
Hardware Accelerator (HWA) 2.0
overview

1

Agenda
• Key features

• Function of each sub-block

• Programming the HWA

• Example use-case of HWA

2

3

Introduction to hardware accelerator
• The radar hardware accelerator (HWA) is a hardware IP

that enables off-loading the burden of some frequently
used computations in FMCW radar signal processing from
the main processor/DSP.

• FMCW radar signal processing involves pre-processing of
the input data followed by multiple FFT’s to obtain range,
velocity and angle from the radar image and also supports
detection of objects from it.

• The HWA 2.0 version is introduced in AWR294x devices.

• It is much more advanced and is able to perform complex
operations than HWA1.0 version which was introduced in
generation-1 devices (like AWR1443, AWR1843 etc).

AWR 294x block diagram

Key features
• HWA 2.0 operates at a clock of 300MHz.
• Larger size local RAM – 128KB (16KB x 8)

– Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and
transpose access.=

• Pre-processing

– DC estimation and correction

– Interference localization & mitigation with interference statistics

– Complex multiplication (multiple modes) with both scalar and vector multiplication

– Zero-Insertion/padding, Channel combination

• FFT computation with programmable stage

– Programmable windowing (dynamic window update)

– Up to 2048-pt complex FFT

– Support for various FFT sizes – 2^N and 3*2^N

– Supports 2D-FFT: M x N <=2048

– Internal FFT bit-width of 24-bits (each of I and Q) for good Signal to Quantization-Noise Ratio (SQNR)

– Programmable FFT at every stage for flexibility 4

Key features (contd..)
• Compression and decompression engine

– Supports compression and decompression of radar data using EGE (Exponential Golomb Encoder) format.

• Post-FFT processing

– Advanced 2D-FFT statistics (max across) each dimension including basic statistics can be calculated.

– Histogram/CDF statistics can also be calculated.

– Log & magnitude computation is possible

– CFAR CA (Cell Averaging) and CFAR OS (Ordered Statistics) detection are supported

– Local maxima computation across 2D-plane is also supported with 4-modes of operation

• Context switching

– Supports context switching which enables us to interrupt in order to perform a higher priority task before
resuming the current task execution.

• Miscellaneous other capabilities of HWA

– Stitching two or four 2K-point FFTs to get the equivalent of 4096-point or 8192-point FFT

– Slow DFT mode, with resolution equivalent to 16K size FFT, for FFT interpolation purposes

– Safety features are present like parity for memories and lock-step for FSM
5

Accelerator engine block diagram

6

Core
Computational

Unit
Input Formatter Output Formatter

Accelerator Local Memories

ACCEL_MEM0

16KB

M0

ACCEL_MEM1

16KB

M1

ACCEL_MEM2

16KB

M2

ACCEL_MEM3

16KB

M3

ACCEL_MEM4

16KB

M4

ACCEL_MEM5

16KB

M5

ACCEL_MEM6

16KB

M6

ACCEL_MEM7

16KB

M7

ACCELERATOR ENGINE

State Machine

Input Samples
24-bit I, 24-bit Q 24-bit I, 24-bit Q

Output Samples

Trigger to DMA/Processor

Trigger from DMA/Processor

Ping-Pong Buffer

Parameter-Set

Config Memory

4KB RAM

Static (common)

registers

128-bit wide bus interconnect

From/To

DMA/Processor

From Accelerator

local memory

To Accelerator

local memory

Controls the operation of the accelerator, including start/stop of
computations, chaining and looping of multiple parameter-sets,
etc. Also, provides ability to trigger to/from DMA, R4F, etc.

Formats the input
samples to be fed
into the Core
Computational Unit –
allows real/complex,
16-bit/32-bit aligned,
signed/unsigned,
transposed access,
etc.

Formats the output samples going into the
destination memory – allows 16-bit/32-bit
aligned, skipping unwanted samples,
signed/unsigned, transposed access, etc.

