
DC-DC Fundamentals

1.4 Charge Pump Regulator

What is a Charge Pump Regulator?

- The charge pump regulator is a kind of switching regulator that delivers power by only alternatively charging and discharging capacitors.
- It's suitable applications with low load current and moderate input to output voltage difference

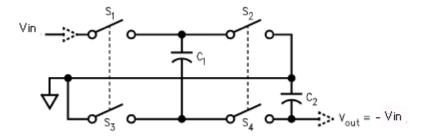
Pros and Cons

Advantages

- No inductor is needed, smaller size
- Moderate Efficiency, higher than linear regulators
- V_{out} can be higher or lower than V_{in}
- Fewer components needed make the charge pump easier to design and lower cost

Disadvantages

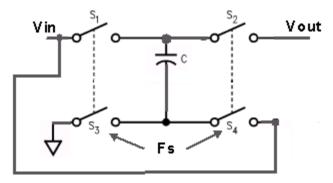
- Switching produces higher output ripple & noise
- The output current capacity is limited by the capacitors


How Does a Charge Pump Work?

- The capacitors connection is altered by the switches so that the charge and discharge is controlled
- Switches S1, S3 and S2, S4 are switching in complementary:
 - S1, S3 on, S2, S4 off, charging
 - S1, S3 off, S2, S4 on, discharging
- By reversing the connections of the output to ground, the unity gain converter becomes negative gain inverter

Unity gain Vin S Fs Vout

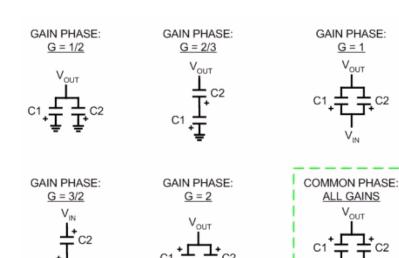
Inverting gain



Voltage Doubler

- The voltage doubler circuit shown below still has a single capacitor in the topology, only the connections are different
- The switching of the four switches are still the same
 - S1, S3 on, S2, S4 off, gain phase
 - S1, S3 off, S2, S4 on, common phase
- However, in the common phase, the input source is still connected to the capacitor: $V_{out} = V_c + V_{in} = 2V_{in}$

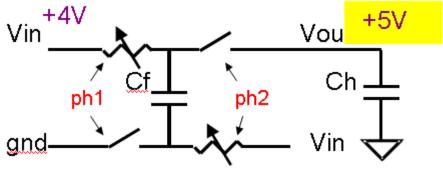
Voltage Doubler



By swapping V_{in} and V_{out}, the same doubler circuit will give half gain

More Gain Combinations

- Include two capacitors in the charge pump, and many different gain can be generated by varying the connection combinations
- The following figure shows some configuration of two capacitor connection and the resulting gain that can be achieved:


Same common phase connection for all gains

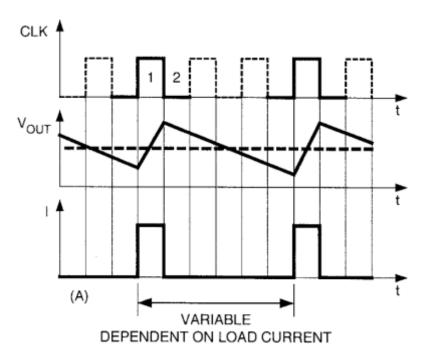
*Assuming C1 = C2

Charge Pump Regulation

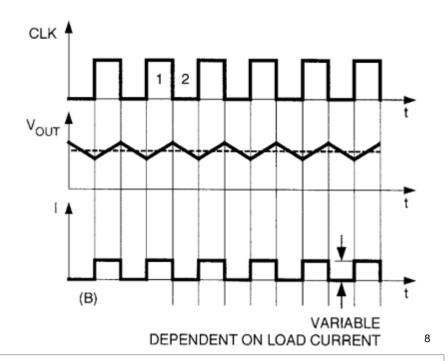
- By including a post regulator stage, the charge pump can achieve fine granular of the output voltage
- Also, the switch impedance can be controlled to act effectively as a post regulator
 - R_{out} is the effective output impedance including the switch impedance R_{sw}, and the switched cap impedance (1/F_{sw}*C_f)
 - Fine adjustment can be accomplished by controlling F_{sw} or R_{sw}

Regulate Gate Drive on 2 Switches to Control Vout

Vout= 2 x Vin- (lout x Rout)


Fine adjust: Modulate Output Resistance (R_{OUT})

$$R_{OUT} = (G \times R_{SW}) + [1/(F_{SW} \times C_F)]$$


Charge Pump Regulation

- Control the frequency: Pulse-Frequency Modulation (PFM)
 - The output voltage is held constant by skipping unneeded pulses
 - Advantages: very low quiescent current, higher efficiency
 - Disadvantages: Higher output voltage ripple, frequency varies

- Control the resistance: Constant-Frequency Regulation
 - Regulate the output by changing the resistance of the internal switches
 - Advantages: low voltage ripple, fixed frequency
 - **Disadvantage**: high quiescent current

Summary

- Introduction to charge pump regulator
- The operation and configuration of switching regulator
- The charge pump regulation

Thank you!