0	>400mm ²

Challenges of GaN Designs with External Driver

 Driver Bias Voltage: GaN gate bias is critical to its performance and longterm device reliability

 Parasitic Inductance: causes switching loss, ringing and reliability issues, especially at high GaN frequencies

Integrated Overcurrent Protection

OCP Option	OCP Performance	System Impact		Cost
Resistive Shunt	Poor SNR	High power loop inductancePower losses	Sense rHigh sp	esistor beed comparator ()
TI GAN- Integrated OCP	<100ns Response	None	No exter	nal components
High value sense resis	tor is needed for	Parameter		Resistive Shunt 2X 12mΩ (25mΩ /2)

- Increases power loop which slows down the dv/dt for the given overshoot (100V/ns drops to 80V/ns)
- Increased power losses due lower dv/dt and sense resistor

Parameter	Resistive Shunt 2X 12mΩ (25mΩ /2)
Added PCB Area	233 mm ²
Added Power Loop Inductance	1.2nH
dv/dt	80V/ns
Additional Power Loss at 100kHz Po=1.2kW	0.9W

GaN Application Examples

AC/DC: Applications and Topology

GaN CCM Solution: Superior Power Supply Design

- Higher efficiency
 - Reduced power loss by 36%
- Higher power density
 - 3X power density in Totem-pole PFC versus Silicon
- Solution cost parity
 - Reduced magnetics and external components bring total solution cost down

)	Loss Mechanism	Dual Boost PFC with Silicon	Totem-pole PFC with GaN
	Switching FET Cond.	0.6 W	2.06 W
	SiC Diode Cond.	2.75W	-
	FET Eoss / SiC Diode Qoss	3.9 W	2.4W
	I-V Overlap	1.47 W	0.95W
	Rect. Diodes / FETs	0.45 W (FET)	0.45 W (FET)
	Total Power Losses	9.17W	5.86W

GaN CrM Solution: 1.6kW Totem-Pole PFC

Parameter	Value
Input Voltage	85 – 265 V _{AC}
Input Frequency	50 – 60 Hz
Output Voltage	385 V _{DC}
Output Power	1.6 kW
Switching Frequency	1MHz

Power Density: 250 W/in³ (15.3 W/cm³) GaN FETs (LMG3410-HB-EVM)

GaN in LCC: Superior Power Supply Design

• Reduced Output Capacitance Coss

- reduces dead-time, increasing the time when current delivered to the output
- allows larger magnetizing inductance and lower circulating current losses as well as transformer fringe-field losses
- Reduced Gate Driver Losses
- System Optimization
 - GaN enables higher switching frequency to reduce magnetic components significantly
 - GaN enables LLC converter with higher efficiency and higher power density

TI-GaN: 1MHz Isolated LLC DCDC Converter

Parameter	Value
Input Voltage	380 – 400V
Output Voltage	48V
Output Power	1 kW
Switching Frequency	1MHz
Efficiency	>97%

Power Density: 140 W/in3 (8.5 W/cm3)

GaN FETs (LMG3410-HB-EVM)

•

Efficiency: Comparison with MOSFET

-GaN - - - Si Superjunction

GaN: Enabling Smart Motor Drive

- GaN reduces or eliminates heatsink
- GaN reduces or eliminates switch node oscillations
 - Lower radiated EMI, no additional snubber network (space, losses) required
- GaN increases PWM frequency and reduces switching losses
 - Drive very low inductance PM synchronous motors or BLDC motors
 - Precise positioning in servo drives/steppers through minimum torque ripple
 - High-speed motors (e.g. drone) achieves sinusoidal voltage above 1-2kHz frequency
- GaN eliminates dead-time distortions of phase voltage
 - Better light load and THD performance

48V 10A 3Φ Inverter for High-Speed Motors

Parameter	Value	
Input Voltage	12 – 60 V _{DC}	
Input Power	400W	
Output Voltage	48 V _{DC}	Jumper (J5) (internal or external 5 V)
Output Current	10-A _{Peak}	
Switching Frequency	100 kHz	(Phase C)
Peak Efficiency	98.5%	
Power Densi (30.5 V	ity: 500 W/in ³ N/cm ³)	Input vol 12-V to 6 TIDA-

48V GaN Inverter: Thermal Performance

48V/10A with 98.5% Efficiency

Conclusion

- GaN is enabling a new generation of power conversion designs today, that were not possible before
- GaN enables 3X power density improvement from AC to Point-of-Load
- Integration of GaN FET, driver, and potection in a low inductance package provides an optimal solution for fast and reliable switching
- For products, designs, and training material, visit <u>TI.com/GaN</u>

