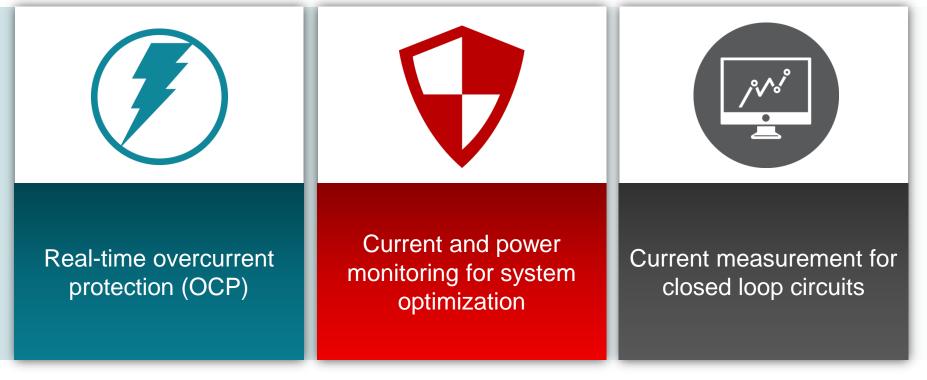
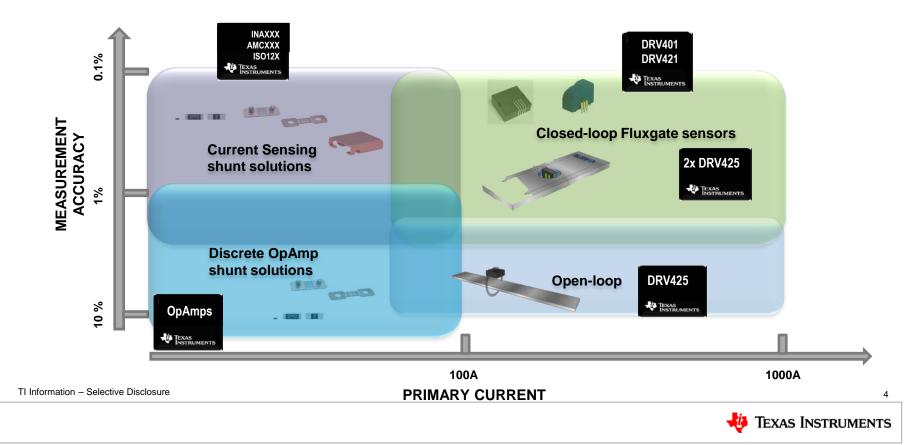
Over Current Protection Alternatives

Motor Current Control With INA240

MHRS-Current Sensing Team Dan Harmon, Automotive & Communications Marketing Sept-2016


Agenda

- 5 mins Current & Power Measurement Introduction
- 20 mins Over Current Protection: Circuits & Techniques
 - » Discrete vs. Integrated
 » Dedicated / Analog Output / Multiple ALERTs
 - » Power Monitors
- 25 mins Motor Current Control With INA240
 - » Introduction to Motor Current Sensing
 - » INA240 Performance Competitive Study


Current & Power Measurement use cases

Solutions customers seek

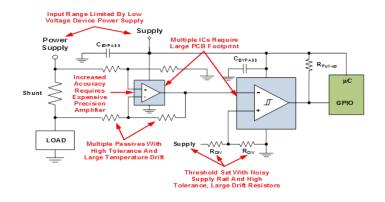
TI's wide range of Current Sensing solutions

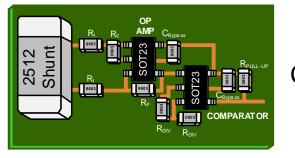
Overcurrent Protection Alternatives

The strengths and challenges of the various overcurrent protection alternatives

Why is overcurrent protection important?

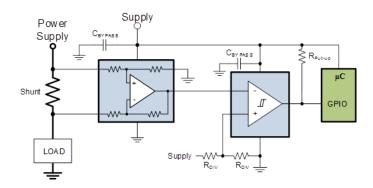
- Overcurrent protection is the most basic form of current monitoring
- Historically, OCP has been managed by measuring the system's temperature.
 - Temperature typically is a lagging indicator.
 - The increase in system temperature normally is a result of increased current flow.
 - Measuring the current allows the system integrator to manage the thermals in their systems more efficiently and anticipate problems instead of reacting to potential issues.
- System thermal management has become more critical as two trends work against each other in modern electronic systems: driving **higher performance** in **smaller form factors**.

