Design Considerations for Powering Industrial Non-Isolated 24V Rail Applications

SIMPLE SWITCHER Team Presented by Denislav Petkov Applications Engineer TI, Santa Clara, California

Agenda

- Discrete Regulator Design
 - Using WEBENCH for Part Selection
 - Design considerations
 - Selecting inductor, capacitors, and setting Vout
 - Layout example
- Module Design
 - Design considerations from module designer perspective
 - External component selection
 - Layout example
 - Hidden advantages of modules
- TI's Wide V_{IN} DC/DC Step-Down Portfolio for Industry 4.0 Systems

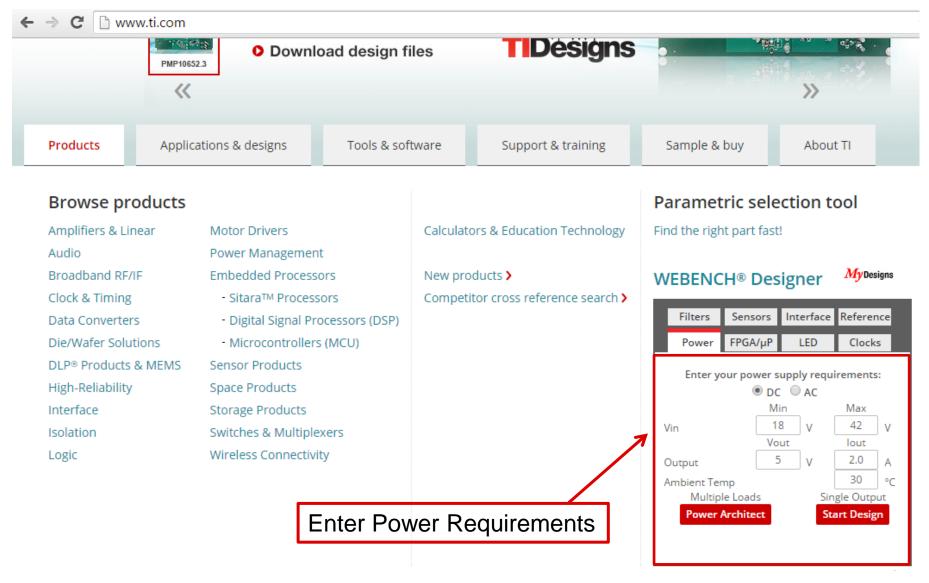
Discrete Regulator Design

Design Considerations for a Regulator

- Design Inputs
- Switching frequency
- Inductor selection
- Setting output voltage
- Input and output caps
- Layout guidelines

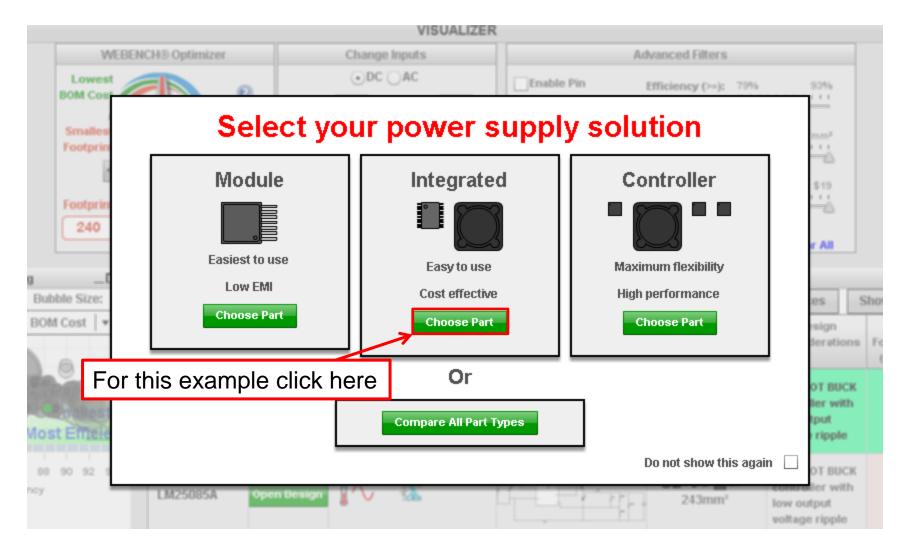
Regulator Design Inputs: 24V to 5V Intermediate Bus

Input Specifications


- Nominal Input Voltage → 24V
- Input Voltage Range \rightarrow **18V to 42V**
- Output Voltage \rightarrow **5V**
- Maximum Load Current \rightarrow 2A
- Synchronous Rectification \rightarrow Yes

Desired Features

- Frequency Synchronization pin \rightarrow Yes
- Low BOM count "Ease of Use" \rightarrow Yes
- Small Solution Size \rightarrow Yes

