KeyStone Training

KeyStone C66x CorePac
Instruction Set Architecture

Revl Oct 2011

#i3 TEXAS INSTRUMENTS Cl Training

Disclaimer

* This section describes differences between
the TMS320C674x instruction set architecture
and the TMS320C66x instruction set included
in the KeyStone CorePac.

e Users of this training should already be
familiar with the TMS320C674x CPU and
Instruction Set Architecture.

Cl Training

http://focus.ti.com/lit/ug/sprufe8b/sprufe8b.pdf

Agenda

* Introduction

* Increased SIMD Capabilities

* C66x Floating-Point Capabilities
 Examples of New Instructions

* Matrix Multiply Example

3 TEXAS INSTRUMENTS Cl Training

Introduction

* Introduction

* Increased SIMD Capabilities

* C66x Floating-Point Capabilities
 Examples of New Instructions

* Matrix Multiply Example

3 TEXAS INSTRUMENTS Cl Training

Enhanced DSP Core

C66x CorePac

100% upward object code
compatible

4x performance
improvement for multiply
operation

32 16-bit MACs

Improved support for
complex arithmetic and
matrix computation

C67x+

Performance improvement

100% upward object code
compatible with C64x, C64x+,
C67X 2X registers C67x and c67x+ structions fo CG4X
smaller code size

S . . . Advanced fixed-
M I e e Bes?t of f".(Ed-pO".‘t L Flexible level one point instructions

for IEEE 754, floating-point architecture TEToTyarehitece

SP&DP Enhanced for better system Four 16-bit or eight

L performance and faster iDMA for rapid data 8-bit MACs
Advanced VLIW floating-point time-to-market transfers between

architecture add capabilities local memories Two-level cache

— FLOATING-POINT VALUE — e FIXED-POINT VALUE

*i3 TEXAS INSTRUMENTS Cl Training

e | ‘*‘ﬁ‘— e
CPU Modifications N i
=1 :.:_E]‘_:_"
Datapaths of the .Land .S o -
units have been increased a -
from 32-bit to 64-bit. "
Datapaths of the .M units ;
have been increased from
64-bit to 128-bit.

The cross-path between the
register files has been
increased from 32-bit to
64-bit.

Register file quadruplets are
used to create 128-bit values.

No changes in D datapath.

Core Evolution — Unified Architecture

¢ Increased Performance
e Fixed/Floating Unification

Co4x+ M C64x+

D L DL 16x16 16x16
MPY MPY

Register Fil Register Fil
16x16 16x16

MPY MPY

Adders

32b Crosspath M C66x

Float

16x16 16x16
.D .L .D .L MPY MPY

16x16 16x16

16x16 16x16
Y12 Y124

16x16 16x16
MPY MPY

Float

64b Crosspath

C64x+ multiplier unit contains four 16-bit multipliers (per side)

16 fixed multiplies per cycle (per side)

Float Four floating multiplies per cycle (per side)

16x16

/1

16x16

MPY

16x16

MPY

16x16 Diagram Key

MPY .

* .D = Data Unit

Eloat * .M = Multiplier Unit

* .L=Logical Unit
* .S = Shifter Unit

*i3 TEXAS INSTRUMENTS

Cl Training

Increased Performance

* Floating-point and fixed-point performance is significantly increased.
— 4xincrease in the number of MACs
* Fixed-point core performance:
— 32 (16x16-bit) multiplies per cycle.
— Eight complex MACs per cycle
* Floating-point core performance:
— Eight single-precision multiplies per cycle
— Four single-precision MACs per cycle
— Two double-precision MACs per cycle
— SIMD (Single Instruction Multiple Data) support

— Additional resource flexibility (e.g., the INT to/from SP conversion
operations can now be executed on .L and .S units).

* Optimized for complex arithmetic and linear algebra (matrix processing)

— L1 and L2 processing is highly dominated by complex arithmetic and linear
algebra (matrix processing).