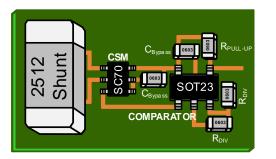

Fuses for overcurrent protection



- Using a fuse is the most common overcurrent implementation, "after the fact".
- The sole purpose is to open in the event of an extended over-current condition
 - Very simple
 - Effective in protecting the system from gross, over-current events
- Challenges to overcome:
 - Offers protection for a single event
 - The fuse is destroyed by the over-current event while protecting the remainder of the system
 - For the system to become functional again, the fuse must be replaced
 - This could involve rework at the board level to remove and replace the blown fuse
 - Typically requires that the current significantly exceed (4 times or more) the rating of the fuse in order for a quick open to occur
 - Difficult to predict the precise over-current level at which the fuse will open; requires more margin to be built into the protection scheme.
 - Does not provide information on the system's actual operating conditions.
- It is better to protect "before the fact", what are the alternatives?
 - The next serval slides will try to picture the very condensed history of the evolution of current
 protection with active circuits.

Classic Op-amp & Comparator Implementation

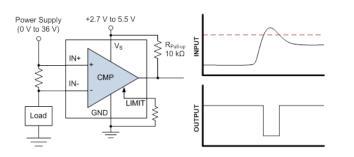


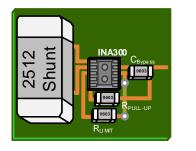

Op Amp + Comparator OCP

- Strengths:
 - Possibly the lowest cost to implement
 - Fastest response time with high-speed amp and fast comparator
 - Offers both overcurrent detection and current monitoring
 - Second source alternatives
- Challenges:
 - ACCURACY & SPEED cost money!
 - Temperature drift
 - Typically Low-side only
 - High-side limited to op-amp supply rail
 - Board Space / Component Count

Current Sense Amplifier & Comparator Implementation

CSM + Comparator OCP

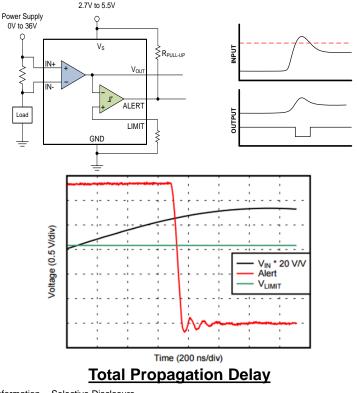

- Strengths:
 - More accurate current measurement than typical op-amp implementation
 - Smaller shunt enabled by lower V_{OFFSET} lowers power consumption
 - Fast response time with fast comparator
 - Offers both overcurrent detection and current monitoring
 - Comparator second source alternatives
- Challenges:
 - For comparator function:
 - ACCURACY costs money!
 - Temperature drift on comparator
 - SPEED costs money!
 - Board Space / Component Count



9

Overcurrent Alert Only Implementation

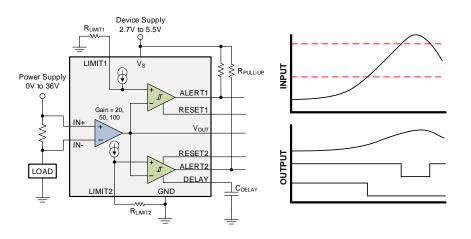
- INA300 Current-Sense Comparator


INA300

- Strengths:
 - Simplest implementation with only a single external threshold setting resistor required and no additional design considerations
 - High-side or low-side capable
 - 70% smaller footprint versus op-amp and comparator implementation
 - Miniaturization of Over–Current Detection enables rethinking system level management via subsystem monitoring
 - Utilization & efficiency: Only use those portions of the system that are needed & are enabled
 - Localized Fault Identification
 - Offload event detection: Operates independently and only wakes system controller when needed
- Challenges:
 - ALERT only no actual current information supplied to system

Overcurrent Alert w/ Analog Output Implementation

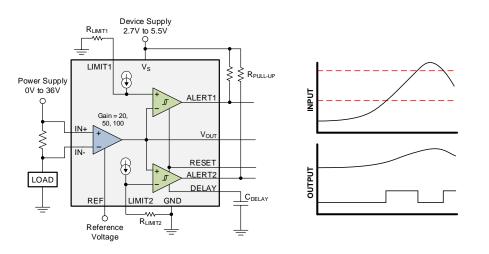
- INA301 high-speed, precision current sense amplifier with integrated comparator


TI Information – Selective Disclosure

- Strengths:
 - Offers both overcurrent detection and current monitoring
 - High-side or low-side capable
 - Simple implementation with only a single external component required
 - Fast response time
 - INA301 @ 1µs (0.6us Typ)
- Challenges:
 - Design needs to comprehend current range, over-current limit, and following stage input range.

