
KeyStone Training

KeyStone C66x CorePac
Instruction Set Architecture

Rev1 Oct 2011

Disclaimer

• This section describes differences between
the TMS320C674x instruction set architecture
and the TMS320C66x instruction set included
in the KeyStone CorePac.

• Users of this training should already be
familiar with the TMS320C674x CPU and
Instruction Set Architecture.

http://focus.ti.com/lit/ug/sprufe8b/sprufe8b.pdf

Agenda

• Introduction

• Increased SIMD Capabilities

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

Introduction

• Introduction

• Increased SIMD Capabilities

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

Enhanced DSP Core

100% upward object code
compatible

4x performance
improvement for multiply

operation

32 16-bit MACs

Improved support for
complex arithmetic and

matrix computation

100% upward object code
compatible with C64x, C64x+,

C67x and c67x+

Best of fixed-point and
floating-point architecture

for better system
performance and faster

time-to-market

Native instructions
for IEEE 754,

SP&DP

Advanced VLIW
architecture

2x registers

Enhanced
floating-point

add capabilities

Advanced fixed-
point instructions

Four 16-bit or eight
8-bit MACs

Two-level cache

SPLOOP and 16-bit
instructions for

smaller code size

Flexible level one
memory architecture

iDMA for rapid data
transfers between

local memories

C66x CorePac

C64x+

C64xC67x

C67x+

FLOATING-POINT VALUE FIXED-POINT VALUE

P
e

rf
o

rm
an

ce
 im

p
ro

ve
m

e
n

t

CPU Modifications

• Datapaths of the .L and .S
units have been increased
from 32-bit to 64-bit.

• Datapaths of the .M units
have been increased from
64-bit to 128-bit.

• The cross-path between the
register files has been
increased from 32-bit to
64-bit.

• Register file quadruplets are
used to create 128-bit values.

• No changes in D datapath.

.M C66x

Float

Float Float

FloatC66x

Register File

.S .M

.L.D

Register File

.S .M

.L.D

A B

16 fixed multiplies per cycle (per side)

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Adders

Core Evolution – Unified Architecture

C64x+

Register File

.S .M

.L.D

Register File

.S .M

.L.D

A B

Four floating multiplies per cycle (per side)

C64x+ multiplier unit contains four 16-bit multipliers (per side)

.M C64x+

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Adders

• Increased Performance
• Fixed/Floating Unification

32b Crosspath

64b Crosspath

Diagram Key

• .D = Data Unit

• .M = Multiplier Unit

• .L = Logical Unit

• .S = Shifter Unit

Increased Performance
• Floating-point and fixed-point performance is significantly increased.

– 4x increase in the number of MACs
• Fixed-point core performance:

– 32 (16x16-bit) multiplies per cycle.
– Eight complex MACs per cycle

• Floating-point core performance:
– Eight single-precision multiplies per cycle
– Four single-precision MACs per cycle
– Two double-precision MACs per cycle
– SIMD (Single Instruction Multiple Data) support
– Additional resource flexibility (e.g., the INT to/from SP conversion

operations can now be executed on .L and .S units).
• Optimized for complex arithmetic and linear algebra (matrix processing)

– L1 and L2 processing is highly dominated by complex arithmetic and linear
algebra (matrix processing).

Performance Improvement Overview

C64x+ C674x C66x

Fixed point 16x16 MACs per cycle 8 8 32

Fixed point 32x32 MACs per cycle 2 2 8

Floating point single-precision MACs per cycle n/a 2 8

Arithmetic floating-point operations per cycle n/a 6 1 16 2

Load/store width 2 x 64-bit 2 x 64-bit 2 x 64-bit

Vector size

(SIMD capability)

32-bit

(2 x 16-bit, 4 x 8-bit)

32-bit

(2 x 16-bit, 4 x 8-bit)

128-bit 3

(4 x 32-bit, 4 x 16-bit,

4 x 8-bit)

[1] One operation per .L, .S, .M units for each side (A and B)
[2] Two-way SIMD on .L and .S units (e.g., 8 SP operations for A and B) and 4 SP multiply on one .M unit

(e.g., 8 SP operations for A and B).
[3] 128-bit SIMD for the M unit. 64-bit SIMD for the .L and .S units.