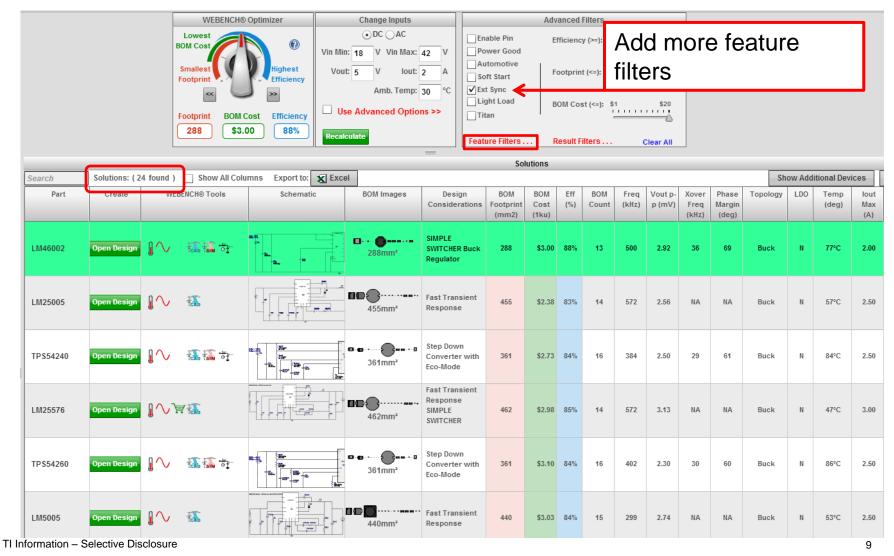


Access WEBENCH From Tl.com

Select Power Supply Solution

TI Information - Selective Disclosure

Initial Device Selection Filter


			WEBENCH®	Optimizer		Change Inputs			Adv	anced	Filters									
			Lowest BOM Cost	•	Vin Min:	• DC _ AC : 18 V Vin Max:	42 V	Enable Pin Power Good		fficienc	y (>=): 7	6% 	92%							
			Smallest Footprint	Highest Efficiency	Vout	5 V lout: Amb. Temp:	2 A 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Automotive Soft Start Ext Sync	F	ootprin	t (<=): 1	83mm²								
			Footprint BOM			e Advanced Option		Light Load Titan	E	3OM Co	st (<=): \$	1	\$20							
		Ľ			Recalc	ulate	F	eature Filters	I	Result F	ilters	(Clear All							
								S	olutions											
Search	Solutions: (6		Show All Colu		X Excel		Denti		2011		DOM	5		Y			1	itional Dev		
Part	Create	VVE	BENCH® Tools	Schemati	c	BOM Images	Design Consideratio	BOM Footprin (mm2)	BOM Cost (1ku)	Eff (%)	BOM Count	Freq (kHz)	Vout p- p (mV)	Xover Freq (kHz)	Phase Margin (deg)	Topology	LDO	Temp (deg)	lout Max (A)	
LM46002	Open Design	\mathbf{I}	The term of	12:1€ ⇒1 =2: =2: =3		288mm²	SIMPLE SWITCHER But Regulator	ck 288	\$3.00	88%	13	500	2.92	36	69	Buck	N	77°C	2.00	
LM25011	Open Design	[∿	ŤCAD			281mm²	COT BUCK regulator with adjustable current limit	h 281	\$1.75	80%	13	1035	8.98	NA	NA	Buck	N	94°C	2.00	
LM25005	Open Design	\mathbf{I}	Ť			455mm²	Fast Transien Response	nt 455	\$2.38	83%	14	572	2.56	NA	NA	Buck	N	57°C	2.50	
LM25011-Q1	Open Design	[∿	1		a. ja bar Jar	281mm²	COT BUCK regulator with adjustable current limit	h 281	\$2.20	80%	13	1035	8.98	NA	NA	Buck	N	94°C	2.00	
TP \$54240	Open Design	\mathbf{I}	Tead TSIM 5			361mm ²	Step Down Converter wit Eco-Mode	th 361	\$2.73	84%	16	384	2.50	29	61	Buck	N	84°C	2.50	
TP \$54560	Open Design	[∿	स्ति कि वि			0 ● · 0 ■ · · · 302mm²	Step Down Converter wit Eco-Mode	th 302	\$3.20	86%	12	420	3.78	22	66	Buck	N	42°C	5.00	

TI Information – Selective Disclosure

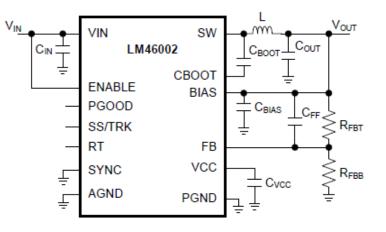
8

Filter results for parts with Ext Sync (frequency sync)

Filter results for parts with synchronous rectification

	WEBENCH®	Optimizer		Change Inputs				Fe	ature F	ilters								
Lowest BOM Cost			Vin N	ODC AC	IC Features	Reg. Ty ▲ Controller ✓ Integrated		Con Constan		1e	Si	BENCH® mulation ebTherm	Tools	Top Buck	pology			
Synch	Automotive	LDO		Peak Cu	urrent M Current N	ode		AD Export IA-TI Sim E		IC P	ackage							
Footprint BOM Cost Efficiency 288 \$3.00 88% Recalculate					Light Load Sync Switch Adi Curr Lim Switch to Re		witcher®	Voltage	Mode			tium Sim E CAD Sim E		All	▼ ar Less≪			
Search	Solutions Solutions: (3 found) Show All Columns Export to: Excel										ow Add	itional Dev	ices					
Part	Create	WEB	ENCH® Tools	Schematic	BOM Images	Design Considerations	BOM Footprint (mm2)	BOM Cost (1ku)	Eff (%)	BOM Count	Freq (kHz)	Vout p- p (mV)	Xover Freq (kHz)	Phase Margin (deg)	Topology	LDO	Temp (deg)	lout Max (A)
LM46002	Open Design	\mathbf{I}	tead taim 📬		288mm²	SIMPLE SWITCHER Buck Regulator	288	\$3.00	88%	13	500	2.92	36	69	Buck	N	77°C	2.00
LM46002-Q1	Open Design	≬ ∿	11. of		288mm²	SIMPLE SWITCHER Buck Regulator	288	\$3.33	88%	13	500	2.92	36	69	Buck	N	77°C	2.00
LMZ36002	Open Design	\mathbf{I}	i i i i i i i i i i i i i i i i i i i 		196mm²	SIMPLE SWITCHER Buck Module	196	\$8.87	81%	6	500	3.72	9	64	Buck	N	62°C	2.00

LM46002 SIMPLE SWITCHER® 3.5 V to 60 V 2 A Synchronous Step-Down Voltage Converter


1 Features

- 27 µA Quiescent Current in Regulation
- High Efficiency at Light Load (DCM and PFM)
- Meets EN55022/CISPR 22 EMI standards
- Integrated Synchronous Rectification
- Adjustable Frequency Range: 200 kHz to 2.2 MHz (500 kHz default)
- Frequency Synchronization to External Clock
- Internal Compensation
- Stable with Almost Any Combination of Ceramic, Polymer, Tantalum, and Aluminum Capacitors
- Power-Good Flag
- Soft-Start into Pre-Biased Load
- Internal Soft-Start: 4.1 ms
- Extendable Soft-Start Time by External Capacitor
- Output Voltage Tracking Capability
- · Precision Enable to Program System UVLO
- · Output Short Circuit Protection with Hiccup Mode
- Over Temperature Thermal Shutdown Protection

2 Applications

- Industrial Power Supplies
- Telecommunications Systems
- Sub-AM Band Automotive
- Commercial Vehicle Power Supplies
- General Purpose Wide V_{IN} Regulation
- High Efficiency Point-Of-Load Regulation

🦆 Texas Instruments

Switching Frequency Selection

- Size of Inductor
 - Higher frequency allows for a smaller inductor, both electrically and physically.

$$L \propto \frac{1}{F_S}$$
 Switching Frequency $L \propto N^2$ Number of Turns of Wire

– Higher frequency \rightarrow Smaller L \rightarrow Smaller N \rightarrow Smaller package size

Efficiency

 Higher switching frequency generates more power loss in regulator and the inductor; this reduces efficiency.

Lossin regulator $\propto F_{S_{\perp}} \cdot T_t \cdot V_{IN} \cdot I_{LOAD}$

Switching Frequency

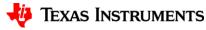
– Higher frequency \rightarrow Increased Loss \rightarrow Reduced Efficiency

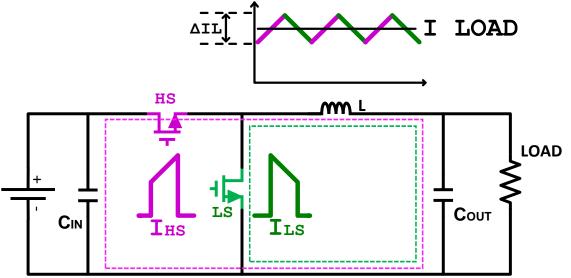
Switching Frequency Selection

• EMI

- Some customers require that no harmonics of the DC/DC converter fall in the AM radio band.
 - Example: 530kHz to 1.7MHz
- Some systems require that the switching frequency be locked to a system clock.
 - Use a regulator with a synchronizing capability

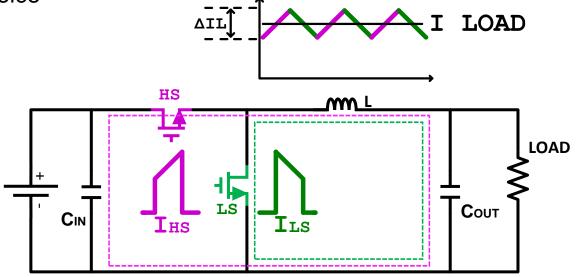
LM46002 Switching Frequency Selection


- LM46002 is optimized for a switching frequency of 500kHz
 - Can be adjusted with one resistor to tailor the regulator to the customer's requirements.
 - Can be synchronized to and external clock or to another DC/DC converter to reduce noise.
- 500 kHz will be used in this example



