

DC-DC Fundamentals

1.3 Switching Regulator

What is a Switching Regulator?

- The switching regulator is a DC-DC converter that delivers power by using switcher components.
- It offers high power conversion efficiency and design flexibility

Pros and Cons

Advantages

- High efficiency
- Good thermal performance
- High power density
- Allow wide input voltage range
- V_{out} can be smaller or larger than V_{in}
- Isolation possible with transformer
- Multiple outputs possible with transformer

Disadvantages

- Switching produces higher output ripple & noise
- Slow transient response
- High complexity as more external components and design variables

How Does a Switching Regulator Work?

- The inductor stored and released energy to output load get energy from the input source which is controlled by the switches.
- An example of Buck converter:
 - When switched to position 1, the inductor is storing energy; when switched to position 2, the inductor is releasing energy
 - The average voltage over the inductor is zero: $D(V_{in}-V_o)-D'V_o=0 => V_{out} = D^*V_{in}$

Basic Topologies

 Three basic types of switching converter topologies: Buck, Boost and Buck-boost

Synchronous vs. Non-Synchronous

Non-synchronous

- 1. Diode voltage drop is fairly constant with output current
- 2. Less efficient
- 3. Less expensive
- 4. Used with higher output voltages

Synchronous Buck

Synchronous

- 1. MOSFET has lower voltage drop
- 2. More efficient
- 3. Requires additional control circuitry
- 4. Costs more

Isolated vs. Non-isolated

- Isolated has no DC current flow between input and output.
- Transformer couples energy from primary to secondary through magnetic fields
- Isolated typically used in medical and offline applications requiring primary to secondary isolation
- Not typical for standard point of load solutions

Controller vs. Regulator

- Controller
 - Discrete MOSFETs
 - Provides the "brains" to control the power stage
 - More complicated to design
 - Full control over FET selection, switching frequency, overcurrent, compensation, softstart
 - Can tailor the power supply to meet your specific needs
- Fully integrated regulator
 - Integrated switches
 - "plug and play" design
 - Limited range of output filter components
 - Limited control over functionality
- Partially integrated regulator
 - May offer full or partial feature set , internal or external compensation
 - Internal Power FET, external sync-FET or catch diode
 - Limited control over frequency, overcurrent, softstart, etc.
 - Allows wider range of output filter components

Summary

- Introduction to switching regulator
- The operation of switching regulator
- Types of switching regulator
 - Basic topologies
 - Synchronous vs. Non-synchronous
 - Isolated vs. Non-isolated

Thank you!

