Input & Output Limitations – 3 TIPL 1132 TI Precision Labs – Op Amps

Presented by Ian Williams

Prepared by Art Kay and Ian Williams

Prerequisites: Input & Output Limitations 1, 2

(TIPL 1130, TIPL 1131)

Real World Output Range

Classic Bipolar Output Stage

 V_{OUT} swing headroom = $V_{sat} + V_{be}$

OPA827 – Classic Bipolar Output Stage

			STA	NDARD GF OPA827A	RADE		
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT	
OUTPUT							
Voltage Output Swing		R _L = 1kΩ, A _{OL} > 120dB	(V−)+3		(V+)-3	V	
Over Temperature		R_L = 1k Ω , A_{OL} > 114dB	(V–)+3		(V+)-3	v	
Output Current	I _{OUT}	$ V_{S} - V_{OUT} < 3V$		30		mA	
Short-Circuit Current	I _{SC}			±65		mA	
tput	40 50	$\begin{array}{c} -40 \ \text{C} \\ +25^{\circ} \ \text{C} \\ +25^{\circ} \ \text{C} \\ +125^{\circ} \ \text{C} \\ +85^{\circ} \ \text{C} \\ -40^{\circ} \ \text{C} \ \text$	+125°C +85°C	+25°C -4	40°C55°C	Sho Circ 73 Pro	ort cuit
uraleu	Output Current (m/	A)	Output 0	Surrent (mA)		FIU	le

🜵 Texas Instruments

OPA827 – Classic Bipolar Output Stage

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
ОИТРИТ					
Voltage Output Swing	$R_L = 1k\Omega$, $A_{OL} > 120dB$	(V–)+3		(V+)–3	V

Claw Curve – Bipolar vs. CMOS

Specs Table – Linear or Slam Voltage?

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT					
	No load		6	15	mV
Voltage output swing from rail	R _L = 10 kΩ		220	250	mV
	T _A = -40°C to +125°C		310	350	mV
OPEN-LOOP GAIN					
	(V–) + 0.5 V < V _O < (V+) – 0.5 V, R_L = 5 kΩ	110	120		dB
A _{OL} Open-loop voltage gain	$(V-)$ + 0.5 V < V_{O} < $(V+)$ - 0.5 V	120	130		dB

7

Classic Bipolar vs. Rail-to-Rail Output Stage

CMOS – Why No True Rail-to-Rail Output?

- Some minimum drain to source voltage is required!
- Increasing $I_D \rightarrow$ Increasing V_{GS}

9

 $-V_{S}$

Rail-to-Rail Output Stage vs. Iout

10

Rail-to-Rail Output Stage

- R_{LOAD} affects A_{OL} and output swing
- $R_{out} = R_{LOAD} \parallel R_o$, where $R_o = output$ resistance
- Gain in the last stage is set by R_{out} / g_m
- R_{out} decreases with loading

Output Short Circuit Current Limit

Short Circuit Limit – Specs Table vs. Curve

ELECTRICAL CHARACTERISTICS:

High-Voltage Operation, $V_s = \pm 4 V$ to $\pm 18 V$ ($V_s = +8 V$ to $\pm 36 V$) (continued)

At T_A = +25°C, R_L = 10 k Ω connected to V_S / 2⁽¹⁾, and V_{CM} = V_{OUT} = V_S / 2⁽¹⁾, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT		·	•			
		No load		6	15	mV
Voltage output swing from rail	Voltage output swing from rail	R _L = 10 kΩ		220	250	mV
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		310	350	mV
		Sinking		-18		mA
Isc	Short-circuit current	Sourcing		+16		mA
				1 1		

Thanks for your time! Please try the quiz.

Multiple Choice Quiz TI Precision Labs – Op Amps

- 1. The figure below shows a classic bipolar output stage. Which of the following is true?
 - a. This is a rail-to-rail output.
 - b. Connecting a load to the output will cause A_{OL} to shift.
 - c. The output swing limit will be about 1V from the supply rail.
 - d. The RF immunity for the op amp will be limited.