11

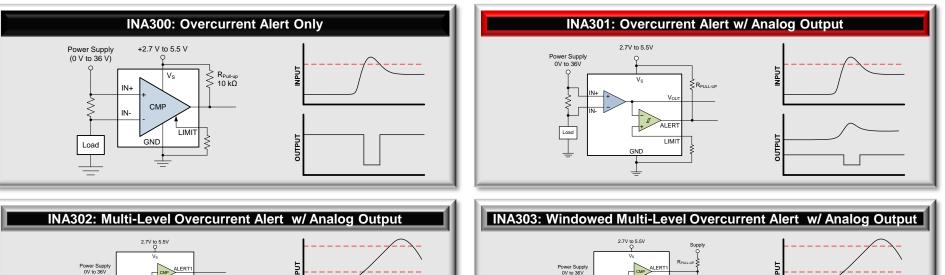
Multi-Level Overcurrent Alert w/ Analog Output Implementation

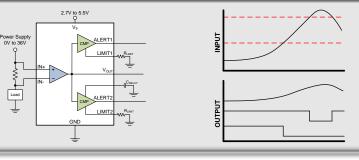

• INA302

- High/Low-Side, Bi-Directional, Zero-Drift Current Sense Amplifier with Multi-Alert High-Speed Comparators
- In development, sample in 3Q2016

- Strengths:
 - Offers both overcurrent detection and current monitoring
 - Dual ALERTS enables system implementation flexibility such as WARNING and SHUTDOWN
 - High-side or low-side capable
 - Simple implementation with only a single external component required per comparator
 - Fast response time
 - INA302 @ 1µs
- Challenges:
 - Design needs to comprehend current range, over-current limit, and following stage input range

Windowed Multi-Level Overcurrent Alert w/ Analog Output Implementation


• INA303


- High/Low-Side, Bi-Directional, Zero-Drift Current Sense Amplifier with High-Speed Window Comparator
- In development, sample in 3Q2016

- Strengths:
 - Offers both overcurrent detection and current monitoring
 - Window ALERTS enables bi-drectional current measurement or both OVER and UNDER current detection
 - Simple implementation with only a single external component required per comparator
 - Fast response time
 - INA303 @ 1µs
- Challenges:
 - Design needs to comprehend current range, over-current limit, and following stage input range

Over-Current Detection Topologies – A summary

TI Information – Selective Disclosure

Production New Roadmap

14

LIMIT1 RUMT1

LIMIT

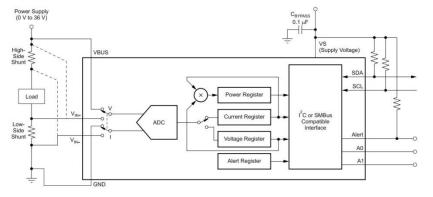
DELAY

GND

Load

SRIMT2

Over-current Protection Roadmap


Production or Past PPR

- INA300 QFN/MSOP Now
- INA301 MSOP Now
- INA301-Q1 Now
- INA300-Q1- MSOP 8/16
- INA302 sample 9/16
- INA303 sample 9/16

Planned for 2017

- INA302-Q1/INA303-Q1
- INA380/INA2380/INA4380
 - INAx180 + comparator/ch 1,2,4 ch
- INA380/INA2380/INA4380-Q1
- INA311/INA312/INA313
 - INA240 + INA302/3 Comparator 3
 SKUs
- INA311/INA312/INA313-Q1

Digital Power Monitor Implementation

- INA226
- INA231
- INA219
- INA220

- Strengths:
 - Offers both overcurrent detection and current monitoring
 - Additionally, offers bus voltage and power monitoring
 - Flexible, Programmable ALERT settings:
 - Over/Under Current
 - Over/Under Bus Voltage
 - Over Power
 - Low-side or High-side Capable
 - Programmable conversion time
- Challenges:
 - Response time can be slower due to digitization