- Inductor selection is one of the most important aspects of the DC-DC converter design.
 - Inductor characteristics
 - Inductance value
 - Affects size, ripple, transient response, peak current, efficiency
 - Winding resistance
 - Affects size, ripple, dropout, efficiency
 - Core material
 - Affects size, core power losses
 - Saturation current
 - Affects size, peak current, overload protection
 - Shielding
 - Affects EMI performance

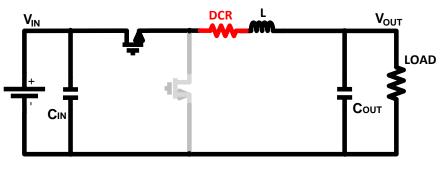
- Electrical value of inductor
 - Determines ripple current
 - Smaller inductor \rightarrow Large ripple current \rightarrow increased power loss
 - Impacts maximum load current
 - Large ripple current \rightarrow large peak current \rightarrow need higher HS current limit to support load
 - Impacts load transient response
 - Small inductance \rightarrow faster current response \rightarrow smaller output voltage transient

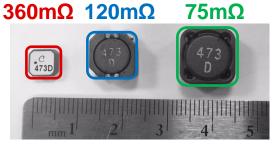


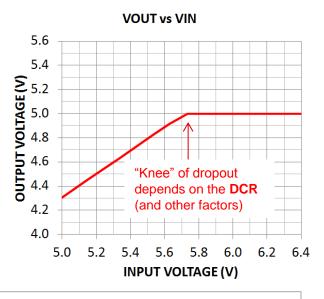
Electrical value of inductor (cont.)

- Impacts physical size
 - Larger inductance \rightarrow more turns on winding \rightarrow larger package \rightarrow higher winding resistance

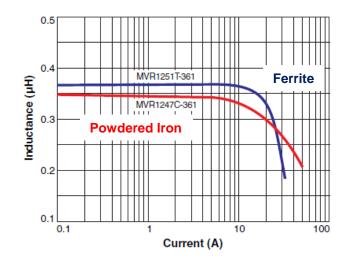
Select inductor ripple current

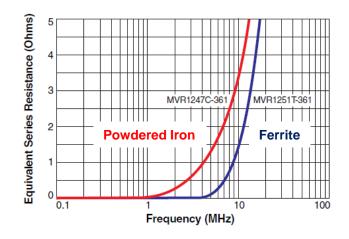

 ~30% of maximum load current is good compromise for the ripple current choice




Winding resistance

- Resistance causes power loss (I²·R)
 - Small resistance \rightarrow less loss \rightarrow larger wire \rightarrow larger package
- Impacts PCB temperature
 - Increased loss \rightarrow more heat to dissipate \rightarrow higher PCB temperature
- Affects regulator drop-out performance
 - · Resistance causes voltage drops between input and output
 - Larger resistance \rightarrow more headroom between input and output needed for regulation.

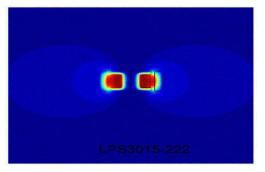



360mW 120mW 75mW For 1A Current

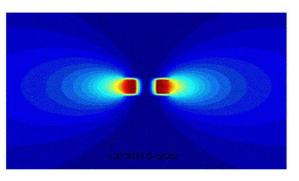
- Core Material
 - Ferrite core
 - Air gap causes "hard" saturation
 - Inductance falls very quickly with current, once the saturation value is reached
 - Small A.C. core loss at >1MHz
 - Powdered iron core
 - Air gap is "distributed"; saturation is "soft"
 - Inductance falls slowly with current, once saturation value is reached
 » More tolerant of overloads
 - Large A.C. core loss at >1MHz

Saturation current

- Maximum current before inductance drops dramatically
 - Core saturation \rightarrow air core inductor \rightarrow very small inductance
- Very small inductance can damage regulator and other components
 - Small inductance means high current slew rate
 - Protection circuits may not respond fast enough to protect the system
- Select inductor saturation current based on regulator current limit
- For a "hard" saturating inductor
 - Select a saturation current ≥ maximum regulator current limit
- For a "soft" saturating inductor
 - Select a saturation current ≥ typical regulator current limit
- Impacts physical size
 - Higher current \rightarrow larger wire in winding \rightarrow larger package


Avoid inductor saturation

Shielded Inductor


- Helps to reduce EMI
 - Reduced external magnetic field
- More core material used for shield
 - More A.C. core loss
 - More expensive
 - Physically larger

TI Information - Selective Disclosure

Un-shielded Inductor 🜌

- Large external magnetic field May be issue for some systems
- Minimum amount of core material needed
 - Less A.C. core loss
 - Less expensive
 - Physically smaller

Inductor Selection w/ LM46002

- Application Inputs
 - $-F_s = 500 \text{kHz}$

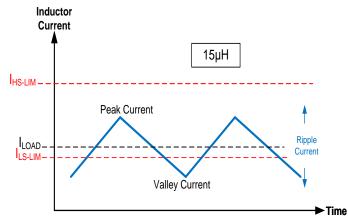
$$-V_{IN} = 42V$$

- V_{OUT} = 5V
- $-I_{LOAD} = 2A$
- Ripple current = $\Delta I = 0.3 \cdot 2A = 0.6A$
- Inductor value

$$L = \frac{(V_{IN} - V_{OUT})}{\Delta I \cdot F_S} \cdot \frac{V_{OUT}}{V_{IN}} = \frac{(42 - 5)}{0.6 \cdot 500e^3} \cdot \frac{5}{42} = 14.7 \mu H$$

– Use the next closest standard value $\rightarrow 15 \mu H$

Inductor Selection w/ LM46002 (cont.)


• Check currents over full input voltage range at full load

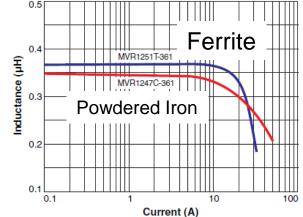
Input Voltage	Ripple Current	Valley Current	Peak Current
18V	0.48A	1.76A	2.24A
24V	0.53A	1.74A	2.26A
42V	0.59A	1.71A	2.29A

$$\Delta I = \frac{\left(V_{IN} - V_{OUT}\right)}{L \cdot F_{S}} \cdot \frac{V_{OUT}}{V_{IN}} \qquad I_{VALLEY} = I_{LOAD} - \frac{\Delta I}{2} \qquad I_{PEAK} = I_{LOAD} + \frac{\Delta I}{2}$$

Inductor Selection w/ LM46002 (cont.)

• The peak and valley current should be checked against the IC current limit specs. The LM46002 provides both peak and valley current limit protection

 The maximum peak inductor current must be less than the minimum specified high-side current limit of the LM46002


- From data sheet
$$\rightarrow$$
 I_{HS-LIMIT} = **3.6A** (min)

- Peak current in application \rightarrow 2.29A (max)
- The maximum valley inductor current must be less than the minimum specified low-side current limit of the LM46002
 - From data sheet \rightarrow I_{LS-LIMIT} = **1.8A** (min)
 - Valley current in application \rightarrow 1.76A (max)

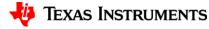
Inductor Selection w/ LM46002 (cont.)