Contains the Core
Computational logic,
such as FFT, Windowing,
Log-Mag, CFAR

Up to 64 parameter-
sets (registers) can
be pre-configured to
enable chaining/
looping through a
set of operations

Some registers are
common, i.e.,
outside of the
parameter-set

Samples from

Source memory
Samples to Destination

memory

Eight memories (each 16KB) used to stream data in and
out of Accelerator Engine

2

1

3
4

5

Accelerator engine block diagram

7

Core
Computational

Unit
Input Formatter Output Formatter

Accelerator Local Memories

ACCEL_MEM0

16KB

M0

ACCEL_MEM1

16KB

M1

ACCEL_MEM2

16KB

M2

ACCEL_MEM3

16KB

M3

ACCEL_MEM4

16KB

M4

ACCEL_MEM5

16KB

M5

ACCEL_MEM6

16KB

M6

ACCEL_MEM7

16KB

M7

ACCELERATOR ENGINE

State Machine

Input Samples
24-bit I, 24-bit Q 24-bit I, 24-bit Q

Output Samples

Trigger to DMA/Processor

Trigger from DMA/Processor

Ping-Pong Buffer

Parameter-Set

Config Memory

4KB RAM

Static (common)

registers

128-bit wide bus interconnect

From/To

DMA/Processor

From Accelerator

local memory

To Accelerator

local memory

State machine
• Operation

– Controls the overall functioning of HWA by enabling and disabling it

– Sequencing a set of operations and looping through those operations one after another

• Trigger mechanisms

– 4-incoming trigger

• Immediate Trigger

• Software Trigger

• DMA based trigger

• Hardware trigger

– 2-outgoing trigger

• Interrupt to main processor

• Trigger to DMA

• Supports an advanced operation called “Context Switching”

– Sequence of operations running in HWA is interrupted to run a different (high priority) sequence of operations

– On finishing those operations, it returns to resume the execution of original sequence

8

Accelerator engine block diagram

9

Core
Computational

Unit
Input Formatter Output Formatter

Accelerator Local Memories

ACCEL_MEM0

16KB

M0

ACCEL_MEM1

16KB

M1

ACCEL_MEM2

16KB

M2

ACCEL_MEM3

16KB

M3

ACCEL_MEM4

16KB

M4

ACCEL_MEM5

16KB

M5

ACCEL_MEM6

16KB

M6

ACCEL_MEM7

16KB

M7

ACCELERATOR ENGINE

State Machine

Input Samples
24-bit I, 24-bit Q 24-bit I, 24-bit Q

Output Samples

Trigger to DMA/Processor

Trigger from DMA/Processor

Ping-Pong Buffer

Parameter-Set

Config Memory

4KB RAM

Static (common)

registers

128-bit wide bus interconnect

From/To

DMA/Processor

From Accelerator

local memory

To Accelerator

local memory

Parameter-set configuration memory
• Structure

– 64 parameter sets

– Each set consists of 16, 32-bit registers

• State machine can be programmed to loop through a specific
subset of parameter sets based on param_start_idx,
param_stop_idx (in PARAM_RAM_IDX struct) and numloops (in
PARAM_RAM_LOOP struct).

• Functions:

– Choosing and configuring each of blocks of computational engine

– Configuring the input/output data format

– Configuring the trigger for the parameter set

– Configuring 2D-memory indexing

• State machine can also be configured to loop through another set
of parameter sets for context switching based on param_start_idx,
param_stop_idx and numloops in PARAM_RAM_IDX_ALT struct.

10

PARAMSET 1

PARAMSET 2

PARAMSET 3

PARAMSET 64

start

end

Repeat

Parameter RAM
(4KB)

Accelerator engine block diagram

11

Core
Computational

Unit
Input Formatter Output Formatter

Accelerator Local Memories

ACCEL_MEM0

16KB

M0

ACCEL_MEM1

16KB

M1

ACCEL_MEM2

16KB

M2

ACCEL_MEM3

16KB

M3

ACCEL_MEM4

16KB

M4

ACCEL_MEM5

16KB

M5

ACCEL_MEM6

16KB

M6

ACCEL_MEM7

16KB

M7

ACCELERATOR ENGINE

State Machine

Input Samples
24-bit I, 24-bit Q 24-bit I, 24-bit Q

Output Samples

Trigger to DMA/Processor

Trigger from DMA/Processor

Ping-Pong Buffer

Parameter-Set

Config Memory

4KB RAM

Static (common)

registers

128-bit wide bus interconnect

From/To

DMA/Processor

From Accelerator

local memory

To Accelerator

local memory

Input formatter
• Used to access, format and feed data from local memories of

HWA to core computational unit as 24-bit complex samples.

• Supports input samples of 16-bit or 32-bit real or complex,
variable arrangement of input data along with circular and
shuffled addressing.

• Support for conjugation (to perform IFFT), taking only complex
or real samples, sign extension and; swapping I and Q bits of
complex samples are also provided.