#i3 TEXAS INSTRUMENTS Cl Training

Performance Improvement Overview

Fixed point 16x16 MACs per cycle

Fixed point 32x32 MACs per cycle 2 2 8
Floating point single-precision MACs per cycle n/a 2 8
Arithmetic floating-point operations per cycle n/a 61! 162
Load/store width 2 X 64-bit 2 X 64-bit 2 X 64-bit

-bit 3
Vector size 32-bit 32-bit 12_8 2l _
(SIMD capability) (2 X 16-bit, 4 x 8-bit) (2 x 16-bit, 4 x 8-bity *X 3%4' ?('té_“bi)i)m'b't’

(11 One operation per .L, .S, .M units for each side (A and B)

(2 Two-way SIMD on .L and .S units (e.g., 8 SP operations for A and B) and 4 SP multiply on one .M unit
(e.g., 8 SP operations for A and B).

(31 128-bit SIMD for the M unit. 64-bit SIMD for the .L and .S units.

#i3 TEXAS INSTRUMENTS Cl Training

Increased SIMD Capabilities

* Introduction

* Increased SIMD Capabilities

* C66x Floating-Point Capabilities
 Examples of New Instructions
* Matrix Multiply Example

Cl Training

SIMD Instructions

* C64x and C674x support 32-bit SIMD:
— 2 x 16-bit
e Syntax: <instruction_name>2 .<unit> <operand>
* Example: MPY2
— 4 x 8-bit
e Syntax: <instruction_name>4 .<unit> <operand>
* Example: AVGU4

* C6bx improves SIMD support:
— Two-way SIMD version of existing instruction:

e Syntax: D<instruction_name> .<unit> <operand>
* Example: DMPY2, DADD

#i3 TEXAS INSTRUMENTS Cl Training

S I M D C66x supports various SIMD data types:
e 2x16-bit
— Two-way SIMD operations for 16-bit elements
Data Types . Example: ADD?
e 2x32-bit
— Two-way SIMD operations for 32-bit elements
* Example: DSUB
— Two-way SIMD operations for complex (16-bit | / 16-bit Q) elements
* Example: DCMPY
— Two-way SIMD operations for single-precision floating elements
* Example: DMPYSP
e 4x16-bit
— Four-way SIMD operations for 16-bit elements
* Example: DMAX2, DADD2
e 4x32-bit
— Four-way SIMD operations for 32-bit elements
* Example: QSMPY32R1
— Four-way SIMD operations for complex (16-bit | / 16-bit Q) elements
* Example: CMATMPY
— Four-way SIMD operations for single-precision floating elements
* Example: QMPYSP
e 8x8-bit
— Eight-way SIMD operations for 8-bit elements
* Example: DMINU4

#i3 TEXAS INSTRUMENTS Cl Training

SIMD Operations (1/2)

* Same precision

<« y-bit»
— Exam P les: A(3) A(2) A(1) A(0)
e MAX2 B(3) B(2) B(1) B(0)
+ DADD2 @ [o [o [o
. C(3) C(2) C(1) C(0)
DCMPYR1 > fpa -
* Increased/narrowed precision
--y-bit-»
— Examp le: DCMPY AR) | A@ | AL [A©)
B(3) B(2) B(1) B(0)
S O S T N A
op op op op
— s N .
C(3) C(3) C(3) C(3)
- 4 x z-bit >

#i3 TEXAS INSTRUMENTS

Cl Training

SIMD Operations (2/2)

e Reduction

— Example:
* DCMPY, DDOTP4H

 Complex instructions

— Example:
* DDOTPxx, CMATMPY

-a-y-bit»

| AQ) | A@ | AD) | A0 |

| B@3) | B@| | BW | BO

L op | op | op | op |

| co | co |
+—A4 X z-bit——»

--y-bit—»

L A® [AQ@ | A{(l) | A0 |

Multiple operations
with possible data reuse

>

| B3) | B2 | B(1) | B()

/

| c® | c@ | c | <

0) |

- 4 X z-bit

|

#i3 TEXAS INSTRUMENTS

Cl Training

Registers and Data Types

* Introduction
* Increased SIMD Capabilities

* Registers and Data Types

* C66x Floating-Point Capabilities
 Examples of New Instructions
* Matrix Multiply Example