- The inductor current rating selection depends on its saturation characteristics
 - A "hard" saturating ferrite inductor should be rated for the maximum peak current limit
 - A "soft" saturating powdered iron inductor can be rated for the typical peak current limit, or somewhat less.
- For a ferrite inductor select an conservative current rating
 - From LM46002 data sheet \rightarrow I_{HS-LIMIT} = **5A** (max)
 - Use inductor with **5A** saturation current
- For a powdered iron inductor the current rating can be smaller
 - Inductance will not fall much when saturation current is reached
 - Use inductor with 3A saturation current

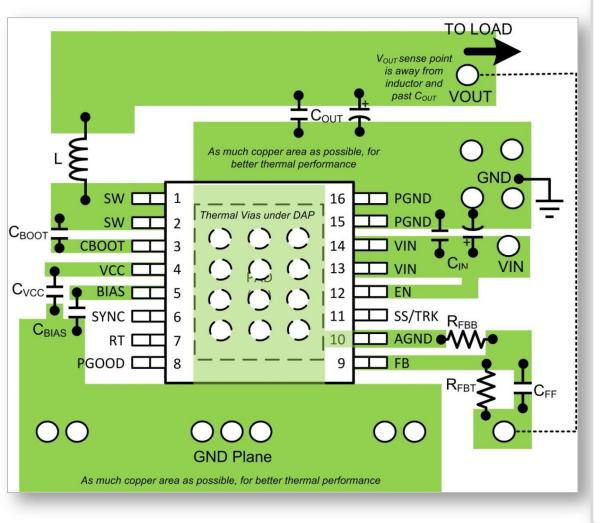
Setting output voltage of LM46002

- From Webench Design Tool
 - Feedback divider
 - $R_{FBT} = 1M\Omega$
 - V_{FB} = 1.011V

$$\mathsf{R}_{\mathsf{FBB}} = \frac{\mathsf{V}_{\mathsf{FB}}}{\mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{FB}}} \cdot \mathsf{R}_{\mathsf{FBT}} = \frac{1.011}{5 - 1.011} \cdot \mathsf{1}\mathsf{M}\Omega = 253\mathsf{k} \quad \Rightarrow \quad \mathsf{R}_{\mathsf{FBB}} = 255\mathsf{k}$$


- Feed-forward Capacitor
 - Can improve load transients and phase margin
 - Easily tailored by customer

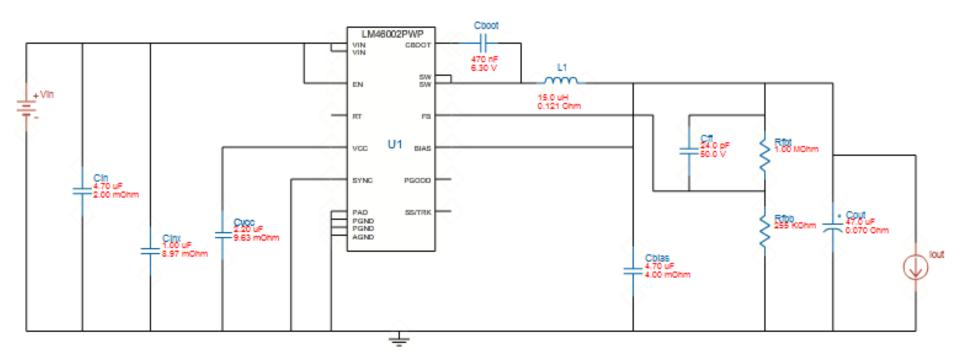
$$- C_{FF} = 27 pF$$



Input and Output Capacitors w/ LM46002

- From Webench Design Tool
 - Input Capacitor(s)
 - Supply pulse currents to regulator
 - Ensure low impedance input for control circuits
 - C_{IN} = 1x 1 \mu F and 1x 4.7 \mu F, Ceramic
 - Output Capacitor(s)
 - Value based on:
 - Output voltage ripple (depends on inductor current ripple)
 - Load transient response
 - $C_{OUT} = 3x 22\mu F$, Ceramic

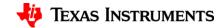
PCB Layout for example for LM46002 (regulator)



Minimum Best Practices for IC Layout

- Place CIN very close to LM46002 input and ground pin. Grounding for both input/output caps should consist of localized top side planes that connect to the ground pins and PAD
- Make VIN and ground connections as wide as possible
- ✓ Both feedback resistors should be located close to the FB pin
- Use a ground plane in one of the middle layers as noise shielding and heat dissipation path. Have a single point ground connection to the plane.

Application Schematic in WEBENCH



The schematic (and layout!) can be exported to your favorite CAD tool!

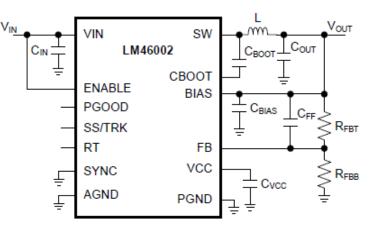
Module Design

TI Information – Selective Disclosure

30


Supplier Considerations for Creating a Module

- Design inputs
- Silicon selection
- Package selection
- Internal component selection
 - Inductor
 - Stability components
 - Programming components
- Setting safe operating limits: electrical & thermal specifications
- External component considerations


Design Inputs

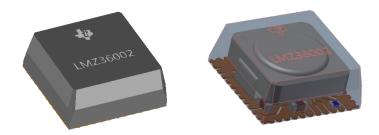
- Support wide input range: 4.5V to 60V
 - Nominal Input Voltage \rightarrow 24V
 - Input Voltage Range \rightarrow 18V to 42V
 - Output Voltage \rightarrow 5V
- Support common output voltages: 2.5V, 3.3V, 5V
- Support output current up to 2A
- Small solution size
- Low EMI (Meet CISPR22 Class B Radiated EMI)
- Provide pin for synchronizing to external frequency
- Low BOM count
- Operate over industrial temperature range (-40C to 105C Ambient)

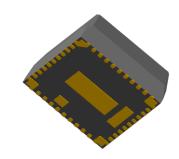
Silicon Selection

- Selected LM46002 to meet design inputs (surprise!)
 - V_{IN} range 3.5V-60V
 - V_{OUT} Range 1.0V to 28V
 - Synchronous Peak Current Mode architecture
 - Output current: 2A
 - Precision Enable
 - Default frequency of 500kHz, Adjustable c
 Synchronize from 200kHz 2.2MHz
 - Power Good output
 - Internal Compensation
 - Operating Junction Temperature: -40 to 125C

Package Selection

Selected BQFN 3D Packaging


- Better Thermal Efficiency in 40%
 Smaller Package
 - 12-13°C/W (BQFN) vs 15.4-24.4°C/W (LGA)
 - Yields up to 50% longer life


Access to Signal Pins

- Pins on Outside
- Easy to route Signals, Vias, Power
- Easy to inspect solder joints

- High Temp Reflow

- BQFN capability for 260°C
- LGA / BGA <250°C otherwise internal solder can melt and spread thru delaminated areas

