
Introduction to  
Processor SDK RTOS Part 1 



Agenda 
• Processor RTOS SDK Overview 
• TI-RTOS Kernel 
• Inter-Processor Communication (IPC) 
• Network Development Kit (NDK) 
• Diagnostic Software 
• Algorithm Libraries 
• Drivers (Covered in Processor SDK RTOS Overview P2) 

 

 

https://training.ti.com/introduction-processor-sdk-rtos-part-2


Processor RTOS SDK Overview 

Introduction to Processor SDK RTOS 



Processor SDK RTOS Development Ecosystem  

Emulator 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For CCS Training: 
processors.wiki.ti.com/ 

index.php/Category:CCS_
Training 

 

Host Computer Target Board 

Eclipse IDE 

Processor SDK RTOS  
Code Composer 
StudioTM (CCS) 

Third Party 
Plug-Ins 

http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://processors.wiki.ti.com/index.php/Category:CCS_Training


Processor SDK RTOS Install 
• Each TI part has its own install page. For example: 

―AM335x: http://www.ti.com/tool/processor-sdk-am335x 

―AM57x: http://www.ti.com/tool/processor-sdk-am57x 

• Click on the Get Software link and it will take you to 
the install page (like the one shown on the next slide). 

• The Getting Started Guide and the Developer Guide 
show how to start developing Processor SDK RTOS-
based applications. 

http://www.ti.com/tool/processor-sdk-am335x
http://www.ti.com/tool/processor-sdk-am57x


Part of Processor SDK RTOS Install Page 



Processor SDK RTOS: Overview 
The RTOS (Real Time Operating System) perspective of the TI 
Processor SDK (Software Development Kit): 

• Provides a set of software building blocks that facilitate 
development of (real-time) applications 

• Consists of SoC (device) and platform dependent modules, Core 
dependent software, TI-RTOS kernel and utilities and  
application examples 

• Includes source code and prebuilt libraries 

• Embedded OS: TI-RTOS kernel for DSP, ARM, and M4 

• Development OS: Windows and Linux PC support 

• Available as a free download with all components in one 
installer 



Operating System Dependent Components 

TI-RTOS kernel, Tools, Utilities, Drivers 

Core-Specific / OS-Independent Components 

Optimized Libraries 

SoC -Dependent / OS-Independent Components 

device and platform drivers 

Processor SDK Elements 
Applications 

Implemented on top of the operating system and may be architecture dependent. 



Processor SDK RTOS Software: AM57x Superset 

XDCtools 

Hardware 

Algorithm Libraries 

DSPLIB IMGLIB MATHLIB 

TI-RTOS 

RTOS - Network 

TCP/IP 
Networking 

(NDK) 

Software Framework Components 

Inter-Processor  
Communication 

(IPC) 

Framework  
Components 

OS Abstraction 
 Layer (OSAL) 

Network I/F 
Mgmt Unit 

(NIMU) 

Platform/EVM Software 

Secondary  
Bootloader 

Board 
Library 

Diagnostics 

Chip Support Library (CSL) 

Low Level Drivers (LLD) 

EDMA3 ICSS-EMAC PCIe PRUSS 

SPI GPIO UART … USB 

I2C 

SD/MMC 

EMAC 

FATFS 

Application OOB Demos 

Infotainment Vision Industrial Audio Video HPC 

Core-specific optimized library 
  
 

Device/platform-dependent 

OS-dependent Applications 

Host 



Processor SDK RTOS  
 

Single product supports multiple SoCs 



Processor SDK RTOS Release (AM335x) 
processor_sdk_rtos_335_version 

bios_version 

cg_xml 

edma3_lld_version 

ndk_version 

pdk_am335x_version 

processor_sdk_rtos_am335x_version 

xdctools_version_core 



Processor SDK RTOS Release (AM437x) 
processor_sdk_rtos_437_version 

bios_version 

cg_xml 

ndk_version 

pdk_am437x_version 

processor_sdk_rtos_am437x_version 

edma3_lld_version 

xdctools_version_core 



Processor SDK RTOS Release (AM57x) 
processor_sdk_rtos_am57_version 

bios_version 

cg_xml 

ctoolslib_version 

dsplib_c66x_version 

edma3_lld_version 

framework_components_version 

imglib_c66x_version 

ipc_version 

mathlib_c66x_xml 

ndk_version 

pdk_am57xx_version 

processor_sdk_rtos_am57xx_version 

xdais_version 

xdctools_version_core 

uia_version 

The AM57x release is a 
superset of Processor 
SDK RTOS features. 



pdk_am57xx_version 

edma3_lld_version 

framework_components_version 

Processor SDK RTOS Release (AM57x) 
 

The pdk folder 
contains the platform 
development kit, 
which is a collection 
of CSL and low-level 
drivers that configure, 
manage the 
hardware, and 
providing I/O 
capabilities. 