Increased SIMD Capabilities

• Introduction

• Increased SIMD Capabilities

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

SIMD Instructions

• C64x and C674x support 32-bit SIMD:

– 2 x 16-bit

• Syntax: <instruction_name>2 .<unit> <operand>

• Example: MPY2

– 4 x 8-bit

• Syntax: <instruction_name>4 .<unit> <operand>

• Example: AVGU4

• C66x improves SIMD support:

– Two-way SIMD version of existing instruction:

• Syntax: D<instruction_name> .<unit> <operand>

• Example: DMPY2, DADD

SIMD
Data Types

C66x supports various SIMD data types:
• 2 x 16-bit

– Two-way SIMD operations for 16-bit elements

• Example: ADD2

• 2 x 32-bit

– Two-way SIMD operations for 32-bit elements

• Example: DSUB

– Two-way SIMD operations for complex (16-bit I / 16-bit Q) elements

• Example: DCMPY

– Two-way SIMD operations for single-precision floating elements

• Example: DMPYSP

• 4 x 16-bit

– Four-way SIMD operations for 16-bit elements

• Example: DMAX2, DADD2

• 4 x 32-bit

– Four-way SIMD operations for 32-bit elements

• Example: QSMPY32R1

– Four-way SIMD operations for complex (16-bit I / 16-bit Q) elements

• Example: CMATMPY

– Four-way SIMD operations for single-precision floating elements

• Example: QMPYSP

• 8 x 8-bit

– Eight-way SIMD operations for 8-bit elements

• Example: DMINU4

SIMD Operations (1/2)

• Same precision

– Examples:

• MAX2

• DADD2

• DCMPYR1

• Increased/narrowed precision

– Example: DCMPY

B(3) B(2) B(1) B(0)

A(3) A(2) A(1) A(0)

C(3) C(2) C(1) C(0)

op op op op

4 x y-bit

y-bit

B(3) B(2) B(1) B(0)

A(3) A(2) A(1) A(0)

C(3)

op op op op

4 x z-bit

y-bit

C(3) C(3) C(3)

SIMD Operations (2/2)

• Reduction

– Example:

• DCMPY, DDOTP4H

• Complex instructions

– Example:

• DDOTPxx, CMATMPY

B(3) B(2) B(1) B(0)

A(3) A(2) A(1) A(0)

C(1)

op op op op

4 x z-bit

y-bit

op op

C(0)

B
(3

)
B

(2
)

B
(1

)
B

(0
)

A(3) A(2) A(1) A(0)

C(3)

4 x z-bit

y-bit

C(2) C(1) C(0)

Multiple operations

(with possible data re-use)
Multiple operations

with possible data reuse

Registers and Data Types

• Introduction

• Increased SIMD Capabilities

• Registers and Data Types

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

Registers
Register File

A B

A1:A0 B1:B0

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14

A17:A16 B17:B16

A19:A18 B19:B18

A21:A20 B21:B20

A23:A22 B23:B22

A25:A24 B25:B24

A27:A26 B27:B26

A29:A28 B29:B28

A31:A30 B31:B30

• C66x provides a total of
64 32-bit registers, which
are organized in two
general purpose register
files (A and B) of 32
registers each.

• Registers can be accessed
as follows:
– Registers (32-bit)
– Register pairs (64-bit)
– Register quads (128-bit)

• C66x provides explicit
aliased views.

Register File

A B

A3:A2:A1:A0 B3:B2:B1:B0

A7:A6:A5:A4 B7:B6:B5:B4

A11:A10:A9:A8 B11:B10:B9:B8

A15:A14:A13:A12 B15:B14:B13:B12

A19:A18:A17:A16 B19:B18:B17:B16

A23:A22:A21:A20 B23:B22:B21:B20

A27:A26:A25:A24 B27:B26:B25:B24

A31:A30:A29:A28 B31:B30:B29:B28

The __x128_t Container Type (1/2)

• To manipulate 128-bit vectors, a new data
type has been created in the C compiler:
__x128_t.

• C compiler defines some intrinsic to create
128-bit vectors and to extract elements from a
128-bit vector.

The __x128_t Container Type (2/2)

• Example:

• Refer to the TMS320C6000 Optimizing Compiler
User Guide for a complete list of available
intrinsics to create 128-bit vectors and extract
elements from a 128-bit vector.

_get32_128(src, 0)

_hi128(src)

_llto128(src1,src2)

_ito128(src1,src2,src3, src4)

Extraction Creation

http://www.ti.com/lit/spru187

The __float2_t Container Type
• C66x ISA supports floating-point SIMD operations.

• __float2_t is a container type to store two single precision floats.

• On previous architectures (C67x, C674x) , the double data type was
used as a container for SIMD float numbers. While all old
instructions can still use the double data type, all new C66x
instructions will have to use the new data type: __float2_t.

• The C compiler defines some intrinsic to create vectors of floating-
point elements and to extract floating-point elements from a
floating-point vector.