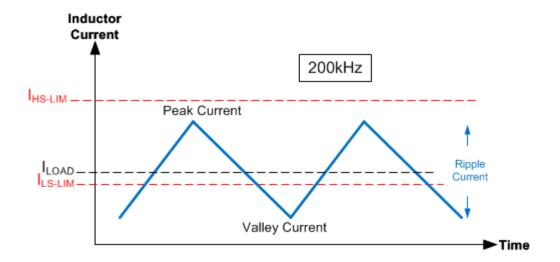
Module Internal Component Selection

- Inductor
 - Single value must cover
 - Input Voltage Range
 - Output Voltage Range
 - Entire Frequency Range
 - Current capability
 - Heating rating
 - Saturation current rating
- Compensation components
 - Stability
 - Transient response
- Integrated Programming Components
 - Bypass caps
 - Compensation
 - Features (soft-start, power good)

Internal Inductor Selection

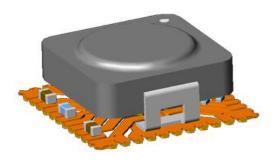
$$V_{IN} = 60V, F_{S} = 500 \text{ kHz} \qquad L = \frac{(V_{IN} - V_{OUT})}{\Delta I \cdot F_{S}} \cdot \frac{V_{OUT}}{V_{IN}} = \frac{(60 - 5)}{0.6 \cdot 500e^{3}} \cdot \frac{5}{60} = 15.3 \mu H$$

$$V_{IN} = 60V, F_{S} = 1 \text{ MHz} \qquad L = \frac{(V_{IN} - V_{OUT})}{\Delta I \cdot F_{S}} \cdot \frac{V_{OUT}}{V_{IN}} = \frac{(60 - 5)}{0.6 \cdot 1000e^{3}} \cdot \frac{5}{60} = 7.6 \mu H$$

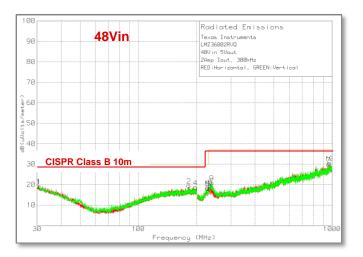

$$V_{IN} = 12V, F_{S} = 500 \text{ kHz} \qquad L = \frac{(V_{IN} - V_{OUT})}{\Delta I \cdot F_{S}} \cdot \frac{V_{OUT}}{V_{IN}} = \frac{(12 - 5)}{0.6 \cdot 500e^{3}} \cdot \frac{5}{12} = 9.7 \mu H$$

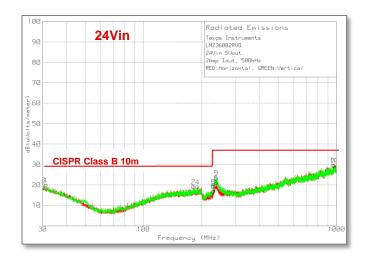
$$V_{IN} = 12V, F_{S} = 1 \text{ MHz} \qquad L = \frac{(V_{IN} - V_{OUT})}{\Delta I \cdot F_{S}} \cdot \frac{V_{OUT}}{V_{IN}} = \frac{(12 - 5)}{0.6 \cdot 1000e^{3}} \cdot \frac{5}{12} = 4.9 \mu H$$

Inductance Selected: 10 µH



Fixed Inductance and Frequency Range

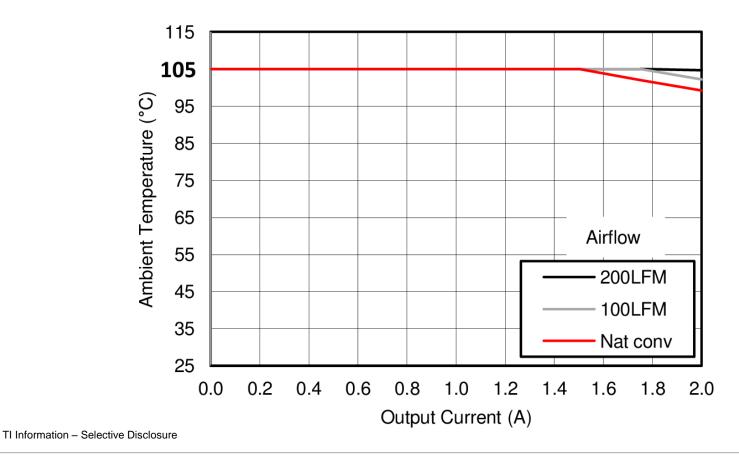




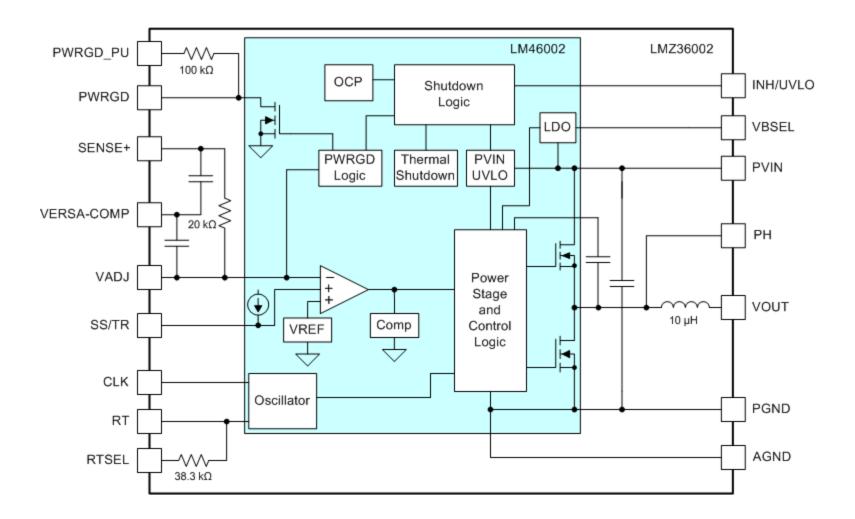
Integrated 10uH Shielded Inductor

- 10uH selected for best balance of performance over $V_{\rm IN},\,V_{\rm OUT},\,\text{and}\,F_{\rm SW}$ range
- Meets CISPR 22 Class B Radiated EMI
- Powdered iron for soft saturation

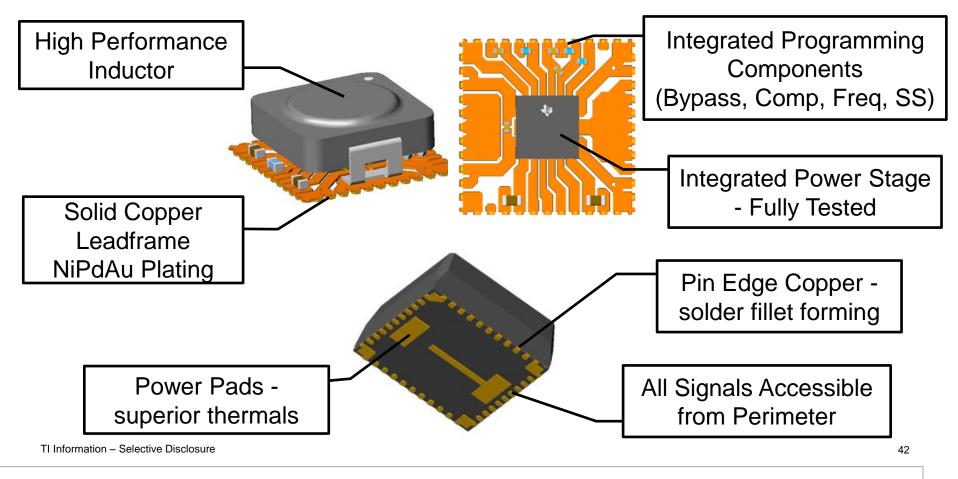
Setting Safe Design Limits


- V_{IN} , V_{OUT} , F_S Constraints
 - HS current limit
 - LS current limit
 - Slope compensation
 - Minimum Ton
 - Minimum Toff