The edma folder 
includes multiple 
EDMA controllers, 
management 
drivers, and the 
resource manager. 

The framework 
components folder 
includes a set of 
utilities to manage 
the target board 
hardware, memories, 
interfaces, etc. 



dsplib_c66x_version 

imglib_c66x_version 

mathlib_c66x_version 

xdais_version 

Processor SDK RTOS Release (AM57x) 

The following folders contain optimized 
libraries for DSP core applications: 

• dsplib: FFT, Filters, etc. 

• imglib: Image processing 

• mathlib: Standard math functions 
(sin, cosin, sqrt) 

NOTE: Many more libraries are 
available as source code outside of 
the release.  
 

The xdais folder 
includes a set of 
standard DSP 
interfaces that enable 
easy integration of 
XDAIS-compatible 
algorithms (voice and 
video codecs) into 
applications. 



bios_version 

cg_xml 

xdctools_version 

ipc_version 

processor_sdk_rtos_am57xx_version 

ndk_version 

Processor SDK RTOS Release (AM57x) 

The bios folder includes 
the RTOS operating 
system kernel (scheduler 
and utilities). 
 
The processor_sdk_rtos 
folder contains collateral, 
documentation, scripts, 
makefiles, and examples. 

The cg_xml and xdctools 
folders contain sets of 
utilities used to build and 
configure OS modules 
using a GUI interface or 
ASCII configuration file. 

The ipc folder contains a 
set of utilities used to 
facilitate inter-processor 
communications internal 
and external the device.  
 
The ndk folder includes 
the TCP/IP stack. 



Processor SDK RTOS Release (AM57x) 

ctoolslib_version 

uia_version 

The ctools folder is a 
collection of libraries 
that control real-time 
debug and collect 
debug information 
(instrumentation) . 

The uia (universal 
instrumentation 
architecture) folder 
contains  utilities, which 
are used to process, 
analyze, and display debug 
data from the hardware 
(visualization). 



TI-RTOS Kernel 

Introduction to Processor SDK RTOS 



TI-RTOS: Generic Real-Time Operating System 

• TI-RTOS is a scalable OS that is currently available for 
multiple cores: 
– Tiva-C (M4) 
– Concerto (M3+C28x) 
– C28x 
– MSP430 
– C6000 
– Sitara 

• TI-RTOS kernel is embedded within Processor SDK 
RTOS, along with associated tools, utilities, and 
drivers. 

• The RTOS kernel is a real-time multi-tasks scheduler.   
 



Real Time Multi-Tasks Scheduler 

By definition, real-time is a controlled response 
time to (multiple) external events. 
• Able to accept multiple interrupts 
• Controls the maximum latency in responding to 

interrupt 
NOTE: Deterministic latency is hard to achieve 

• Provides a strong priority scheme for tasks 



TI-RTOS Real Time Multi-Tasks Scheduler 
• Event-driven operating system 

NOTE: Event can be clock, but usually not. 

• Very small adaptive footprint 
• Very efficient context switching 



More Information About TI-RTOS 
• Comprehensive TI RTOS online training: 

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop 

– 10 video presentations cover TI-RTOS and CCS in great 
detail. 

– All slides are available for download. 

• Other sources for RTOS training include: 
http://processors.wiki.ti.com/index.php/SYS/BIOS_Online_Training  and 
http://processors.wiki.ti.com/index.php/Hands-On_Training_for_TI_Embedded_Processors 

• The back-up slides at the end of the PDF of this 
presentation (See Resources, upper right) provide a 
brief description of all TI-RTOS thread types. 
 