_lof2(src) _ftof2(src1,src2)

Extraction Creation

C66x Floating Point Capabilities

• Introduction

• Increased SIMD Capabilities

• Register

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

Floating point enables efficient MIMO processing and LTE scheduling:

• C66x core supports floating point at full clock speed resulting in 20 GFlops per
core @ 1.2GHz.

• Floating point enables rapid algorithm prototyping and quick SW redesigns, thus
there is no need for normalization and scaling.

• Use Case: LTE MMSE MIMO receiver kernel with matrix inversion

• Performs up to 5x faster than fixed-point implementation

• Significantly reduces development and debug cycle time

Floating point significantly reduces design
cycle time with increased performance

Fixed-
Point
DSP

Fixed-Point
Algorithm

(ASM, C, C++)

Floating-
Point
DSP

~3 months

Floating-Point
Algorithm
(C or C++)

~1 day

Support for Floating Point in C66x

C66x Floating-Point Compatibility
• C66x is 100% object code compatible with C674x.
• A new version of each basic floating-point instruction has

been implemented.

• The C compiler automatically selects the new C66x
instructions.

• When writing in hand-coded assembly, the Fast version has
to be specifically used.
FADDSP / FSUBSP / FMPYSP / FADDSP / FSUBSP / FMPYSP

C674x C66x

Delay Slots Functional
Unit Latency

Delay Slot Functional
Unit Latency

MPYSP 3 1 3 1

ADDSP / SUBSP 3 1 2 1

MPYDP 9 4 3 1

ADDDP/SUBDP 6 2 2 1

C66x Floating Point

• C66x ISA includes a complex arithmetic
multiply instruction, CMPYSP.

– CMPYSP computes the four partial products of the
complex multiply.

– To complete a full complex multiply in floating
point, the following code has to be executed:

CMPYSP .M1 A7:A6, A5:A4, A3:A2:A1:A0 ; partial products

DADDSP .M1 A3:A2, A1:A0, A31:A30 ; Add the partial products.

Examples of New Instructions

• Introduction

• Increased SIMD Capabilities

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

New Instructions on .M Unit
C/C++ Compiler Intrinsic Assembly

Instruction
Description

__x128_t _dcmpy(long long src1, long long src2); DCMPY
Two-way SIMD complex multiply operations on two sets
of packed numbers.

__x128_t _dccmpy(long long src1, long long src2); DCCMPY
Two-way SIMD complex multiply operations on two sets
of packed numbers with complex conjugate of src2.

long long _dcmpy(long long src1, long long src2); DCMPYR1
Two-way SIMD complex multiply operations on two sets
of packed numbers with rounding.

long long _dccmpy(long long src1, long long src2); DCCMPYR1

Two-way SIMD complex multiply operations on two sets
of packed numbers with rounding and complex
conjugate of src2.

__x128_t _cmatmpy(long long src1, __x128_tsrc2); CMATMPY
Multiply a 1x2 vector by one 2x2 complex matrix,
producing two 32-bit complex numbers.

__x128_t _ccmatmpy(long long src1, __x128_t src2); CCMATMPY

Multiply the conjugate of a 1x2 vector by one 2x2
complex matrix, producing two 32-bit complex numbers.

long long _cmatmpyr1(long long src1, __x128_tsrc2); CMATMPYR1
Multiply a 1x2 vector by one 2x2 complex matrix,
producing two 32-bit complex numbers with rounding

long long _ccmatmpyr1(long long src1, __x128_t src2); CCMATMPYR1

Multiply the conjugate of a 1x2 vector by one 2x2
complex matrix, producing two 32-bit complex numbers
with rounding.

__x128_t _dmpy2 (long long src1, long long src2); DMPY2 Four-way SIMD multiply, packed signed 16-bit

__x128_t _dsmpy2 (long long src1, long long src2); DSMPY2
Four-way SIMD multiply signed by signed with left shift
and saturation, packed signed 16-bit

New Instructions on .M Unit
C/C++ Compiler Intrinsic Assembly

Instruction
Description

long long _dxpnd2 (unsigned src); DXPND2 Expands bits to packed 16-bit masks

long long _ccmpy32r1 (long long src1, long long src2); CCMPY32R1
32-bit complex conjugate multiply of Q31 numbers with
Rounding

__x128_t _qmpysp (__x128_t src1, __x128_t src2); QMPYSP
Four-way SIMD 32-bit single precision multiply
producing four 32-bit single precision results.

__x128_t _qmpy32 (__x128_t src1, __x128_t src2); QMPY32
Four-way SIMD multiply of signed 32-bit values
producing four 32-bit results. (Four-way _mpy32).

__x128_t _qsmpy32r1 (__x128_t src1, __x128_t src2); QSMPY32R1

4-way SIMD fractional 32-bit by 32-bit multiply where
each result value is shifted right by 31 bits and rounded.
This normalizes the result to lie within -1 and 1 in a Q31
fractional number system.