Over-current Protection via Power Monitor Roadmap

Production or Past PPR

- INA219 MSOP Now
- INA220 MSOP Now
- INA220-Q1 MSOP Now
- INA226 MSOP Now
- INA226-Q1 MSOP Now
- INA230 QFN Now
- INA231 WCSP Now
- LMP92064 xxx Now
- INA3221 QFN Now

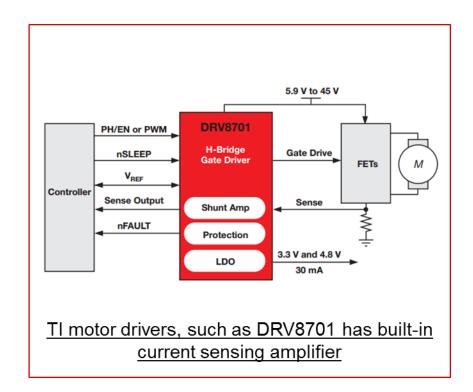
Planned for 2017

- INA226 WCSP
- INA230 MSOP
- INA230-Q1 MSOP
- 1.8v INA3221
- INAxxx HV INA226

OCP TI Design - Automotive Precision eFuse TI Design #: TIDA-00795

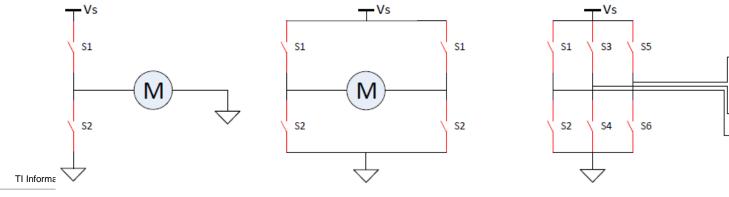
Features/Benefits

Accuracy <3% Reverse polarity protection Power off resettable fuse
Power off resettable fuse
TiDesians
Battery / LOAD Battery / LOAD Battery
Transient Suppression LM9036 Ground


Motor Control / Solenoid / Induction loads Current Monitoring

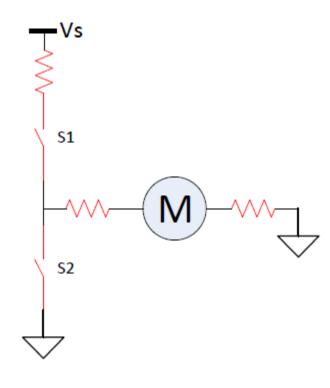
Why, where, and the strengths and challenges of each of the options.

Motor Current Sensing - Discrete vs. Integrated: - Why do I need separate Current sensor(s) anyway?


- Many motor drivers, such as DRV series have built-in current sensors.
- Trade off between cost and performance:
 - Driver integrated current sensor
 - Limited performance
 - No additional cost, great if adequate for the job!
 - Discrete Current Sensor
 - Can be optimized considering topology, performance and cost
 - TI offers a broad portfolio of dedicated Current Sensors, including Current Shunt Monitors (CSM) to address whichever sensing topology you choose!

DC Motor Driver Topologies(with variations)

- Half bridge
 - Brushed DC motor;
 - Three modes: Run, Coasting and Breaking
- H bridge
 - Brushed DC motor
 - Four modes: Run, Reverse, Coasting and Breaking
- 3 Phase
 - BLDC motor electrically commutated.
 - Four modes: Run, Reverse, Coasting and Breaking



21

IV

Half bridge & H-Bridge Motor Control Current Monitoring Options

- Current information is used in:
 - Current is directly related(proportional) to torque
 - Speed/Torque control
 - Safety guard against short circuit, stalled motor and used to monitor the general health of the motor
- Current sensing techniques in motor control
 - Noninvasive
 - Current transformer: $\frac{I_1}{I_2} = \frac{N_2}{N_1}$
 - Hall sensor
 - Resistor based current sensing
 - High side
 - Low side
 - In-line

Resistor based motor current sensing techniques – pros and cons

- Low side
 - Advantages
 - Low common mode voltage
 - Low voltage Amp possible
 - Disadvantages
 - Ground variation

-Vs

S1

S2

- · Unable to detect fault
- Driver current does not necessarily equal to motor phase current

IV

- High side
 - Advantages
 - Stable Common mode voltage
 - Fault detection
 - Disadvantages