Cl Training

Registers

T 5 * C66x provides a total of
A3A2 B33 64 32-bit registers, which
i 5756 are organized in two
ALLALD 511:810 general purpose register
Al AL B15014 files (A and B) of 32
priiper m16:218 registers each.
A21:A20 B21:B20
A23:A22 B23:B22
A25:A24 B25:B24
e 20508 * Registers can be accessed
A31:A30 B31:B30 aS fOI IOWS'
— Registers (32-bit)
Register File . . .
A3'A26A1'AO : BS'BZsBl'BO B RegISter palrs (64-blt)
AT:AG:AS:AL B7:B6:85:B4 — Register quads (128-bit)
Al11:A10:A9:A8 B11:B10:B9:B8
Al15:A14:A13:A12 B15:B14:B13:B12
Al19:A18:A17:Al16 B19:B18:B17:B16
A2 A2 A25 A2 02752682554 * C66x provides explicit
A31:A30:A29:A28 B31:B30:B29:B28

aliased views.

#i3 TEXAS INSTRUMENTS Cl Training

The x128 t Container Type (1/2)

* To manipulate 128-bit vectors, a new data

type has been created in the C compiler:
_ x128 t.

 C compiler defines some intrinsic to create

128-bit vectors and to extract elements from a
128-bit vector.

Cl Training

The x128 t Container Type (2/2)

e Example:

Extraction Creation
/_get32_128(src, 0)) /_Ilt0128(src1,src2) h
N N N —
N) U y,
f hi128(src) A /_it0128(src1,src2,src3, src4))
s =
= L Y

Refer to the TMS320C6000 Optimizing Compiler
User Guide for a complete list of available
intrinsics to create 128-bit vectors and extract
elements from a 128-bit vector.

#i3 TEXAS INSTRUMENTS Cl Training

http://www.ti.com/lit/spru187

The float2 t Container Type

C66x ISA supports floating-point SIMD operations.
__float2 tis a container type to store two single precision floats.

 On previous architectures (C67x, C674x) , the double data type was
used as a container for SIMD float numbers. While all old
instructions can still use the double data type, all new C66x
instructions will have to use the new data type: _ float2 t.

* The C compiler defines some intrinsic to create vectors of floating-
point elements and to extract floating-point elements from a
floating-point vector.

Extraction Creation

_ftof2(srcl,src2) H

_lof2(src)

#i3 TEXAS INSTRUMENTS Cl Training

C66x Floating Point Capabilities

* Introduction
* Increased SIMD Capabilities
* Register

* C66x Floating-Point Capabilities

 Examples of New Instructions
* Matrix Multiply Example

3 TEXAS INSTRUMENTS Cl Training

Support for Floating Point in C66x

Floating point enables efficient MIMO processing and LTE scheduling:

e C66x core supports floating point at full clock speed resulting in 20 GFlops per
core @ 1.2GHz.

e Floating point enables rapid algorithm prototyping and quick SW redesigns, thus
there is no need for normalization and scaling.

e Use Case: LTE MMSE MIMO receiver kernel with matrix inversion
e Performs up to 5x faster than fixed-point implementation

e Significantly reduces development and debug cycle time

N ~1 day ~3 months

<4
*

NUMERICAL
RECIPES

g Fixed-Point
Algorithm
Floating-Point

Algorithm

(ASM, C, C++)

(Cor C++)

F";Z'::;g' Floating point significantly reduces design

DSP cycle time with increased performance

#i3 TEXAS INSTRUMENTS Cl Training

C66x Floating-Point Compatibility

* C66x is 100% object code compatible with C674x.

* A new version of each basic floating-point instruction has
been implemented.

- co74x

Delay Slots Functional Delay Slot Functional

Unit Latency Unit Latency
MPYSP 3 1 3 1
ADDSP / SUBSP 3 1 2 1
MPYDP 9 4 3 1
ADDDP/SUBDP 6 2 2 1

 The C compiler automatically selects the new C66x
instructions.

 When writing in hand-coded assembly, the Fast version has
to be specifically used.

FADDSP / FSUBSP / FMPYSP / FADDSP / FSUBSP / FMPYSP

#i3 TEXAS INSTRUMENTS Cl Training

C66x Floating Point

e C66x ISA includes a complex arithmetic
multiply instruction, CMPYSP.

— CMPYSP computes the four partial products of the
complex multiply.