- 2. In the claw curve below, the region at the end of the curve is circled. What causes this bend in the curve?
 - a. The amplifier short circuit limit is turning on.
 - b. The resistance of the output transistors is causing voltage to decrease.
 - c. The amplifier is going into thermal overload.
 - d. The saturation and cutoff of the input stage is causing common mode limitations.

3

- 3. For the circuit below, estimate the output swing (slam limit).
 - a. -4.9 < Vout < +4.9V
 - b. -4.2 < Vout < +4.0V
 - c. -3.5< Vout < +3.5V
 - d. -3.0< Vout < +3.0V

- 4. (T/F) The claw curve represents the linear output swing range for an op amp vs. output current.
 - a. True
 - b. False
- 5. The DC A_{OL} for some amplifiers will be affected by loading. Which amplifier types are most susceptible to the effect?
 - a. Rail-to-rail
 - b. Classic bipolar
- 6. What output swing limitation would you expect with a bipolar rail-to-rail amplifier?
 - a. A few millivolts from the rail
 - b. 50mV from the rail
 - c. 300mV from the rail
 - d. 1V from the rail
- 7. (T/F) If the output is shorted to the negative supply, the short circuit limit will limit the output current and protect the device from damage.
 - a. True
 - b. False

5

- 8. The circuit's output is accidentally shorted to a 10V supply as shown below. Will the short circuit protection, prevent damage?
 - a. Yes
 - b. No

- 9. Based on the data sheet excerpt below, at 125°C, the worst case linear output swing is ______.
 - a. 30mV from the rail.
 - b. 50mV from the rail.
 - c. 70mV from the rail.
 - d. 100mV from the rail.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OPEN-LOOP GAIN							
A _{OL}	Open-loop voltage gain	$\begin{array}{l} (V-) + \ 100 \ mV < V_O < (V+) - \ 100 \ mV, \\ R_L = \ 10 \ k\Omega, \ T_A = -40^\circ C \ to \ +125^\circ C \end{array}$	106	130		dB	
OUTPUT					·		
		$R_L = 10 \ k\Omega$		30	50	mV	
	Voltage output swing from fail	$R_{L} = 10 \text{ k}\Omega, T_{A} = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			70	mV	
I _{SC}	Short-circuit current			±5		mA	

At T_A = +25°C, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2, unless otherwise noted.

- 10. For the data sheet excerpt below, the typical short circuit current is set to turn on at +30mA (sourcing) and -45mA (sinking). These limits are for room temperature only. How could you estimate the variation of short circuit current over temperature?
 - a. ±20%
 - b. ±50%
 - c. Use the claw curves
- 11. For the data sheet excerpt below, the typical short circuit current is set to turn on at +30mA (sourcing) and -45mA (sinking). These limits indicate typical performance only. How could you estimate the worst case?
 - a. ±20%
 - b. ±50%
 - c. Use the claw curves

			Standard Grade High Grade OPA211AI, OPA2211AI OPA211I ⁽¹⁾						
PARAMETER		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
OUTPUT									
Voltage Output	V _{OUT}	R_L = 10k Ω , $A_{OL} \ge$ 114dB	(V–) + 0.2		(V+) – 0.2	(V–) + 0.2		(V+) – 0.2	v
		$R_L = 600\Omega, A_{OL} \ge 110dB$	(V–) + 0.6		(V+) − 0.6	(V–) + 0.6		(V+) − 0.6	V
		l _o < 15mA, A _{oL} ≥ 110dB	(V–) + 0.6		(V+) – 0.6	(V–) + 0.6		(V+) – 0.6	v
Short-Circuit Current	I _{sc}			+30/-45			+30/-45		mA

Multiple Choice Quiz: Solutions

- 1. The figure below shows a classic bipolar output stage. Which of the following is true?
 - a. This is a rail-to-rail output.
 - b. Connecting a load to the output will cause A_{OL} to shift.
 - c. The output swing limit will be about 1V from the supply rail.
 - d. The RF immunity for the op amp will be limited.