New Instructions on .L Unit
C/C++ Compiler Intrinsic Assembly

Instruction
Description

long long _dshr(long long src1, unsigned src2); DSHR
Shift-right of two signed 32-bit values by a single value in the src2
argument.

long long _dshru(long long src1, unsigned src2); DSHRU
Shift-right of two unsigned 32-bit values by a single value in the
src2 argument.

long long _dshl(long long src1, unsigned src2); DSHL
Shift-left of two signed 32-bit values by a single value in the src2
argument.

long long _dshr2(long long src1, unsigned src2); DSHR2
Shift-right of four signed 16-bit values by a single value in the src2
argument (two way _shr2(), four way SHR).

long long _dshru2(long long src1, unsigned src2); DSHRU2
Shift-right of four unsigned 16-bit values by a single value in the
src2 argument (two way _shru2(), four way SHRU).

unsigned _shl2(unsigned src1, unsigned src2); SHL2
Shift-left of two signed 16-bit values by a single value in the src2
argument.

long long _dshl2(long long src1, unsigned src2); DSHL2
Shift-left of four signed 16-bit values by a single value in the src2
argument (two way _shl2(), four way SHL).

unsigned _dcmpgt2(long long src1, long long src2); DCMPGT2
Four-way SIMD comparison of signed 16-bit values. Results are
packed into the four least significant bits of the return value.

unsigned _dcmpeq2(long long src1, long long src2); DCMPEQ2
Four-way SIMD comparison of signed 16-bit values. Results are
packed into the four least significant bits of the return value.

void _mfence(); MFENCE Stall CPU while memory system is busy.

New Instructions on .L/.S Unit
C/C++ Compiler Intrinsic Assembly

Instruction
Description

Double _daddsp(double src1, double src2); DADDSP Two-way SIMD addition of 32-bit single precision numbers.

Double _dsubsp(double src1, double src2); DSUBSP Two-way SIMD subtraction of 32-bit single precision numbers.

__float2_t _dintsp(long long src); DINTSP
Converts two 32-bit signed integers to two single-precision
float point values.

long long _dspint (__float2_t src); DSPINT
Converts two packed single-precision floating point values
to two signed 32-bit values.

Other New Instructions

• For an exhaustive list of the C66x instructions,
please refer to the Instruction Descriptions in
the TMS320C66x DSP CPU and Instruction Set.

• For an exhaustive list of the new C66x
instructions and their associated C intrinsics,
please refer to the Vector-in-Scalar Support
C/C++ Compiler v7.2 Intrinsics table in the
TMS320C6000 Optimizing Compiler User
Guide.

http://www.ti.com/lit/sprugh7
http://www.ti.com/lit/spru187

Matrix Multiply Example

• Introduction

• Increased SIMD Capabilities

• C66x Floating-Point Capabilities

• Examples of New Instructions

• Matrix Multiply Example

Matrix Multiply

Matrix Multiply

• CMATMPY instruction performs the basic
operation:

• Multiple CMATMPY instructions can be used
to compute larger matrices.

    







=

2221

1211

12111211 .
BB

BB
AACC

Matrix Multiply

• C66x C + intrinsic code:

– Use of the __x128_t type

– Use of some conversion intrinsic

– Use of _cmatmpyr1() intrinsic

Matrix Multiply C66x Implementation Description

• C66x C + intrinsic code:
Most inner loop unrolled

128-bit vector data type

Construct a 128-bit
vector from two 64-bit

Four-way SIMD
saturated addition Matrix multiply operation

with rounding

Matrix Multiply C66x Resources Utilization
C compiler software pipelining feedback:
• The TI C66x C compiler optimizes this loop in four cycles.
• Perfect balance in the CPU resources utilization:

– Two 64-bit loads per cycle
– Two CMATMPY per cycle

• i.e., 32 16-bit x 16-bit
multiplies per cycle

– Eight saturated additions
per cycle.

Additional examples are

described in the application

report, Optimizing Loops

on the C66x DSP.

http://www.ti.com/lit/an/sprabg7/sprabg7.pdf
http://www.ti.com/lit/an/sprabg7/sprabg7.pdf

For More Information

• For more information, refer to the C66x DSP
CPU and Instruction Set Reference Guide.

• For a list of intrinsics, refer to the
TMS320C6000 Optimizing Compiler User
Guide.

• For questions regarding topics covered in this
training, visit the C66x support forums at the
TI E2E Community website.

http://www.ti.com/litv/pdf/sprugh7
http://www.ti.com/litv/pdf/spru187t
http://e2e.ti.com/

