
Hardware Accelerator (HWA) 2.0 
overview
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Introduction to hardware accelerator
• The radar hardware accelerator (HWA) is a hardware IP 

that enables off-loading the burden of some frequently 
used computations in FMCW radar signal processing from 
the main processor/DSP. 

• FMCW radar signal processing involves pre-processing of 
the input data followed by multiple FFT’s to obtain range, 
velocity and angle from the radar image and also supports 
detection of objects from it. 

• The HWA 2.0 version is introduced in AWR294x devices.

• It is much more advanced and is able to perform complex 
operations than HWA1.0 version which was introduced in 
generation-1 devices (like AWR1443, AWR1843 etc).

AWR 294x block diagram



Key features 
• HWA 2.0 operates at a clock of 300MHz.
• Larger size local RAM – 128KB (16KB x 8)

– Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and 
transpose access.=

• Pre-processing

– DC estimation and correction

– Interference localization & mitigation with interference statistics

– Complex multiplication (multiple modes) with both scalar and vector multiplication

– Zero-Insertion/padding, Channel combination 

• FFT computation with programmable stage

– Programmable windowing (dynamic window update)

– Up to 2048-pt complex FFT

– Support for various FFT sizes – 2^N and 3*2^N

– Supports 2D-FFT: M x N <=2048

– Internal FFT bit-width of 24-bits (each of I and Q) for good Signal to Quantization-Noise Ratio (SQNR)

– Programmable FFT at every stage for flexibility 4



Key features (contd..)
• Compression and decompression engine

– Supports compression and decompression of radar data using EGE (Exponential Golomb Encoder) format.

• Post-FFT processing

– Advanced 2D-FFT statistics (max across) each dimension including basic statistics can be calculated.

– Histogram/CDF statistics can also be calculated.

– Log & magnitude computation is possible

– CFAR CA (Cell Averaging) and CFAR OS (Ordered Statistics) detection are supported

– Local maxima computation across 2D-plane is also supported with 4-modes of operation

• Context switching

– Supports context switching which enables us to interrupt in order to perform a higher priority task before 
resuming the current task execution.

• Miscellaneous other capabilities of HWA

– Stitching two or four 2K-point FFTs to get the equivalent of 4096-point or 8192-point FFT

– Slow DFT mode, with resolution equivalent to 16K size FFT, for FFT interpolation purposes

– Safety features are present like parity for memories and lock-step for FSM
5



Accelerator engine block diagram 
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State machine
• Operation

– Controls the overall functioning of HWA by enabling and disabling it

– Sequencing a set of operations and looping through those operations one after another

• Trigger mechanisms

– 4-incoming trigger

• Immediate Trigger

• Software Trigger

• DMA based trigger

• Hardware trigger

– 2-outgoing trigger

• Interrupt to main processor

• Trigger to DMA

• Supports an advanced operation called “Context Switching”

– Sequence of operations running in HWA is interrupted to run a different (high priority) sequence of operations

– On finishing those operations, it returns to resume the execution of original sequence
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Parameter-set configuration memory
• Structure

– 64 parameter sets

– Each set consists of 16, 32-bit registers

• State machine can be programmed to loop through a specific 
subset of parameter sets based on param_start_idx, 
param_stop_idx (in PARAM_RAM_IDX struct) and numloops (in 
PARAM_RAM_LOOP struct).

• Functions:

– Choosing and configuring each of blocks of computational engine

– Configuring the input/output data format

– Configuring the trigger for the parameter set

– Configuring 2D-memory indexing

• State machine can also be configured to loop through another set 
of parameter sets for context switching based on param_start_idx, 
param_stop_idx and numloops in PARAM_RAM_IDX_ALT struct.
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Input formatter
• Used to access, format and feed data from local memories of 

HWA to core computational unit as 24-bit complex samples. 

• Supports input samples of 16-bit or 32-bit real or complex, 
variable arrangement of input data along with circular and 
shuffled addressing.

• Support for conjugation (to perform IFFT), taking only complex 
or real samples, sign extension and; swapping I and Q bits of 
complex samples are also provided.

• Also supports scaling and formatting of input samples to convert 
from 16bit or 32-bit to 24-bit for core computational unit.
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Output formatter
• Used to format and write data coming out of core computational 

unit into the HWA memory.

• Similar to input formatter, it supports output samples of 16-bit or 
32-bit real or complex and variable arrangement of output data.

• Support for conjugation (to perform IFFT), taking only complex or 
real samples, skipping of samples, sign extension and; swapping I 
and Q bits of complex samples are also provided.

• Also, supports scaling and formatting of output samples of 24-bit 
from core computational unit to convert to 16bit or 32-bit.
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Core computational unit
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Hardware accelerator: FFT path

• Each block operates on a streaming input of data and produces a streaming output of data at a 
throughput of one clock sample. Bypassing of blocks are controlled through the param-set registers.  

