Buck Regulator Architectures

4.5 Current/Emulated Current Mode Buck Regulators

CURRENT MODE

Current-Mode Buck Regulator

Current-Mode Buck-Regulator Architecture

Advantages and Disadvantages

- Advantages
- Power plant gain offers a single-pole roll-off
- Line rejection
- Cycle-by-cycle current limiting protection
- Current sharing
- Disadvantages
- Noise
- Minimum ON-time
- Sense resistor

CMC Sub-Harmonic Oscillation

- Current mode controlled power converters operating at duty cycles >50\% are prone to subharmonic oscillation
- Disturbances in peak rising current ($\Delta \mathrm{I}$) increase at the end of the cycle

Slope Compensation

$$
\mathrm{m}_{\mathrm{c}}=\text { Internal Slope Comp }
$$

Modulator Gain

The current sense element is usually a resistor or the $R_{\text {DS-ON }}$ of the FET.

Output Filter

$$
\omega_{\mathrm{P} 1}=\frac{1}{\mathrm{C}_{\text {OUT }} R_{\text {LOAD }}}+\frac{1}{f_{s} L C_{\text {OUT }}}\left(m_{c} D^{\prime}-0.5\right)
$$

Control-Loop Considerations Rules of Thumb

- Crossover frequency at $1 / 5$ th the switching frequency with a phase margin of 45°
- Higher crossover frequency relates to faster transient response and an increased likelihood of instability
- Lower crossover frequency relates to slower transient response and an increased likelihood of stability

Current Mode Line Transients Performance Trade-offs

- Sudden changes in the line voltage are alleviated by use of a large input cap
- Inherently better response in current mode because of implicit line feedforward
- Use of several caps in parallel reduces the ESR also improving performance
- High crossover frequency allows control loop to quickly accommodate perturbations in the system

Current Mode Control Example: LM284x

Internal Block Diagram

Typical Application Circuit

EMULATED CURRENT MODE (ECM) BUCK REGULATORS

Why Emulated Current Mode?

15W Supply With Emulated Current Mode Regulator

Thank you!