- 2. In the claw curve below, the region at the end of the curve is circled. What causes this bend in the curve?
 - a. The amplifier short circuit limit is turning on.
 - b. The resistance of the output transistors is causing voltage to decrease.
 - c. The amplifier is going into thermal overload.
 - d. The saturation and cutoff of the input stage is causing common mode limitations.

- 3. For the circuit below, estimate the output swing (slam limit).
 - a. -4.9 < Vout < +4.9V
 - b. -4.2 < Vout < +4.0V</p>
 - c. -3.5 < Vout < +3.5V
 - d. -3.0 < Vout < +3.0V

- 4. (T/F) The claw curve represents the linear output swing range for an op amp vs. output current.
 - a. True
 - b. False
- 5. The DC A_{OL} for some amplifiers will be affected by loading. Which amplifier types are most susceptible to the effect?
 - a. Rail-to-rail
 - b. Classic bipolar
- 6. What output swing limitation would you expect with a bipolar rail-to-rail amplifier?
 - a. A few millivolts from the rail
 - b. 50mV from the rail
 - c. 300mV from the rail
 - d. 1V from the rail
- 7. (T/F) If the output is shorted to the negative supply, the short circuit limit will limit the output current and protect the device from damage.
 - a. True
 - b. False

- 8. The circuit's output is accidentally shorted to a 10V supply as shown below. Will the short circuit protection prevent damage?
 - a. Yes
 - b. No

- 9. Based on the data sheet excerpt below, at 125°C, the worst case linear output swing is ______.
 - a. 30mV from the rail.
 - b. 50mV from the rail.
 - c. 70mV from the rail.
 - d. 100mV from the rail.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OPEN-LOOP GAIN									
A _{OL}	Open-loop voltage gain	$\begin{array}{l} (V-) + \ 100 \ mV < V_O < (V+) - \ 100 \ mV, \\ R_L = \ 10 \ k\Omega, \ T_A = -40^\circ C \ to \ +125^\circ C \end{array}$	106	130		dB			
OUTPUT	OUTPUT								
		$R_L = 10 \ k\Omega$		30	50	mV			
	Voltage output swing from fail	$R_L = 10 \text{ k}\Omega$, $T_A = -40^{\circ}\text{C}$ to +125°C			70	mV			
I _{SC}	Short-circuit current			±5		mA			

At T_A = +25°C, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2, unless otherwise noted.

- 10. For the data sheet excerpt below, the typical short circuit current is set to turn on at +30mA (sourcing) and -45mA (sinking). These limits are for room temperature only. How could you estimate the variation of short circuit current over temperature?
 - a. ±20%
 - b. ±50%
 - c. Use the claw curves
- 11. For the data sheet excerpt below, the typical short circuit current is set to turn on at +30mA (sourcing) and -45mA (sinking). These limits indicate typical performance only. How could you estimate the worst case?
 - a. ±20%
 - b. ±50%
 - c. Use the claw curves

			Sta OPA2	Standard Grade High Grade OPA211AI, OPA2211AI OPA211I ⁽¹⁾					
PARAMETER		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
OUTPUT									
Voltage Output	V _{OUT}	R_L = 10k Ω , $A_{OL} \ge$ 114dB	(V–) + 0.2		(V+) – 0.2	(V–) + 0.2		(V+) – 0.2	v
		$R_L = 600\Omega$, $A_{OL} \ge 110dB$	(V–) + 0.6		(V+) – 0.6	(V–) + 0.6		(V+) – 0.6	V
		I _O < 15mA, A _{OL} ≥ 110dB	(V–) + 0.6		(V+) – 0.6	(V–) + 0.6		(V+) – 0.6	v
Short-Circuit Current	I _{sc}			+30/-45			+30/-45		mA

