Single-Cell Gauging 101

What is Fuel Gauging Technology?

- Fuel Gauging is a technology used to <u>predict battery</u> <u>capacity</u> under all system active and inactive conditions.
- Battery capacity
 - Percentage
 - time to empty/full
 - milliamp-hours
 - Watt-hours
 - talk time, idle time, etc.
- <u>Other data</u> can be obtained for battery health and safety diagnostics.
 - State of Health
 - Full Charge Capacity

Outline

- Battery chemistry fundamentals
- Classic fuel gauging approaches
 - voltage based
 - coulomb counting
- Impedance Track and its benefits

Single-Cell Gauging 101 Part 3: Impedance Track Benefits

- Voltage based gas gauge: Accurate gauging under no load
- Coulomb counting based gauging: Accurate gauging under load
- Combines advantages of voltage and current based methods
- Real-time impedance measurement
- Calculate remaining run-time at given average load using both open circuit voltage and impedance information.

V = OCV(T,SOC) - I*R(T,SOC, Aging)

Comparison of OCV=f (SOC, T) profiles

- OCV profiles similar for all tested manufacturers
- Most voltage deviations
 < 5 mV
- Average SOC prediction error < 1.5%
 - Same database can be used for batteries from different manufacturers for the same chemistry

How to measure OCV ?

- OCV measurement allows SOC with 0.1% max error
- Self-discharge estimation is eliminated

- Data flash contains a fixed table: OCV = f (SOC, T)
- IT algorithm: Real-time measurements and calculations during charge and discharge.

Issue for Traditional Battery Capacity Learning

Fully Discharge Fully Charge Half Discharge

- Involve a lot of test equipment and time
- User may never fully discharge battery to learn capacity
- Gauging error increase 1% for every 10 cycles without learning

Learning Qmax without Full Discharge

Cooperation between integration and correlation modes

Advantages

- Combine advantages from both voltage based and coulomb counting
- Accurate with both small current (OCV) and large load current
- Throw out inaccurate self-discharge models (use OCV reading)
- Very accurate with new and aged cells
- No need for full charge and discharge for capacity learning

Fuel Gauging Benefits

- Accurate report of remaining run time
- Better Power Management
- Longer Run Time
 - Power management
 - Accuracy: less guard band needed for shutdown
 - Variable shutdown voltage with temperature, discharge rate, and age based on impedance

Track[™] Technology

- Orderly shutdown
 - Automatically save data to flash with reserve energy when battery dies
- Fuel gauging enables mobile applications

- Systems without accurate gauges simply shutdown at a fixed voltage
- Smartphone, Tablets, Portable Medical, Digital Cameras etc... need reserve battery energy for shutdown tasks
- Many devices shutdown at 3.5 or 3.6 volts in order to cover worst case reserve capacity
 - 3.5 volt shut down used in this comparison
 - Gauge will compute remaining capacity and alter shutdown voltage until there is exactly the reserve capacity left under all conditions
 - 10 mAH reserve capacity is used
 - Temperature and age of battery are varied

Fuel Gauging OCV vs. IT Use Case exp – NEW battery w/ variable load mix

Run Time in Minutes

Conditions:

New Battery

+40%

Fuel Gauging OCV vs. IT Use Case Exp – OLD battery w/ variable load mix

Run Time in Minutes

with TI Gauge: +58%

Conditions

Fuel Gauging OCV vs. IT Use Case Exp – NEW battery COLD w/ variable load mix

Conditions *Batty*

• Cold (0°C)

Run Time in Minutes

Extended runtime with TI Gauge: +121%

Fuel Gauging OCV vs. IT Use Case Exp – OLD battery COLD w/ variable load mix

Fuel Gauging – Impedance Track[™] Advantages

• Dynamic (learning) Ability

- Temperature variability in applications
 - IT takes into account cell impedance changes due to increase/decrease in temperature
 - IT incorporates thermal modeling to adjust for self-heating
- Load variation
 - IT will keep track of voltage drops due to high load spikes