— To complete a full complex multiply in floating
point, the following code has to be executed:

CMPYSP .M1 A7:A6, A5:A4, A3:A2:A1:A0 ; partial products
DADDSP .M1 A3:A2, Al:A0, A31:A30 ; Add the partial products.

#i3 TEXAS INSTRUMENTS Cl Training

Examples of New Instructions

* Introduction
* Increased SIMD Capabilities
* C66x Floating-Point Capabilities

 Examples of New Instructions

* Matrix Multiply Example

Cl Training

New Instructions on .M Unit

C/C++ Compiler Intrinsic Assembly Description
Instruction

Two-way SIMD complex multiply operations on two sets

_x128_t _dcmpy(long long src1, long long src2); DCMPY e ——

x128_t _dccmpy(long long srcl, long long src2); DCCMPY Two-way SIMD complex multiply operations on two sets
— - - pytiong fong »long fong ’ of packed numbers with complex conjugate of src2.
e e DCMPYR1 Two-way SIMD complex multiply operations on two sets

of packed numbers with rounding.

Two-way SIMD complex multiply operations on two sets
long long _dccmpy(long long src1, long long src2); DCCMPYR1 of packed numbers with rounding and complex
conjugate of src2.

Multiply a 1x2 vector by one 2x2 complex matrix,

_x128_t _cmatmpy(longlong src1, _ x128_tsrc2); CMATMPY SeR e e S Ea e TR
Multiply the conjugate of a 1x2 vector by one 2x2
_x128_t _ccmatmpy(long long src1, _ x128 t src2); CCMATMPY complex matrix, producing two 32-bit complex numbers.

Multiply a 1x2 vector by one 2x2 complex matrix,

long long _cmatmpyrl(longlong srcl, _ x128 tsrc2); CMATMPYR1 SR g e S eI TS i e

Multiply the conjugate of a 1x2 vector by one 2x2
long long _ccmatmpyrl(longlong srcl, _ x128 tsrc2); CCMATMPYR1 complex matrix, producing two 32-bit complex numbers
with rounding.

__x128_t _dmpy?2 (long long src1, long long src2); DMPY2 Four-way SIMD multiply, packed signed 16-bit

Four-way SIMD multiply signed by signed with left shift

_x128_t _dsmpy2 (long long src1, long long src2); DSMPY2 o1 e, e SiEned B

#i3 TEXAS INSTRUMENTS Cl Training

New Instructions on .M Unit

C/C++ Compiler Intrinsic Assembly Description
Instruction

long long _dxpnd2 (unsigned src); DXPND2 Expands bits to packed 16-bit masks

32-bit complex conjugate multiply of Q31 numbers with

long long _ccmpy32rl (long long srcl, long long src2); CCMPY32R1 i

Four-way SIMD 32-bit single precision multiply

A GG e, Ol o QUL producing four 32-bit single precision results.

Four-way SIMD multiply of signed 32-bit values

A IR (L <A el O 2o SLEE producing four 32-bit results. (Four-way _mpy32).

4-way SIMD fractional 32-bit by 32-bit multiply where
each result value is shifted right by 31 bits and rounded.
This normalizes the result to lie within -1 and 1 in a Q31
fractional number system.

_ x128 t_qgsmpy32rl (__x128_tsrcl, _ x128_t src2); QSMPY32R1

i3 TExAs INSTRUMENTS Cl Training

New Instructions on .L Unit

C/C++ Compiler Intrinsic Assembly Description
Instruction

long long _dshr(long long src1, unsigned src2);

long long _dshru(long long src1, unsigned src2);

long long _dshl(long long src1, unsigned src2);

long long _dshr2(long long src1, unsigned src2);

long long _dshru2(long long src1, unsigned src2);

unsigned _shl2(unsigned src1, unsigned src2);

long long _dshl2(long long src1, unsigned src2);

unsigned _dcmpgt2(long long srci, long long src2);

unsigned _dcmpeq2(long long srcl, long long src2);

void _mfence();

DSHR

DSHRU

DSHL

DSHR2

DSHRU2

SHL2

DSHL2

DCMPGT2

DCMPEQ2

MFENCE

Shift-right of two signed 32-bit values by a single value in the src2
argument.

