Mixed-Type Output Capacitors & Noise Mitigation

Akshay Mehta

Texas Instruments

1

Output ripple components

Low Frequency (LF) "Ripple" & High Frequency (HF) "Noise"

• Low Frequency (LF) "Ripple"

LF ripple: Origin

• A function of the inductor ripple current & the output capacitor impedance (formed by C, ESR, and ESL)

Aluminum electrolytics - Overview

- Low cost
 - Mature technology with low cost materials
- Long history
 - Industry started in the 1930's
- Many manufacturers to choose from
- High capacitance values available
- Only choice for SMPS that need high voltage & high capacitance
- Highest ESR
- Low frequency capacitance roll off due to higher ESR

Aluminum electrolytics - Disadvantages

- Large swings in ESR vs. temperature
 - Cold temps have 4-8x higher ESR than at room temperature

ESR as a Function of Temperature and Frequency

Frequency response of a 100μF electrolytic capacitor with 100mΩ ESR

- High ESR at low frequencies
- The high ESR introduces a zero at low frequencies which may cause instabilities during a transient if not properly compensated for
- The high ESR will also increase the steady state ripple
- To mitigate this & reduce LF ripple, parallel ceramic caps can be added.

Ceramics - Overview

- Lowest cost devices
- · Best choice for local bypassing
- Not polarized
- Low series resistance (Low ESR)
- Low effective series inductance (Low ESL)
- Significant effects for Class 2 dielectrics i.e. X5R, X7R
 - Voltage bias effect
 - Temperature effects
 - High Q
 - Frequency selective

Adding a parallel 2.2µF ceramic capacitor to the 100µF electrolytic

- Ceramic capacitor ESR is at a very high frequency
- Addition of ceramic cap introduces a pole at low frequencies
 - This will reduce the effect of the ESR zero of the electrolytic cap
- Effective ESR of the parallel combination reduces, thus reducing the steady state ripple

How much is enough?

- Addition of a single 2.2µF ceramic cap introduced a pole, but was it at a low enough frequency?
- How much was the ripple reduced by? Was it enough?
- Is the design stable?

These are some questions that can be answered after doing some analysis on the parallel combination of the mixed type capacitors.

Reducing LF ripple with mixed type output caps for buck topology

Impedance of a capacitor with ESR can be visualized as shown

It is defined as:

$$Z = |Z|e^{j\theta(Z)}$$
 where $|Z| = \sqrt{R^2 + X_c^2}$ and $\theta(Z) = atan\left(\frac{X_c}{R}\right)$

X_c 7Z

For two capacitors in parallel, the magnitude & phase can be written as follows:

$$|Zc| = \frac{\sqrt{R_1^2 + X_{c1}^2} * \sqrt{R_2^2 + X_{c2}^2}}{\sqrt{(R_1 + R_2)^2 + (X_{c1} + X_{c2})^2}} \text{ and } \theta(Z_C) = atan\left(\frac{X_{c1}}{R_1}\right) + atan\left(\frac{X_{c2}}{R_2}\right) - atan\left(\frac{X_{c1} + X_{c2}}{R_1 + R_2}\right)$$

The effective ESR and capacitance can then be estimated as:

$$R_{eff} = |Z_{C}| * cos(\theta(Z_{C}))$$
$$C_{eff} = \frac{1}{2 * \pi * f * |Z_{C}| * sin(\theta(Z_{C}))}$$

Output voltage ripple for buck:

 \mathbf{C}_{eff} and \mathbf{R}_{eff} are dependent on frequency, f

/-- \

$$V_{O_{ripple}} \sqrt[\approx]{\left(I_{Lpp} * R_{eff}\right)^2 + \left(\frac{I_{Lpp}}{8 * f * C_{eff}}\right)^2}$$

Microsoft Excel Worksheet

```
Spreadsheet to estimate output ripple
```


11

LF output voltage ripple with 1A ripple current

Ceramic cap: Voltage bias effect including case size

X5R, 16V Rated Capacitors

Capacitance decreases more quickly with smaller Case sizes

Ceramic caps: Choose the right rated component

- If chosen cap has rated voltage close to applied voltage, the capacitance derates
- This will push the pole out to higher frequencies & will not be as effective in terms of compensating for the ESR of the electrolytic cap

Ceramic caps: Y5V dielectric characteristics

DO NOT USE! Y5V & Z5U ceramic dielectrics for power supply designs

HF noise: Origin

• Fast edge of switch node voltage couples right through the inductor parasitic capacitance

 Ringing frequency in 100's of MHz, modulated by the inductor & output cap parasitics

17

18

• When taking V_{OUT} measurements, don't probe any other noisy nodes (e.g. SW) with the scope

Measuring output ripple – Custom 1x probe

- 0.1µF AC coupling (DC blocking) capacitor & external (or internal) 50Ω termination at the scope
- High Pass cutoff frequency at 1 / ($2\pi RC$) = 32kHz
 - This simple probe is suitable for use for up to 250MHz BW setting on the scope

22

Measuring output ripple – Custom 1x probe

23

Buck input capacitor placement – reduce source of ringing

Buck input capacitor placement – reduce source of ringing

Buck input capacitor placement – reduce source of ringing placement

- After careful input capacitor placement, we get what we get
 - There is still some HF noise on the output
- Now we need to filter the left over HF spike
- We need to provide "low" impedance path at the frequency of interest
- Method with capacitors only:
 - Leave empty small capacitor footprint(s) in your layout
 - When the hardware arrives, measure the HF ringing frequency with high BW scope setting
 - Remember, the ringing frequency is a result of the inductor parasitics, PCB layout, output capacitor, so knowing the frequency before getting hardware is difficult
 - Once the frequency is known from measurement, pick a small ceramic capacitor with a "notch" or "null" at the frequency of interest
 - Place 1-2 small capacitors in parallel to reduce the HF noise

• Ceramic capacitor impedance (plot from manufacturer software)

- Measure your caps
- Mark up your capacitor kit!

Gen6 SIMPLE SWITCHER[®] easy-to-use pin out & schematic

- Wide V_{IN} range 3.5V to 36V or 60V
- Low BOM count
- Good light load efficiency with DCM / PFM
- 27 µA operating quiescent current
- Full-featured: Soft Start, Tracking, Sync, Fs, PGOOD, UVLO, OCP, TSD

30

Pin-out optimized for EMI performance

LM43603 EMI performance

Measured on the

LM43603PWPEVM with

default BOM

No input filter used.

EMI curves on all 7 datasheets

LM43603 – 36V_{IN} 3A synchronous buck Ta=25°C, EVM, 500kHz

$LM46002 - 60V_{IN}$ 2A synchronous buck Ta=25°C, EVM, 500kHz

Flexible features for broad-market applications

- Enable / UVLO
- PGOOD
- SS / Tracking / Prebias
- Programmable f_s: 200kHz to 2.2MHz
- Frequency synchronization
- Internal Compensation
- OCP / SC / TSD
- HTSSOP package
- EVM tested under EN55022/CISPR22 EMI standards

Thanks!

Fore more information: SIMPLESWITCHER.com

