

### Motor Control with Embedded Coder and TI C2000™



© 2016 The MathWorks, Inc.



### Agenda

- TI C2000<sup>™</sup> Microcontrollers
  - Matt Pate, Texas Instruments
- Production code generation with Embedded Coder
  - Brian McKay, MathWorks
- Demo: Running two 3-phase motors with F28069M LaunchPad
  - Antonin Ancelle, MathWorks

## C2000™ Microcontrollers

**Built for Real-Time, Closed-Loop Control** 

32-bit microcontrollers optimized for processing, sensing, and actuation to improve closed loop performance.





### **TI C2000<sup>™</sup> MCU Platform** 32-bit MCUs for Real Time Control

C2000™ MCUs Real-Time Control



Up to 24 ch., 150ps high

res. technology

4x ADC, 12 – 16-bit, up to 14 MSPS, 4 S/H units

Up to 800 MIPS

512 KB – 1 MB Flash



#### C2000<sup>™</sup> Piccolo<sup>™</sup> MCUs

32-bit C2000 microcontrollers for <u>broad</u> real-time, closed loop control applications







Up to 240 MIPS 16 – 512 KB Flash







### **DNA of the C2000™ Microcontroller**





### **TI C2000 MCU Portfolio**





### **C2000 Solutions**

|                                                                                                                                                                                              | InstaSPIN                                                                                                                                                                          | DesignDRIVE                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| powerSUITE                                                                                                                                                                                   | InstaSPIN                                                                                                                                                                          | DesignDRIVE                                                                                                                                                                                                  |
| Power Supplies                                                                                                                                                                               | Motor Control                                                                                                                                                                      | Industrial Drives                                                                                                                                                                                            |
| <ul> <li>Tools for power supply design</li> <li>Software frequency response analyzer</li> <li>Compensation designer</li> <li>Adapt development kit software to your custom design</li> </ul> | <ul> <li>Instantly spin any three phase motor</li> <li>Automatic current loop tuning</li> <li>Robust motion control</li> <li>Software embedded on chip and ready to use</li> </ul> | <ul> <li>Create designs for<br/>industrial drives<br/>applications</li> <li>Support for various motor<br/>types, sensing<br/>technologies, encoder<br/>standards, and<br/>communications networks</li> </ul> |



#### **InstaSPIN™** Microcontrollers

C2000<sup>™</sup> microcontrollers with embedded InstaSPIN<sup>™</sup> motion control software to identify, tune, and fully control three phase motors in minutes.





InstaSPIN<sup>TM</sup> 32-bit MCUs

### What Comes in the Box?

controlSUITE<sup>™</sup> Software Code Composer Studio<sup>™</sup> Suite (CCS) IDE



Hardware Development

Kits



3<sup>rd</sup> Party Innovation and Support

**Application Expertise** 





### **Hardware Development Kits**

#### **Starter Kits**



#### Piccolo<sup>™</sup>/Delfino <sup>™</sup> LaunchPad

Fun, inexpensive, and powerful evaluation platform to dive into the world of real-time control programming with the C2000 platform.

#### **Prototyping Kits**



#### **Experimenter's Kits**

Provide a hardware prototyping platform for application development..

#### **Application Kits**



A great learning tool for new C2000 developers and university students with comprehensive introduction to C2000 peripherals. Based on the Delfino™ TMS320F28335 MCU.



#### **Application Kits**

Dive deep into specific application development hardware and software techniques.