VOUT Range (V)	Switching Frequency Range (kHz)									
	PVIN = 12V		PVIN = 24V		PVIN = 36V		PVIN = 48V			
	Min Max		Min	Max	Min	Max	Min	Max		
2.5 - 3.5V	200	1000	200	600	200	400	200	300		
>3.5V - 4.5V	200	1000	200	850	200	550	200	400		
>4.5V - 5.5V	200	1000	200	1000	200	750	200	550		
>5.5V - 6.5V	300	1000	200	1000	200	1000	200	630		
>6.5V - 7.5V	300	900	300	1000	300	950	300	800		

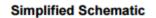

Thermal Safe Operating Area

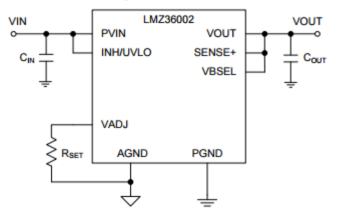
- Thermal Performance
 - Based on V_{IN} , V_{OUT} , Airflow


LMZ36002 Block Diagram

LMZ36002 Internal Tour

Thermally Enhanced Components on Copper Leadframe = Low Temperature, Long Life Power Solution



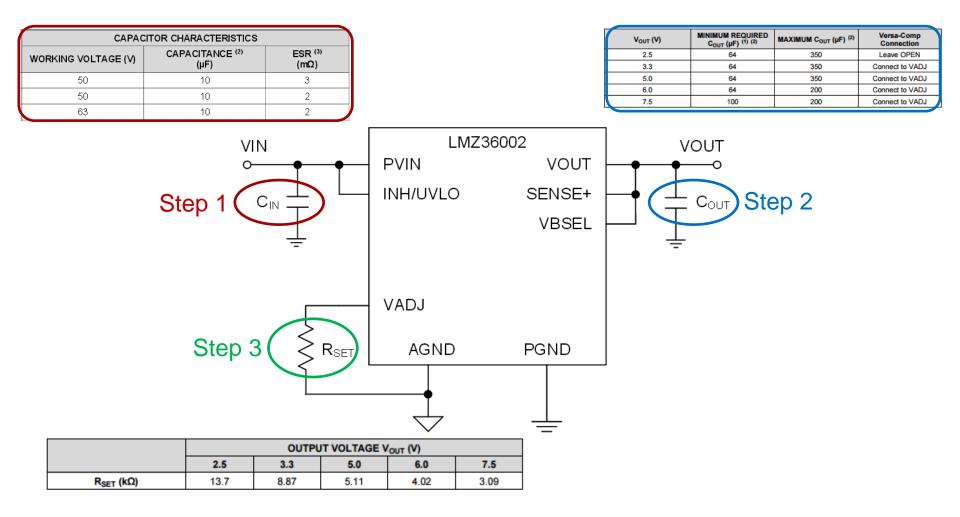


SIMPLE SWITCHER 4.5-V to 60-V Input, 2-A Power Module

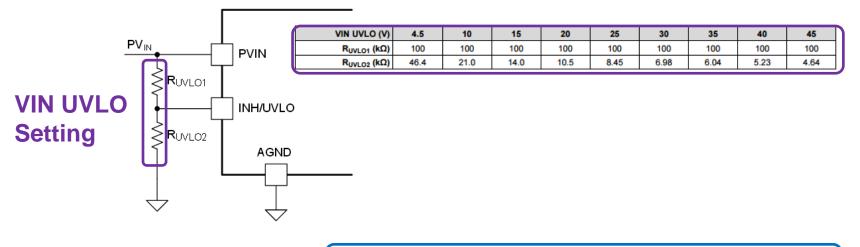
1 Features

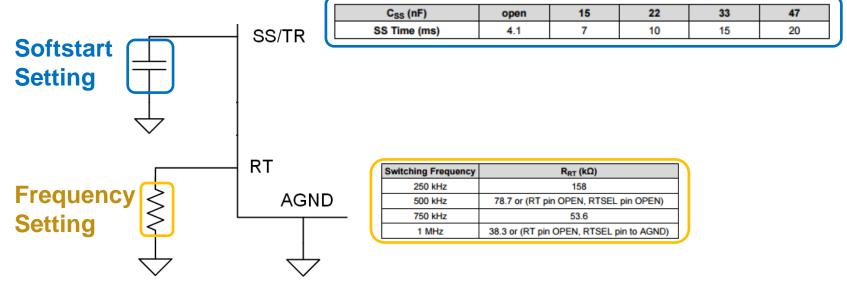
- Complete Integrated Power Solution Allows Small Footprint, Low-Profile Design
- 10 mm × 10 mm × 4.3 mm Package
- ✓ Wide-Output Voltage Adjust (2.5 V to 7.5 V)
- Adjustable Switching Frequency (200 kHz to 1 MHz)
- Synchronizes to an External Clock
- Automatic PFM Mode for Light Load Efficiency
- Adjustable Slow-start
- Output Voltage Sequencing / Tracking
- Power Good Output
- Programmable Undervoltage Lockout (UVLO)
- Over-Temperature Thermal Shutdown Protection
- Over-Current Protection (Hiccup Mode)
- Pre-Bias Output Start-Up
- Operating Temperature Range: -40°C to 105°C
- Enhanced Thermal Performance: 14°C/W
- Meets EN55022 Class B Emissions
 - Integrated Shielded Inductor

External Component Considerations

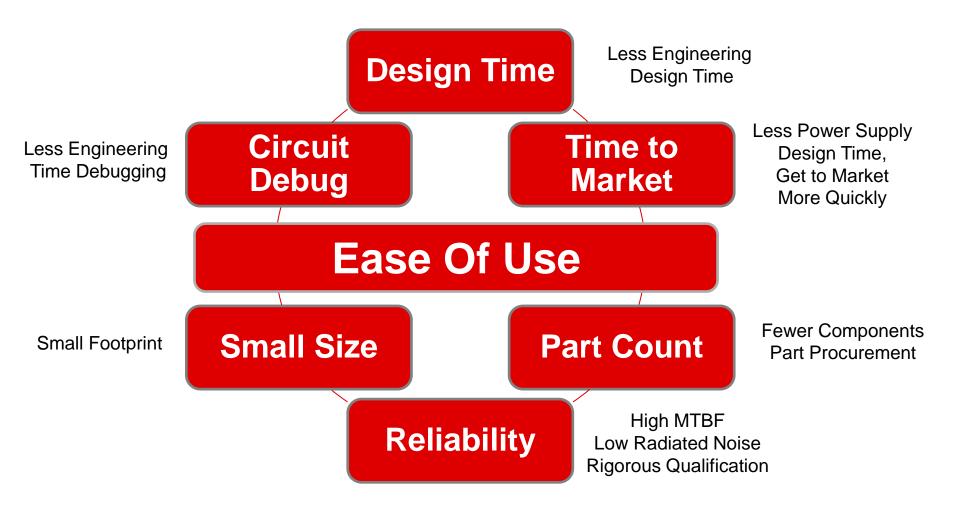


TI Information – Selective Disclosure

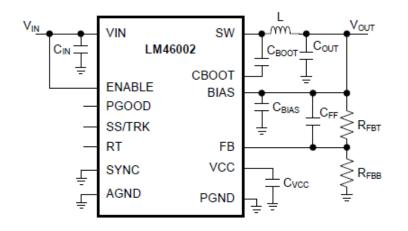


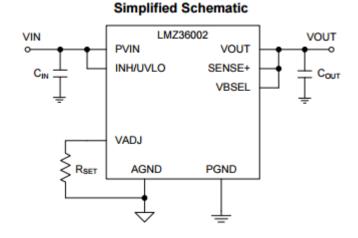

External Component Considerations

Other, Optional Components (Leave Open or Tailor to Application Needs)