S1

S2

- Stable but high Vcm
- Driver current does not necessarily equal to motor phase current

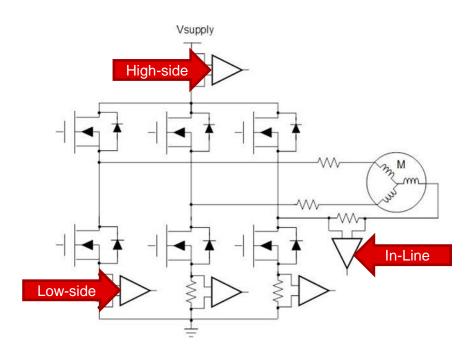
V

• In-line

-Vs

S1

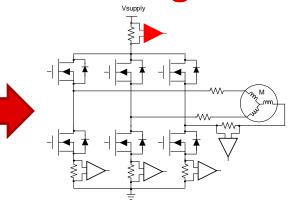
S2

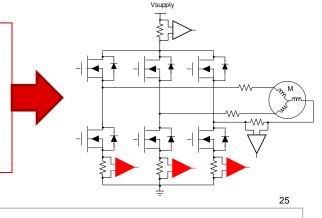

- Advantages
 - True motor phase current
- Disadvantages
 - PWM common mode voltage
 - Sensing amp must have good DC and AC CMRR

TI Information

23

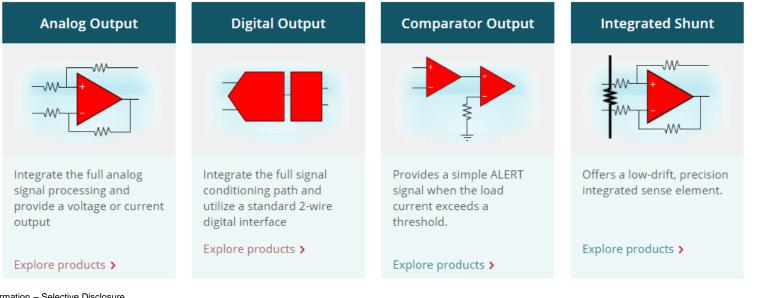
3Phase Motor Control Current Monitoring Options


- Three choices
 - Low side (DC link or separate driver leg measurement)
 - High side(including DC link, or separate driver leg measurement)
 - In line
- Why do we measure current in motor control?
 - Torque and speed control (two-loop)
 - Safety
 - Could be used for rotor position sensing in sensorless BLDC, replacing Hall sensors or BEMF sensing

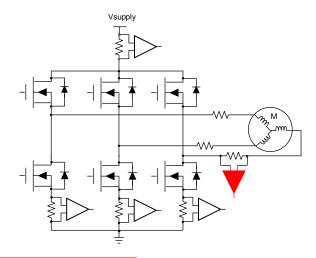

24

High-side & Low-side Motor Current Monitoring

- High-side (DC link or bridge)
 - Stable Vcm 🙂
 - High voltage I_sense Amp 😕
 - Driver current does not always equal to phase current 😕


- Low-side (DC link or bridge)
 - Low Vcm 😊
 - Low voltage I_sense Amp ☺
 - Driver current does not always equal to phase current 😕
 - Ground variation 😕

Conventional High-side or Low-side sensing: – What Does TI have to offer?


- TI's broad CSM portfolio for sure can offer you one device for either High or Low side current sensing:
- http://www.ti.com/lsds/ti/amplifiers-linear/current-sense-amplifiers-overview.page ٠

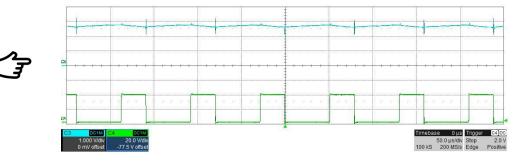
In-line 3phase Motor Current Monitoring

- True phase current at all times, NO guess work I
- PWM Common Mode voltage seen by I_sense Amp ^(S)
- High voltage combined with high dV/dT poses steep challenge to I-sense Amp ⁽²⁾
- Availability of suitable Current Sensors limits the adoption of this topology.

Signal's Frequency Contents:

- The differential signal (useful information) is relatively narrow-band, and small;
 - The CM PWM signal (not useful) is wide-band and BIG.