Shift-right of two unsigned 32-bit values by a single value in the
src2 argument.

Shift-left of two signed 32-bit values by a single value in the src2
argument.

Shift-right of four signed 16-bit values by a single value in the src2
argument (two way _shr2(), four way SHR).

Shift-right of four unsigned 16-bit values by a single value in the
src2 argument (two way _shru2(), four way SHRU).

Shift-left of two signed 16-bit values by a single value in the src2
argument.

Shift-left of four signed 16-bit values by a single value in the src2
argument (two way _shl2(), four way SHL).

Four-way SIMD comparison of signed 16-bit values. Results are
packed into the four least significant bits of the return value.

Four-way SIMD comparison of signed 16-bit values. Results are
packed into the four least significant bits of the return value.

Stall CPU while memory system is busy.

#i3 TEXAS INSTRUMENTS

Cl Training

New Instructions on .L/.S Unit

C/C++ Compiler Intrinsic Assembly Description
Instruction

Double _daddsp(double src1, double src2); DADDSP Two-way SIMD addition of 32-bit single precision numbers.
Double _dsubsp(double src1, double src2); DSUBSP Two-way SIMD subtraction of 32-bit single precision numbers.
e o diralenglons s DINTSP Converts two 32-bit signed integers to two single-precision

float point values.

DSPINT Converts two packed single-precision floating point values

long long _dspint (__float2_t src); o e e S bl

*i3 TEXAS INSTRUMENTS Cl Training

Other New Instructions

For an exhaustive list of the C66x instructions,
please refer to the Instruction Descriptions in
the TMS320C66x DSP CPU and Instruction Set.

For an exhaustive list of the new C66x
instructions and their associated C intrinsics,
please refer to the Vector-in-Scalar Support
C/C++ Compiler v7.2 Intrinsics table in the
TMS320C6000 Optimizing Compiler User
Guide.

#i3 TEXAS INSTRUMENTS

Cl Training

http://www.ti.com/lit/sprugh7
http://www.ti.com/lit/spru187

Matrix Multiply Example

* Introduction

* Increased SIMD Capabilities

* C66x Floating-Point Capabilities
 Examples of New Instructions

* Matrix Multiply Example

Cl Training

MNCA

Matrix Multiply

MNCE

Ih

gl

for (i=0; i<NRAL; i++)

for(j=0; J<HNCE; j++)

sum 16.real = 0;
sum l6.imag = 0;
for (k=0; k<HCL;

sum 16.real +=
sum 16.imag +=

k++)

{

((ali]

falill

[k]

k]

.real * b[k][]]

= 5uﬂL16.real;

sum 16.1imag;

.real * blk][]j]

.real)
Limag)

+

B

(alil[

fali]

k]
[k]

L

-imag * b[k][]]

-imag * blk][]]

LAmag)
.real)

+ 0=x00004000) >>15;
+ 0x00004000) >>15;

#i3 TEXAS INSTRUMENTS

Cl Training

e CMATMPY instruction performs the basic
operation:

Matrix Multiply

Bll BlZ :|

[C11 ClZ]:[All AlZ]{le B,,

 Multiple CMATMPY instructions can be used
to compute larger matrices.

Y | e |
B
1 .

I

T
p T I AN I § I O

N ([___§)

n

Rl
|

T |eaiss) I e

A C

#i3 TEXAS INSTRUMENTS

Cl Training

Matrix Multiply

C66x C + intrinsic code:
— Use of the _ x128 ttype
— Use of some conversion intrinsic

— Use of _cmatmpyrl() intrinsic

for (k=0; k<ncar; k+=2)

a 1 |

L8] = *ptril++;

2 = *pLtrid++;

L] = _amems8 ((void
2 = _amems ((void

_k0 = amems ((void
k2 = amems ((void

*1
*1
*1

*1

&bl
&b
&bl
&b

a2 31 30
a 33 3z

[E R R W

+
+
+
+

*ptrhl++;
*ptrh3++;

k*nchb]) :

k*nch + 2]);
(k+1)*nck]):
[E+1)*nch +

213 :

11tol28 (b k1 k0, b 1 0)