Kits available for Motor Control, Digital Power, Solar, LED Lighting, and Power Line Communications applications



## TI Design, Kits/Software Roadmap

### **TI Designs**

| Name                                         | Application, TI devices                             | Est.Timeline |
|----------------------------------------------|-----------------------------------------------------|--------------|
| TIDA-00643                                   | Drone UAV, F28027F, DRV8305                         | Now          |
| TIDM-BIDIR-400-12                            | Bi-Directional DC/DC, F28035                        | Now          |
| TIDM-HV-1PH-DCAC                             | High Voltage inverter (Solar & UPS), F28377D        | Now          |
| TIDM-1AXISMTR-PFC-5x                         | High Voltage Motor + PFC, F2805x                    | Now          |
| TIDM-SERVODRIVE                              | Industrial Drives, F28377D                          | Now          |
| F28377S LaunchPad + DRV8301/5<br>BoosterPack | High end motor control, F28377S, DRV8301 or DRV8305 | Now          |

### **Kits and Software Roadmaps**

| Release/Kit name        | What's new                                                                                                                  | Est.Timeline |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|
| TMDXIDDK28379           | DesignDRIVES platform supporting development of many drive typologies.<br>Support for F28379D silicon with Position Manager | Now          |
| Motorware for InstaSPIN | Release 16: Dual Motor SW example for LAUNCHXL-F28069M, Hall sensor start-up, ease of use improvements (peripheral drivers) | Now          |
| LAUNCHXL-F28379D        | Performance dual-core LaunchPad with support for analog precision sensing. Also supports Position manager                   | 3Q16         |



## C2000 Training: www.ti.com/c2000training

| Series/Title                                                                      | Application, TI device covered                                           | Availability             |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|
| C2000 MCU 1-Day Workshop – 8<br>Part Series                                       | Intro to C2000 MCUs' features and functions                              | Now – Training<br>Portal |
| C2000 InstaSPIN: From Evaluation<br>to Production – 7 Part Series                 | TI InstaSPIN™ Motor Control Solutions - F2802x/5x/6x                     | Now – Training<br>Portal |
| C2000 Digital Power Training<br>Series – 5 Part Series                            | Digital Power – All C2000                                                | Now – Training<br>Portal |
| Designing with the C2000 F2807x<br>and F2837x Microcontroller Family              | Device Architecture – F2807x/37xS/37xD                                   | Now – Training<br>Portal |
| State Space Control Seminar – 4<br>Part Series                                    | Control Theory – All C2000                                               | Now – Training<br>Portal |
| F28377S LaunchPad Technical<br>Overview with a Demonstration of<br>PWM Modulation | LaunchPad Tool – F28377S                                                 | Now – Training<br>Portal |
| DesignDRIVE Training Video – 8<br>part series                                     | Industrial Drive and Servo Control Systems<br>TMS320F28379, TMS320F2837X | Now – Training<br>Portal |





## Production Code Generation and Verification Using Simulink and Embedded Coder



© 2016 The MathWorks, Inc.



### **Model-Based Design with Production Code Generation**





### **Production Code Generation – User Stories**







Lear

### Automotive ECUs Development Time Savings ell Aerospace USA Control Systems







Alstom Grid UK HDVC Power Systems



Elementary Schools Project Based Learning



## MATLAB

## Environment for technical computing

- High-level textual numeric language
- Data analysis and visualization
- Toolboxes for signal and image processing, statistics, optimization, symbolic math, and other areas
- Foundation of MathWorks products





## **SIMULINK**<sup>®</sup>

## Environment for modeling and simulating dynamic systems

- Block diagrams and state machines (Stateflow)
- Linear, nonlinear, discrete-time, continuous-time, and multicore systems
- Blocksets for controls, signal processing, communications, physical modeling, and other system engineering areas
- Foundation for Model-Based Design







### C/C++ Coders

#### MATLAB Coder - Code from MATLAB

- Portable code for numerical algorithms
- Desktop applications (standalone, library)

#### Simulink Coder - Code from Simulink

- Portable code for algorithms plus real-time framework
- Real-time machines for RP/HIL (e.g., Simulink Real-Time)

#### Embedded Coder – Production code

- Extends ML Coder and SL Coder for embedded processors
- MCUs and DSPs (from 8-bit devices to multicore SoCs)
  - Code optimization (portable code and processor-specific)
  - Code verification (software- and processor-in-the-loop, trace)
  - Code profiling (tasks and functions)
  - Code customization (data, functions, files)
  - Embedded targets (board initialization, I/O blocks, scheduler)
  - Certification (ISO-26262, IEC 61508, etc.)