• Pre-processing block performs operations of dc correction, interference localization and mitigation, 
complex scalar and vector multiplication, zero padding and channel combining.

• For the purpose of windowing, window RAM can hold up to 2048 32-bit words of window 
coefficients in three formats (half of the size is only required in RAM if window function is symmetric)

• Magnitude or Log-Magnitude operations can be performed as a part of post-processing step.
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Pre-Processing
Windowing

+
FFT

Mag or 
Log-Mag

Example FFT Size Number of Back-to-
Back Iterations

Number of cycles
(Initial Latency + 

Computation)

Total Duration

1 256 4 256 + (256 x 4) 4.27μs

2 128 4 128 + (128 x 4) 2.13μs

3 8 64 8 + (64 x 8) 1.73μs



Hardware accelerator: CFAR path

• Supports two types of CFAR algorithms: CFAR-CA (Cell-Averaging, CASO and CAGO) and CFAR-OS 
(Ordered Statistics) which determines the threshold of indices of peaks.

• CFAR is implemented on a real input vector, therefore provides us the option of Magnitude or 
Log-Magnitude incase the input to it is complex.

• Also, supports cyclic and non-cyclic mode of CFAR operation.

• The output of this path is a list of indices corresponding to detected peaks.
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Hardware accelerator: Compression/decompression

• Has a compression engine which takes a fixed number of samples and returns a ‘block of bits’ such 
that the block’s size (in bits occupied) is a fraction of the size of the input samples. The 
compression module can achieve an arbitrary compression ratio.

• For e.g. , a 33 % compression-ratio, results in the average bit-width after compression being one-
third of the bit-width before compression.

• Also, has a decompression engine which when provided with the a compressed block of bits, 
regenerates the original samples (with a possibility of some quantization error). 

• Algorithms for compression/decompression is based on Exponential Golomb Encoding (EGE).

• A compression ratio in the range 33%-50% is good with 50% ratio being the nearly loss-less.
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Hardware accelerator: Local maxima

• The local maxima is used to find the maximum in a 2D-plane especially in the Doppler Angle 
dimension after angle-FFT.

• Usually for finding the local maxima of a cell under test (CUT), whose values after magnitude/log-
magnitude (if the input is complex) are compared against the neighboring cells and the detection 
thresholds (row and column threshold which can be configured in registers or using advanced 
statistics).

• The output of the local maxima computations is stored into the destination memory as a bit 
pattern, where each bit indicates whether the specific sample/CUT was detected as a valid local 
peak or not.

• Supports wrap combination or circular shifting for edge cells in 2D plane if required.
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Programming the HWA 2.0

• The HWA 2.0 can be programmed using the driver available in “mcu_plus_sdk”.

• HWA driver has multiple APIs and struct variables to implement functions of HWA2.0 with ease.

• Some of the basic APIs include HWA_init(), HWA_deinit(), HWA_open(), HWA_close(), 
HWA_reset() and  HWA_enable().

• To configure the static and parameter-set registers of the HWA, we have two APIs of 
HWA_configCommon() and HWA_configParamSet() respectively.

• Also, there are APIs like HWA_paramSetDonePolling(), HWA_singleParamSetDonePolling() to 
query the finish of parameter-set and HWA_enableParamSetInterrupt(), 
HWA_disableParamSetInterrupt() etc. to issue interrupts to/from HWA from/to DSP/processor.

• In addition to the above APIs, there are multiple ones to configure/clear RAM, handle the 
operation of context-switching in HWA, trigger the DMA and also to read the status of registers.
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Example use case of HWA 2.0
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Comparison between HWA 1.0 vs HWA 2.0
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HWA 1.0 HWA 2.0

Operating Clock 200MHz 300MHz

Local RAM 16KB x 4 = 64KB 16KB x 8 = 128KB

Max FFT Size 1024(2^N only) 2048 (with 2^N and 3*2^N FFT’s supported) along with 2D-FFT

Parameter-Set 16(16 x 8 x 32bits = 512B) 64 (4KB = 64 x 16 x 32bits )

Interference
Statistics

Interference Zero-Out based on threshold
(Statistics not taken into consideration)

Interference zero-out/Interpolation/zeroing with window (Statistics taken 
into consideration for maximum of 12 accumulations/iterations)

DC-correction 
estimation

- DC estimation and correction for up to 12-iterations

CMULT mode 101-Complex scalar multiplier that remains 
constant

0101-Complex scalar multiplier that remains constant across all iterations or 
changes per iteration

CFAR CFAR-CA CFAR-CA and CFAR-OS

ACCEL-MODE 00 – FFT mode
01 – CFAR mode

000 – FFT mode, 001 – CFAR mode,
010 – Compression mode, 011 – Local Max Engine

Statistics Supports basic statistics of maximum, sum 
etc.

Supports basic statistics of maximum, sum along with 2D-statistics of 
maximum, Histogram/CDF
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Thank You
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