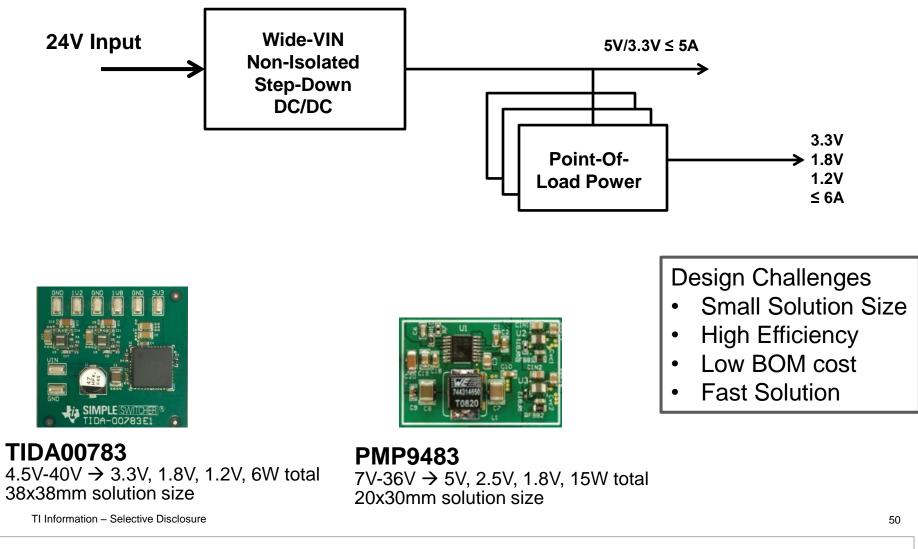


PCB Layout example for LMZ36002




Hidden Advantages of Modules

LM46002 vs LMZ36002



Typical Line Powered Industrial System

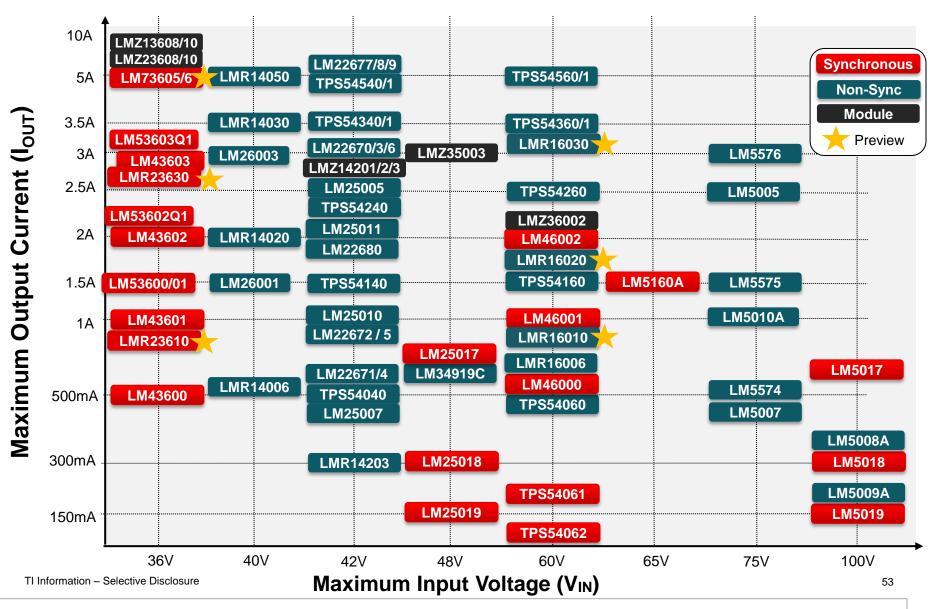
Wide V_{IN} Power Quick Reference Guide 24V Non-Isolated DC/DC Converter (V_{IN} max 36-42V)

Key Power Requirement	 Small footprint BOM cost High efficiency 	1. BOM cost 2. Small footprint 3. High efficiency	1. High efficiency 2. Small footprint 3. BOM cost	 Fast design Small footprint High efficiency
≤1A	LMR23610*	LMR14006 LMR14020	LM43600 LM43601	LMZ14201 LMZ35003
2A	LMR23625*	LMR14020	LM43602	LMZ14202 LMZ35003
3A	LMR23630*	LMR14030	LM43603	LMZ14203 LMZ23603
5A	LMR14050	LMR14050	LM73605*	LMZ23605

Non-Synchronous Synchronous Module

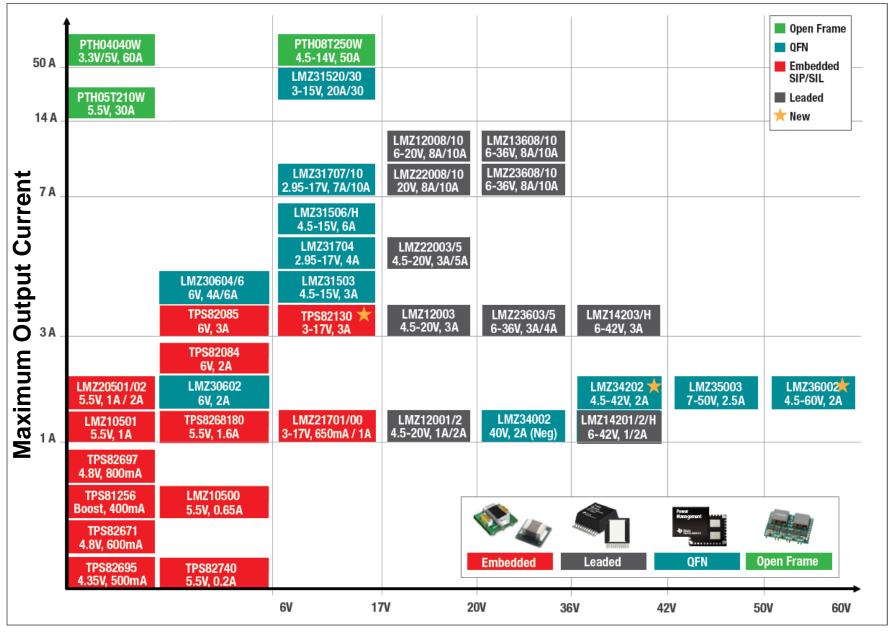
*Sampling now

Wide V_{IN} Power Quick Reference Guide 24V Non-Isolated DC/DC Converter (V_{IN} max >42V)


Key Power Requirement	1. Small footprint 2. BOM cost 3. High efficiency	1. BOM cost 2. Small footprint 3. High efficiency	1. High efficiency 2. Small footprint 3. BOM cost	 Fast design Small footprint High efficiency
≤1A	TPS54062 TPS54061 LMR16010*	TPS54060 TPS54161	LM46000 LM46001	LMZ36002 LMZ35003
2A	TPS54260 LMR16020*	TPS54260	LM46002	LMZ36002 LMZ35003
3A	TPS54361 LMR16030*	TPS54361	TPS54561	
5A	TPS54561	TPS54561	TPS54560	

Non-Synchronous Synchronous Module

*Sampling now



TI Wide V_{IN} DC/DC Step-Down Portfolio

TI's Power Module Portfolio

Maximum Input Voltage

Module or Discrete Regulator?