MATLAB and Simulink Algorithm and System Design



### All coders generate portable code (ANSI/ISO C) by default.



# Executable Specifications







### **Simulation - Simulink**





### **On-Target Rapid Prototyping – Embedded Coder**



**Embedded Processor or ECU** 



# Design with Simulation



© 2012 The MathWorks, Inc.



### **Float- to Fixed-Point Conversion**

- Overflow/underflow
- Code optimizations
- Simulation ranges
- Derived ranges
  - Design-range scaling







### **Function Interface Specification**

- Function Name
- Argument Name
- Pass by value
- Pass by reference
- Qualifier

| 5      | Mode                                                                                                                                                                            | l Interface: fu                          | elratectrl                      |                                        |                                                      |                                        |                  | x | J |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|------------------|---|---|
| [      | Descriptio                                                                                                                                                                      | on                                       |                                 |                                        |                                                      |                                        |                  | - |   |
| C<br>F | Choose an interface for the model. Note: for a subsystem that you build from the right-click context menu, use the RTW.configSubsystemBuild function to configure an interface. |                                          |                                 |                                        |                                                      |                                        |                  |   |   |
| -      | Set model interface                                                                                                                                                             |                                          |                                 |                                        |                                                      |                                        |                  |   |   |
|        | Function                                                                                                                                                                        | specification:                           | Model specifi                   | ic C prototypes                        | •                                                    |                                        |                  |   |   |
| ţ      | This func<br>populate                                                                                                                                                           | tion specification the initial arguments | on supports si<br>ment configur | ngle rate and mul<br>ation for the mod | tirate single-tasking m<br>el initialize and step fi | nodels. Press Get Default<br>unctions. | Configuration to |   |   |
|        | Get                                                                                                                                                                             | Default Config                           | uration (                       | *invokes update (                      | diagram)                                             |                                        |                  |   |   |
| 6      | Configure                                                                                                                                                                       | e model initializ                        | e and step fur                  | nctions                                |                                                      |                                        |                  |   |   |
| 1      | initialize                                                                                                                                                                      | function name:                           | fu                              | uelratectrl_init                       |                                                      |                                        |                  |   |   |
| 5      | Step fun                                                                                                                                                                        | ction name:                              | fu                              | elratectrl_step                        |                                                      |                                        |                  | Ξ |   |
| 5      | Step fun                                                                                                                                                                        | ction argument                           | s:                              |                                        |                                                      |                                        |                  |   |   |
|        | Order                                                                                                                                                                           | Port Name                                | Port Type                       | Category                               | Argument Name                                        | Qualifier                              | Up               |   |   |
|        | Return                                                                                                                                                                          | Out1                                     | Outport                         | Value 🔻                                | fuelcmd                                              | none 🔻                                 | Down             |   | l |
|        | 1                                                                                                                                                                               | In1                                      | Inport                          | Pointer 🔻                              | maxthresh                                            | const *                                | 2000             |   |   |
|        | 2                                                                                                                                                                               | In2                                      | Inport                          | Pointer 🔻                              | pressure                                             | none 🔻                                 |                  |   |   |
|        | 3                                                                                                                                                                               | In3                                      | Inport                          | Value 🔻                                | ego                                                  | none 🔻                                 |                  |   |   |
|        | 4                                                                                                                                                                               | In4                                      | Inport                          | Value 🔻                                | throttle                                             | none 🔻                                 |                  |   |   |
|        |                                                                                                                                                                                 |                                          |                                 |                                        |                                                      |                                        |                  |   |   |
| - 5    | Step fund                                                                                                                                                                       | ction preview                            |                                 |                                        |                                                      |                                        |                  |   | ľ |
| ł      | fuelcmd :                                                                                                                                                                       | = fuelratectrl_s                         | step (* maxth                   | resh, * pressure,                      | ego, throttle )                                      |                                        |                  |   |   |
| 1      | /alidation                                                                                                                                                                      | 1                                        |                                 |                                        |                                                      |                                        |                  |   |   |
|        | Valida                                                                                                                                                                          | ate (*invol                              | kes update dia                  | agram)                                 |                                                      |                                        |                  |   |   |
|        |                                                                                                                                                                                 | t validation suc                         | reeded                          |                                        |                                                      |                                        |                  | - |   |
| ٠      | Lust                                                                                                                                                                            | e valiaadon sac                          | cccucu.                         |                                        |                                                      |                                        |                  | • |   |
|        |                                                                                                                                                                                 |                                          |                                 |                                        | ОК                                                   | Cancel Help                            | Apply            |   | J |