• Also supports scaling and formatting of input samples to convert
from 16bit or 32-bit to 24-bit for core computational unit.

12

Accelerator engine block diagram

13

Core
Computational

Unit
Input Formatter Output Formatter

Accelerator Local Memories

ACCEL_MEM0

16KB

M0

ACCEL_MEM1

16KB

M1

ACCEL_MEM2

16KB

M2

ACCEL_MEM3

16KB

M3

ACCEL_MEM4

16KB

M4

ACCEL_MEM5

16KB

M5

ACCEL_MEM6

16KB

M6

ACCEL_MEM7

16KB

M7

ACCELERATOR ENGINE

State Machine

Input Samples
24-bit I, 24-bit Q 24-bit I, 24-bit Q

Output Samples

Trigger to DMA/Processor

Trigger from DMA/Processor

Ping-Pong Buffer

Parameter-Set

Config Memory

4KB RAM

Static (common)

registers

128-bit wide bus interconnect

From/To

DMA/Processor

From Accelerator

local memory

To Accelerator

local memory

Output formatter
• Used to format and write data coming out of core computational

unit into the HWA memory.

• Similar to input formatter, it supports output samples of 16-bit or
32-bit real or complex and variable arrangement of output data.

• Support for conjugation (to perform IFFT), taking only complex or
real samples, skipping of samples, sign extension and; swapping I
and Q bits of complex samples are also provided.

• Also, supports scaling and formatting of output samples of 24-bit
from core computational unit to convert to 16bit or 32-bit.

14

Accelerator engine block diagram

15

Core
Computational

Unit
Input Formatter Output Formatter

Accelerator Local Memories

ACCEL_MEM0

16KB

M0

ACCEL_MEM1

16KB

M1

ACCEL_MEM2

16KB

M2

ACCEL_MEM3

16KB

M3

ACCEL_MEM4

16KB

M4

ACCEL_MEM5

16KB

M5

ACCEL_MEM6

16KB

M6

ACCEL_MEM7

16KB

M7

ACCELERATOR ENGINE

State Machine

Input Samples
24-bit I, 24-bit Q 24-bit I, 24-bit Q

Output Samples

Trigger to DMA/Processor

Trigger from DMA/Processor

Ping-Pong Buffer

Parameter-Set

Config Memory

4KB RAM

Static (common)

registers

128-bit wide bus interconnect

From/To

DMA/Processor

From Accelerator

local memory

To Accelerator

local memory

Core computational unit

16

Input
Formatter

Pre-
Processing

Windowing
+

FFT

Mag or
Log-Mag

Output
Formatter

Mag or
Log-Mag

CFAR

Compression/Decompression

Local Maxima
Mag or

Log-Mag

Hardware accelerator: FFT path

• Each block operates on a streaming input of data and produces a streaming output of data at a
throughput of one clock sample. Bypassing of blocks are controlled through the param-set registers.

• Pre-processing block performs operations of dc correction, interference localization and mitigation,
complex scalar and vector multiplication, zero padding and channel combining.

• For the purpose of windowing, window RAM can hold up to 2048 32-bit words of window
coefficients in three formats (half of the size is only required in RAM if window function is symmetric)

• Magnitude or Log-Magnitude operations can be performed as a part of post-processing step.

17

Pre-Processing
Windowing

+
FFT

Mag or
Log-Mag

Example FFT Size Number of Back-to-
Back Iterations

Number of cycles
(Initial Latency +

Computation)

Total Duration

1 256 4 256 + (256 x 4) 4.27μs

2 128 4 128 + (128 x 4) 2.13μs

3 8 64 8 + (64 x 8) 1.73μs

Hardware accelerator: CFAR path

• Supports two types of CFAR algorithms: CFAR-CA (Cell-Averaging, CASO and CAGO) and CFAR-OS
(Ordered Statistics) which determines the threshold of indices of peaks.

• CFAR is implemented on a real input vector, therefore provides us the option of Magnitude or
Log-Magnitude incase the input to it is complex.

• Also, supports cyclic and non-cyclic mode of CFAR operation.

• The output of this path is a list of indices corresponding to detected peaks.

18

Mag or
Log-Mag

CFAR Indices of the peaks

Hardware accelerator: Compression/decompression

• Has a compression engine which takes a fixed number of samples and returns a ‘block of bits’ such
that the block’s size (in bits occupied) is a fraction of the size of the input samples. The
compression module can achieve an arbitrary compression ratio.