Module Solution

Pro

- Lower total cost of ownership
- Fewer components for procurement
- Less engineering time debugging
- IC, inductor, and passives in module qualified to TI's standard
- Small solution size

Con

- Narrower operating range
- Higher BOM cost

Discrete Solution

Pro

- More design flexibility
- Optimize to your design conditions
- Lower total solution cost
- Spread heat over larger area
- Small size with optimized layout

Con

- Requires more design time
- Higher BOM count

TI.com/WideVin

Wide Vin Landing Page: www.ti.com/widevin

Tex/	as Inst	RUMEN	TS	Everything ~	Search	1				C	٤	
cts A	pplications	s & designs	Tools & se	oftware S	upport 8	community	San	nple & buy	About TI			
<u>Home</u> > <u>P</u>	ower Manage	ement > Wide	VIN DC/DC Por	wer Solutions								
/ide	V _{IN} D	C/DC P	ower	Solutio	ons							
verview	Products	What's New	Application	is Tools & So	oftware	Technical Docu	ments	Videos & Su	oport			
		er for De C/DC soluti		0 11		1S nax Vin ≥30	V					
								DC/DC regula	tor portfolio fo	or today's		

Texas Instruments provides the industry's most comprehensive wide input voltage range DC/DC regulator portfolio for today's most demanding systems. With operating voltages of up to 100V, Ti's Wide V_{NP} portfolio eliminates input protection components to reduce cost and solution size without sacrificing reliability. Ti's easy-to-use, high-density, feature-rich Wide V_{NP} converters, controllers: and wover modules reduce BOM size and cost while improving scalability and reliability without comprising performance.

Wide VIN devices from TI offer:

- · Increased robustness against input transients
- Scalable, easy-to-design solutions
- · Low noise, low EMI, and feature-rich

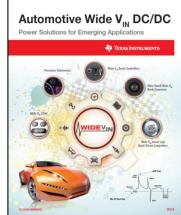
Browse products by function

feature-rich

Find key products by application


O Download reference designs

Applications Requiring Wide V_{IN} Power:



Wide Vin TI

Wide Vin Selection Guides

<section-header>

arch TI Designs – Wide V _{in}	TIDesigns		
App Function			
/iew Designs	Products		
CISER 25 Class 5 Rated Wald-Output Fower Supply for Automotive Claster II Infotainment System	Sepic (Synchronous)		
* 100W Automotive Amplifier with Start-Stop Support	Boost		
* Automotive Infotainment Display Power with CISPR 25 Class 5 Rating	SEPIC		
* Quad Output Isolated Bias Supply for Inverter Gate Drivers	Fly-Buck		
* Quad Output Isolated Bias Supply for Inverter Gate Drivers	Fly-Buck		
* Wide 7Vin Low Noise Triple Output Step Down Converter Reference Design	Buck (Synchronous)		

TI.com/PowerModules

Power Modules Landing Page: <u>www.ti.com/p</u>	<u>owermodules</u>				
Verything - Search	Q				
Products Applications & designs Tools & software Support & training Sample & buy About T	1				
Ti worldwide > United States (in English) France (en Français) Italy (in Italiano) Russia (по-русски) Vietnam (Trong Tiếng) China (简体中文) Germany (auf Deutsch) Korea (覚忌の) Spain (en Español) Japan (日本語) India (in English) Mexico (en Español) Taiwan (雾韻中文)	Việt)		Products Featured products	Tools & software Technical documents Supp	port & training
TI Home > Power Management > Power Modules			6		
Power Management				Salart & Sumpler	Asimpomoni Instantion
Overview Products Featured products Tools & software Technical documents Support & tra	lining	4			
^{nu} DC/DC Power Modules: Innovative solutions to fit o	lesign constraints	TPS82130		LMZ36002	LMZ34202
Ti's broad portfolio of DC/DC modules integrate inductors, FETs, compensation, and other passive component to simplify prototyping, design, and manufacturing. Using a module reduces engineering time for design and v speed development cycles for many applications, including personal electronics, industrial, and communicatio	verification to help		p-down Converter h Integrated Inductor	SIMPLE SWITCHER® 4.5 V to 60 V, 2 A power module in QFN package	2A SIMPLE SWITCHER®, Step-Down Voltage Regulator
Browse by input voltage level		둸 Online dat	tasheet	🐻 Online datasheet	Online datasheet
Overview Products Featured products Tools & software Technical documents Sup	oport & training	oad	Overview Products Fe	atured products Tools & software Technical do	curnents Support & training
Support & training for Power Modules LMZ36002 Features	now tion Tools & software for Power Modules Reduce engineering time with resources and tools such as EVMs, reference designs, and WEBENCH designer tools to get you market faster.				
Enhanced thermal performance: 14°C/W CISPR 22 Class-B EMI standards Adjustable and synchronous switching frequency Power module de			Featured evaluatio	n modules	Design and simulation to WEBENCH Designer is a powerful softwa algorithm with visual interfaces that delin complete applications in seconds.
Simplify Wide VIN Design with the SIMPLE SWITCHER LMZ36002, the Industry'	support >	dules			Filters Sensors Interface Refere Power FPGA/uP LED Clock
Available in a 10mm x1 0mm DPN package, the SMNEE SW17DERE LUX258002 lat the industry's smallest 600 DCDC power module L: Watch as Traile details how to use LUX256002 and as few as three comparison of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power Module Association of the Micro SIP [™] DC/DC Power			LMZ36002 Power Mod	ule 3A Step-Down Conver Integrated Inductor E	Tter with Enter your power supply requirements
Learn more about Ths highly-integrated MicroSP TM power modules for bw-power applications.	communications equipment Thu, 23 Jun 2016 15:00:00 GMT	systems	Evaluation Board	Learn more >	Vin Min Max Vin 14.0 V 22.0 Vout lout
SIMPLE SWITCHER® Nano Modules vs. LDOs Stephen discusses the pros and cons of both solution types and explains why integrated-inductor DCDC switching regulators may be a better choice over LDOs.	Smart power-supply designs factories Mon, 07 Dec 2015 16:00:00 GMT	for smart			Output 3.3 V 2.0 Isolated Output Ambient Temp 30
Simplify Your Design Process with SIMPLE SWITCHER® Power Solutions	MicroSiP: Five years of the w power solution Sat, 21 Nov 2015 16:00:00 GMT	vorld's smallest			Multiple Loads Single Outp

Thank You!

ti.com/WideVin ti.com/PowerModules

TI Information – Selective Disclosure

58