### **Data Specification**

- Name
- Storage class
- Alias (typedef)
- Comments

| 눰 Signal Propert | ies: input_v                               |       | ×          | - |
|------------------|--------------------------------------------|-------|------------|---|
| Signal name: ir  | put_v                                      |       |            |   |
| 🔲 Signal name i  | nust resolve to Simulink signal ob         | oject |            |   |
| Show propage     | ated signals                               |       |            |   |
| Logging and ac   | cessibility Code Generation                | Doc   | umentation |   |
| Package:         | mpt                                        | •     | Refresh    |   |
| Storage class:   | Global (Custom)                            |       | -          |   |
| - Custom attrib  | Auto<br>SimulinkGlobal                     |       |            |   |
| Memory section   | ExportedGlobal                             |       |            | Ξ |
| Header file:     | ImportedExternPointer                      |       |            |   |
| Owner:           | Global (Custom)                            |       |            |   |
| Definition file: | BitField (Custom)<br>Volatile (Custom)     |       |            |   |
| Deminuon me.     | ExportToFile (Custom)                      |       |            |   |
| Persistence le   | FileScope (Custom)                         |       |            |   |
| Alias:           | Struct (Custom)<br>StructVolatile (Custom) |       |            |   |
| Alianment:       | GetSet (Custom)<br>-1                      |       |            |   |
|                  | -                                          |       |            | Ŧ |
|                  | OK Cancel                                  | Help  | Apply      |   |



### **Production Code Generation**



© 2012 The MathWorks, Inc.



### **Algorithm Code (ANSI-C)**









### System Executable (Algorithm + I/O)







### **Continuous Test and Verification (PIL)**







### **Processor-in-the-Loop (PIL)**

Verify algorithms





### **Certification Support (IEC Certification Kit)**



>>certkitiec



### MathWorks TI C2000 Support Package for Embedded Coder

Supported devices:

- Piccolo F2802x/3x/5x/6x/07x
- Delfino F2833x/32x/37xS/37xD
- Fixed-point F280x/1x



Scheduling the generated code:

- Periodic tasks
- Interrupts (Hardware, Software)
- Idle tasks
- Advanced concepts:
  - Pre-emptive rate-monotonic Scheduler.
  - Base rate interrupt replacement
  - Peripheral triggers (launch A/D conversion from PWM)
  - Running on the CLA
  - Loading in Flash, running in RAM.
  - Using DMA



### Supported TI C2000 drivers

- ADC, AIO, Comparator,
- GPIO, eQEP, ePWM, eCAP,
- eCAN, I2C, SCI, SPI, LIN
- Watchdog, DMA.
- Motor control position sensing
  - Optical encoder (using eQEP)
  - Hall sensors (using eCAP)
  - Sensorless (Using SMO)





### **Embedded Coder support for TI C2000 Motor Control kits**

- TI F28027 Launchpad + DRV8301 (FX + Video)
- TI F28069 Launchpad + 2 x DRV8301 (FX + Video)
- ControlCard + DRV8312 (Shipping example)
- DM550 + eZdsp (<u>Shipping example</u>)
- High voltage motor control kit (available on demand)

Permanent Magnet Synchronous Motor Field-Oriented Control Note: This demo requires a DMC550 controller and a PMS motor







### **Takeaways**

- The Model is at the center
  - You can simulate and test your system at every step
- Customize the generated code for your C2000 MCU
  - Configure production code for your software and data architecture
- Use the code to test directly on your C2000 MCU
  - Run on hardware early in the design process