An ideal inline sensor:

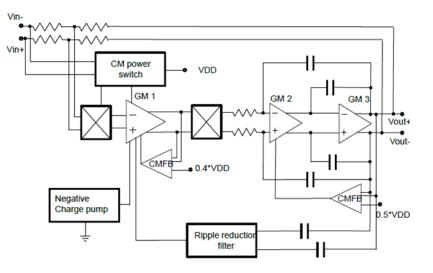

• Amplifies only differential signal; "blind" to Common Mode signal.

Why Is Inline Current Measurement Challenging?

- The tale of a competitor... it is not a trivial task!

This is how the phase current should look like

Competitor Paper: http://www.edn.com/design/analog/4369564/Monitor-PWM-load-current-with-a-high-side-current-sense-amplifier


How Does INA240 Solve the Problem?

Novel Architecture:

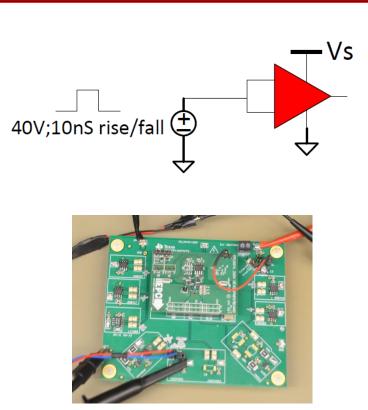
- Chopper amplifier achieves exceptionally accurate Gain; zero Vos; zero Drift over temperature.
- In-package E-trim achieves superior resistor matching, resulting in excellent DC CMRR of better than 120dB.
- Minimizing coupling Chopper amplifier without conventional feedforward path for improved AC CMRR performance, better than 90dB @50KHz
- Fully differential signal path further suppresses CM signal

Small signal bandwidth 150KHz@G100

- Exceptional settling, capable of PMW of 100KHz.
- Most motor drivers work in 20-40KHz range.

INA240 Input Stage

INA240


Features/Benefits

 Fast-transient common-mode voltage input filtering High AC CMRR: 90 dB @ 50 kHz 	Allows for in-line motor and solenoid/actuator current sensing
High Accuracy, High-speed performance • $V_{OS} = 100 \ \mu V \& V_{OS} Drift = 0.3 \ \mu V/^{\circ}C$ • Gain Error = 0.25% & Gain Error Drift = 10 ppm/^{\circ}C • 100 kHz Bandwidth (Gain = 100)	Enables precise current measurement under harsh motor environments
Wide common-mode input voltage range: -4 V to 80 V	Allows for motor supply voltages as high 48 V and inductive kick-back
Tools & Resources	Target Applications
 INA240EVM User's Guide TINA-SPICE Model INA240 Datasheet 	 Motor control Solenoid / Valve Control Power Delivery Systems Telecomm Equipment Pressure Regulator
Image: state of the state	

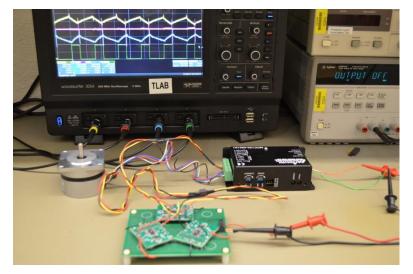
Performance With Fast Edge, CM Step Input – How does INA240 compare with competition?

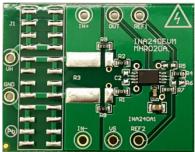
- Common Mode input voltage
 - INA240 can survive 100V/10nS
 - Some competitors claim ABS MAX of 65V
 - In our test a step of 50V/10nS often blows the competitor parts up
 - That is why we settled on 40V/10nS step for this study
- INA240 and other competitor devices are tested
- The inputs of the DUT are shorted together
- The same CM input voltage is fed to one device at a time.
- An ideal inline sensor:
 - Should reject CM input completely.
 - The sensor output should show no disturbances at all.