Aged Battery

- IT has the ability to adjust for changes in useable capacity due to cell aging

Increased Run Time

- A lower terminate voltage can be utilized with an IT based gauge

Flexibility

- Cell Characterization
- Host system does not need to perform any calculations or gauging algorithms

Unused Battery Capacity implications

- Cell cost: avg \$0.15 for every 100mAh
- Lower Terminate Voltage (TV) = Larger Battery Capacity
- 500mV lower of TV ~ 5% increase on capacity for new battery \rightarrow save ~\$0.10 for 1500mAh battery
- 500mV lower of TV ~ around 50% increase on capacity for aged battery \rightarrow save ~\$1.00 for 1500mAh battery and extend run time!
- Money saving opportunity for manufacturer while still extending end-user runtime

Cost of an inaccurate gauge

- Assuming customer discharge and charge once every day → three month use time = 90 day ~ 90 cycles → Battery internal impedance almost doubled → Aged battery scenario
- Non-Impedance Track based gauge → inaccurate gauging results due to battery aging → much shorter run time or even system crash
- Battery warranty by operators could be one year or even two years.
- Customer return entire units due to faulty gauging results → Returns within warranty period cost company money
- Impedance Track based gauge can extend the battery run time and eliminate some costly return due to faulty gauging results

- Accurate gauges for portable electronics are as critical to long run-time as reducing your design's power and having a beefy battery.
- A variety of gauges are available with different approaches and different trade-offs.

Finish

Back Up Slides: Impedance Track Reference

Single Cell Impedance Track (IT)

Basic Terminology and Relationships

- OCV Open Circuit Voltage
- Q_{max} Maximum battery chemical capacity

$$Q_{max} = \frac{PassedQ}{|SOC_1 - SOC_2|}$$

 $(SOC_1/SOC_2 \text{ is correlated from } OCV \text{ table after } OCV_1/OCV_2 \text{ measurement})$

• SOC – State of Charge

SOC =
$$1 - \frac{PassedQ^*}{Q_{max}}$$

(* From Full Charge State)

• RM – Remaining Capacity

$$RM = (SOC_{start} - SOC_{final}) \times Q_{max}$$

• (SOC _{start} is present SOC, SOC _{final} is SOC at system terminate voltage)

Single Cell Impedance Track (IT) Basic Terminology and Relationships

• FCC – Full Charge Capacity is the amount of charge passed from a fully charged state until the system terminate voltage is reached at a given discharge rate

• RSOC – Relative State of Charge

$$RSOC = \frac{RM \times 100}{FCC}$$

Single Cell Impedance Track (IT)

Fuel Gauge Introduction

27

Gauging Error definition

Check point at 0% is not meaningful – EDV is the voltage where system crashes!

- Reference points
 - at charge termination SOC = 100%
 - at EDV SOC=0
 - Charge integrated from fully charged to EDV is FCC_{true}
- From these reference points, true SOC can be defined as

SOC_{true}= (FCC_{true}-Q)/FCC_{true}

- Reported SOC at all other points can be compared with true SOC.
- Difference between reported and true SOC is the error. It can be defined at different check points during discharge.

Single Cell Impedance Track (IT) Error Definition and Calculation

• Relative State of Charge (RSOC) Error

RSOC Error = RSOC calculated - RSOC reported

$$RSOC_{calculated} = \frac{FCC - Q_{start} - PassedQ}{FCC} \times 100$$

(RSOC _{reported} is the RSOC reported by bq275xx Impedance Track [™] algorithm)

Single Cell Impedance Track (IT) Error Definition and Calculation

• Remaining Capacity (RM) Error

$$RM \ Error = \frac{RM_{calculated}}{FCC}$$

(*RM* _{reported} is the RM reported by bq275xx Impedance Track [™] algorithm)

Example error plots