• For e.g. , a 33 % compression-ratio, results in the average bit-width after compression being one-
third of the bit-width before compression.

• Also, has a decompression engine which when provided with the a compressed block of bits,
regenerates the original samples (with a possibility of some quantization error).

• Algorithms for compression/decompression is based on Exponential Golomb Encoding (EGE).

• A compression ratio in the range 33%-50% is good with 50% ratio being the nearly loss-less.

19

Compression/Decompression
Uncompressed/

Compressed

data

Compressed/

Uncompressed

data

Hardware accelerator: Local maxima

• The local maxima is used to find the maximum in a 2D-plane especially in the Doppler Angle
dimension after angle-FFT.

• Usually for finding the local maxima of a cell under test (CUT), whose values after magnitude/log-
magnitude (if the input is complex) are compared against the neighboring cells and the detection
thresholds (row and column threshold which can be configured in registers or using advanced
statistics).

• The output of the local maxima computations is stored into the destination memory as a bit
pattern, where each bit indicates whether the specific sample/CUT was detected as a valid local
peak or not.

• Supports wrap combination or circular shifting for edge cells in 2D plane if required.

20

Local Maxima
Mag or

Log-Mag2D data
Peak

CUT

Programming the HWA 2.0

• The HWA 2.0 can be programmed using the driver available in “mcu_plus_sdk”.

• HWA driver has multiple APIs and struct variables to implement functions of HWA2.0 with ease.

• Some of the basic APIs include HWA_init(), HWA_deinit(), HWA_open(), HWA_close(),
HWA_reset() and HWA_enable().

• To configure the static and parameter-set registers of the HWA, we have two APIs of
HWA_configCommon() and HWA_configParamSet() respectively.

• Also, there are APIs like HWA_paramSetDonePolling(), HWA_singleParamSetDonePolling() to
query the finish of parameter-set and HWA_enableParamSetInterrupt(),
HWA_disableParamSetInterrupt() etc. to issue interrupts to/from HWA from/to DSP/processor.

• In addition to the above APIs, there are multiple ones to configure/clear RAM, handle the
operation of context-switching in HWA, trigger the DMA and also to read the status of registers.

21

Example use case of HWA 2.0

22

Signal

Pre-

Conditioning

Range FFT Compression
De-

Compression
Doppler-FFT

MIMO De-

Modulation
Angle-FFT

2D-

Detetction,

Peak

Extraction

L3

Data
Cube

L3

Data
Cube

3D-

Detetction,

Peak

Extraction

Beam

Former
ClusteringTracking

CSI2/

ADCBuf

Classification
Autosar,

OEM

functions

MCU

Peripheral

Control

Output to

central

ECU or

Actuator

Repeated every chirp in a frame
Repeated every range gate in a frame

HWA 2.0

C66x DSPLockstep R5F

MailBox M
M

R

Processing

Elements

Control

Comparison between HWA 1.0 vs HWA 2.0

23

HWA 1.0 HWA 2.0

Operating Clock 200MHz 300MHz

Local RAM 16KB x 4 = 64KB 16KB x 8 = 128KB

Max FFT Size 1024(2^N only) 2048 (with 2^N and 3*2^N FFT’s supported) along with 2D-FFT

Parameter-Set 16(16 x 8 x 32bits = 512B) 64 (4KB = 64 x 16 x 32bits)

Interference
Statistics

Interference Zero-Out based on threshold
(Statistics not taken into consideration)

Interference zero-out/Interpolation/zeroing with window (Statistics taken
into consideration for maximum of 12 accumulations/iterations)

DC-correction
estimation

- DC estimation and correction for up to 12-iterations

CMULT mode 101-Complex scalar multiplier that remains
constant

0101-Complex scalar multiplier that remains constant across all iterations or
changes per iteration

CFAR CFAR-CA CFAR-CA and CFAR-OS

ACCEL-MODE 00 – FFT mode
01 – CFAR mode

000 – FFT mode, 001 – CFAR mode,
010 – Compression mode, 011 – Local Max Engine

Statistics Supports basic statistics of maximum, sum
etc.

Supports basic statistics of maximum, sum along with 2D-statistics of
maximum, Histogram/CDF

24

References
1. Radar Hardware Accelerator 2.0 chapter in AWR294x TRM(SPRUIV5)
2. MCU PLUS SDK 8.x for HWA 2.0 driver and test application
3. Mmwave demo showcases HWA 2.0 features as part of DDMA processing chain

Thank You

25