_11tol28 (b k3 k2,

= _dsadd?(cmatmpyrl(a 1 0,

End of loop on

Hca

_dsadd? (_cmatmpyrl(a_j1 joO ,
_dsadd? (_cmatmpyrl (a3 2,
_dsadd? (_cmatmpyrl{a_j3_3j2,
_dsadd2 (cmatmpyrl(a 1 0,
_dsadd? (_cmatmpyrl(a 31 jO,
_d=sadd2 (_cmatmpyrl (a 3 2,
_dsadd? { cmatmpyrl(a 3 3j2,

b 3 2);

b k1 k0 b 1 0},

b k1 k0 b 1 0},

b k1 k0 b 1 0},

b x1 k0O b 1 0),

b k3 k2 b 3 2),

b k3 k2 b 3
b k3 k2 b 3
b k3 k2 b 3

sumnl) ;
suml) ;
sum) ;
sum3) ;
zumd) ;
sums) -
sume) ;
sum7) ;

#i3 TEXAS INSTRUMENTS

Cl Training

Matrix Multiply C66x Implementation Description

C66x C + intrinsic code:

for (k=0; k<nca; k+=2)

[128-bit vector data type

|

Four-way SIMD
saturated addition

210 = *prral++;

g 3 2 = *pLril++;

B 10 = _amemt { (void *)
B 32 = _amemt | (vold ¥)
b k1 kO = ameng|((vold *)
b k3 k2 = amems|((void *)
_ %128 t b k1 kO b 1 0 =

=132

zumd

8t b k3kzb3iz2

a_jl_
a_j3_

sb[i
Eb[i
Eb[i

N
+
+

Eb[i +

1lto

gddZ { cmatmpyrl{a 1 O,
_dzadd2 (_cmatmpyrlfa jl1 30 , b kl kO b 1 0), =suml);

= dsaddZ(cmatmpyrl{a 3 2Z,
= dsadd?(cmatmpyrl(a j3 j2, b k1 k0 b 1 0), zum3):

= dsaddl(cmat
= dsaddZ(cmatmpyrl

= dsadd?(cmatmpyrl(a 3 2,
_d=add2 { cmatmpyrl{a j3 j2, b

End of loop on Hca */

rl{a 1 0O,

Most inner loop unrolled

j0 = *ptral++;
i2 = *prrild++;

Construct a 128-bit

k*nchkb]) : .
vector from two 64-bit

k¥nch + 2]):

|

(k+1) *ncb]) ;
(k+1) *n

(b X1 k0, b 1 0);

11tol128 (b k3 k2, b 3 2);

b k1 k0 b 1 0), sum0);
b k1 k0 b 1 0), sum2);

b k3 k2 b 3 2), sumd);
b k3 k2 b 3 2), sum3);
2 b 3 2), sumk);

b sum7) ;

Matrix multiply operation
with rounding

#i3 TEXAS INSTRUMENTS

Cl Training

Matrix Multiply C66x Resources Utilization

C compiler software pipelining feedback:
* The Tl C66x C compiler optimizes this loop in four cycles.
* Perfect balance in the CPU resources utilization:

- TWO 64_bit Ioads per CyC|e ;' SCFIWARE PIPELINE INFCRMATICHN
— Two CMATMPY percycle = o coves e -
* i.e., 32 16-bit x 16-bit eop crening peace soweee e 1 oo
multiplies per cycle o oo i e cou o
— Eight saturated additions s
per cycle. '+ Usparcitioned Resource Bownd : 4

Additional examples are s

described in the application

report, Optimizing Loops
on the C66x DSP. S e

http://www.ti.com/lit/an/sprabg7/sprabg7.pdf
http://www.ti.com/lit/an/sprabg7/sprabg7.pdf

For More Information

* For more information, refer to the C66x DSP
CPU and Instruction Set Reference Guide.

* For a list of intrinsics, refer to the
TMS320C6000 Optimizing Compiler User
Guide.

* For questions regarding topics covered in this
training, visit the C66x support forums at the
TlI E2E Community website.

#i3 TEXAS INSTRUMENTS Cl Training

http://www.ti.com/litv/pdf/sprugh7
http://www.ti.com/litv/pdf/spru187t
http://e2e.ti.com/