TI Information – Selective Disclosure

31

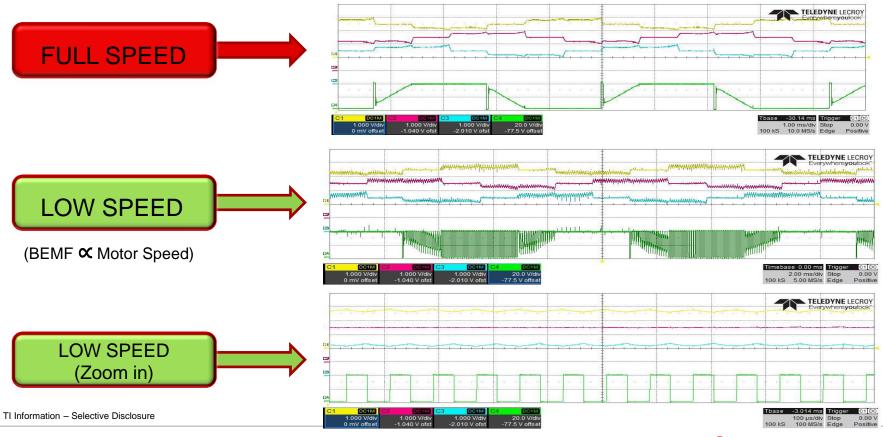
Common Mode Step Rejection Performance Comparison


- Common Mode Input of 40V; rise time 10nS.



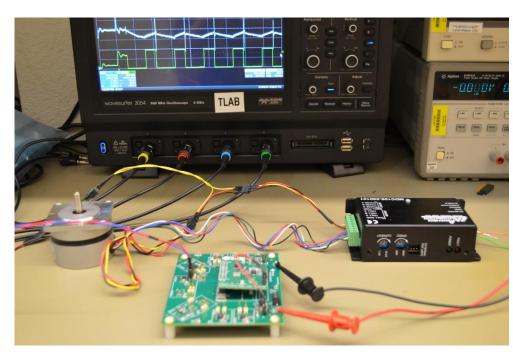
Performance As Inline Sensor – How does INA240 perform?

- Three (3) INA240, each in one of the 3 phases
- **INA240EVM** is perfect for this task with its versatility
 - sense resistor footprint provided;
 - · configurable output reference for bi-directional output;
 - configurable input source and filtering.
- The INA240's are inserted between the motor and controller

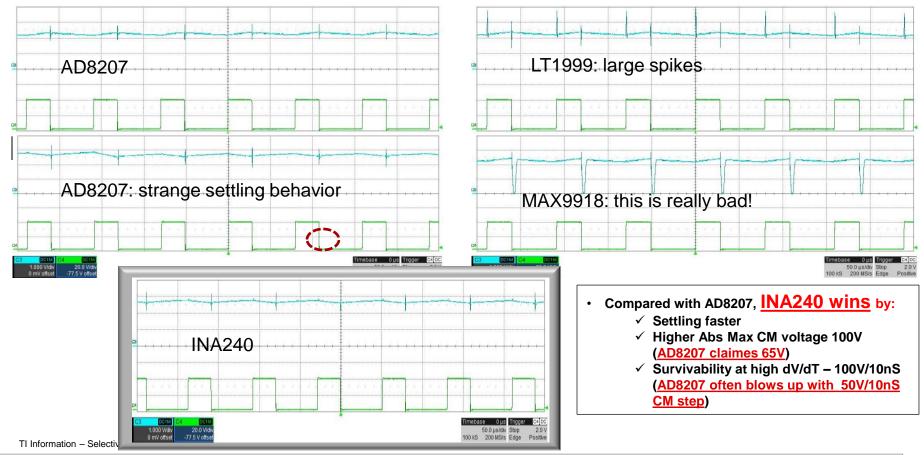


33

Test Results – INA240 as inline sensor



Performance As Inline Sensor –


How does INA240 compare with competition?

- PWM 40V/100nS
- Differential voltage developed across R_sense due to current flow
- The total input voltage is composed of a small differential voltage and a PWM CM voltage
- The same input voltage is fed to INA240 and other competitor parts
- A good inline sensor should:
 - Have excellent AC CMRR small over shoot at transitions
 - Settles quickly after step transition
 - Other subtle criteria such as DC CMRR, accuracy that are not easy to tell visually

Test Results –inline sensor comparative study: Left Column top to bottom: <u>AD8207</u> <u>AD8417(G=60)</u> <u>AD8418</u> <u>MAX9918</u>; Right Column top to bottom: <u>LT1999</u> <u>INA282(G=50)</u> <u>INA240</u>. <u>Scale 1V/Div for all.</u>

INA240 offers best in class performance for motor inline current sensing:

- Exceptional accuracy
- -4V to 80V specified CM operation
- Unparalleled High dV/dT survivability
- Superior DC and AC common mode rejection
- Fast settling

