

Buck Regulator Architectures

4.5 Current/Emulated Current Mode Buck Regulators

CURRENT MODE

2

Current-Mode Buck Regulator

Current-Mode Buck-Regulator Architecture

Advantages and Disadvantages

- Advantages
 - Power plant gain offers a single-pole roll-off
 - Line rejection
 - Cycle-by-cycle current limiting protection
 - Current sharing
- Disadvantages
 - Noise
 - Minimum ON-time
 - Sense resistor

CMC Sub-Harmonic Oscillation

- Current mode controlled power converters operating at duty cycles >50% are prone to subharmonic oscillation
- Disturbances in peak rising current (\Delta I) increase at the end of the cycle

Slope Compensation

 $m_c =$ Internal Slope Comp

Stability criteria
$$1 > \frac{m_2 - m_C}{m_1 + m_C}$$

🦊 Texas Instruments

Modulator Gain

The current sense element is usually a resistor or the R_{DS-ON} of the FET.

Control-Loop Considerations Rules of Thumb

- Crossover frequency at 1/5th the switching frequency with a phase margin of 45°
- Higher crossover frequency relates to faster transient response and an increased likelihood of instability
- Lower crossover frequency relates to slower transient response and an increased likelihood of stability

Current Mode Line Transients Performance Trade-offs

- Sudden changes in the line voltage are alleviated by use of a large input cap
- Inherently better response in current mode because of implicit line feedforward
- Use of several caps in parallel reduces the ESR also improving performance
- High crossover frequency allows control loop to quickly accommodate perturbations in the system

Current Mode Control Example: LM284x

EMULATED CURRENT MODE (ECM) BUCK REGULATORS

Why Emulated Current Mode?

15W Supply With Emulated Current Mode Regulator

Thank you!