 

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop
http://processors.wiki.ti.com/index.php/SYS/BIOS_Online_Training
http://processors.wiki.ti.com/index.php/Hands-On_Training_for_TI_Embedded_Processors


Inter-Processor Communication 
(IPC) 
Introduction to Processor SDK RTOS 



IPC Principles 
IPC provides standard APIs to communicate 
between threads: 
• The same APIs for all SoCs 
• The same APIs regardless of what CPU is the 

sender and what CPU is the receiver 
• The same APIs regardless of the operating 

system 
• The same APIs regardless of the transport 

mechanism 



IPC Challenges 
• Cooperation between multiple cores requires a smart 

way to exchange data and messages. 
• IPC must support any number of cores within a single 

SOC  with the ability to connect multiple devices. 
• An efficient scheme is required to avoid high cost in 

terms of CPU cycles. 
• Implementations depend on the hardware, transport 

layer, and operating system. 
• There are the usual trade-offs: performance (speed, 

flexibility) versus cost (complexity, more resources). 
 



SoC Architecture Support for IPC 

• Depends on the SoC 
―Memories that can be shared between cores 
―Mailboxes or interrupt registers  
―Multicore Navigator or other DMA mechanism 

• Future support is planned for peripheral 
communication between cores on different SoCs. 



IPC Module 
• Current IPC implementation may use multiple transports: 

Device 1 
ARM 

Th
re

ad
 1

 

IPC 
Th

re
ad

 2
 

MEM 

C66x 

Th
re

ad
 1

 

IPC 

Th
re

ad
 2

 

Device 2 
ARM 

Th
re

ad
 1

 

IPC 

Th
re

ad
 2

 

– Core  Core   
– Device  Device  (SoC peripheral interface)  

• Chosen at configuration; Same code regardless of thread location. 

• IPC Manager 
initializes IPC and 
synchronization 

 
API summary: 
Ipc_start reserves memory, 
create default gate and heap 
Ipc_stop releases all resources 
Ipc_attach sets up transport 
between two processors 
Ipc_detach finalizes transport 

 

TI
-R

TO
S 

TI
-R

TO
S 

TI
-R

TO
S 

   SoC Peripheral    SoC Peripheral 



IPC Services 
• The IPC package is a set of standard APIs.  MessageQ is the 

highest layer,  
• The implementation is device- and OS-dependent. 

 
Application 

Drivers 

MessageQ 

Transport Layer  (Shared Memory, Multicore Navigator) 

IPC 
Configuration 

& 
Initialization 



MessageQ Highest Layer API (1/3) 

MessageQ_create(“myQ”, *synchronizer); 

MessageQ_get(“myQ”, &msg, timeout); 

  

  

  

Core 2 - READER 

• MessageQ transactions begin with READER creating a MessageQ. 

• READER’s attempt to get a message results in a block (unless 
timeout was specified), since no messages are in the queue yet. 

“myQ” 
SINGLE reader, 
multiple WRITERS 
model (READER owns 
queue/mailbox) 
 



Using MessageQ (2/3) 

“myQ” 

MessageQ_create(“myQ”, …); 

MessageQ_get(“myQ”, &msg…); 

  

  

  

MessageQ_open (“myQ”, …); 

msg = MessageQ_alloc (heap, size,…); 

MessageQ_put(“myQ”, msg, …); 

  

Core 1 - WRITER 

• WRITER begins by opening MessageQ created by READER. 
• WRITER gets a message block from a heap and fills it, as desired. 
• WRITER puts the message into the MessageQ. 

Heap 

Core 2 - READER 



Using MessageQ (3/3) 

“myQ” 

MessageQ_create(“myQ”, …); 

MessageQ_get(“myQ”, &msg…); 

*** PROCESS MSG *** 

MessageQ_free(“myQ”, …); 

MessageQ_delete(“myQ”, …); 

MessageQ_open (“myQ”, …); 

msg = MessageQ_alloc (heap, size,…); 

MessageQ_put(“myQ”, msg, …); 

MessageQ_close(“myQ”, …); 

Heap 

• Once WRITER puts msg in MessageQ, READER is unblocked. 
• READER can now read/process the received message. 
• READER frees message back to Heap. 
• READER can optionally delete the created MessageQ, if desired. 

Core 1 - WRITER Core 2 - READER 



Network Developer’s Kit (NDK) 

Introduction to Processor SDK RTOS 



NDK Services 
The Network Developer’s Kit (NDK) serves as a rapid 
prototype platform for the development of network and 
packet-processing applications. NDK includes the 
following: 
• IPv6 and IPv4 compliant TCP/IP stack  
• Layer 3 & 4 network protocols 
• High-level network applications including HTTP server and 

DHCP 

NOTE: NDK was developed as a prototype code example.  
It is not aimed for high-throughput networking. 



NDK Parts (NIMU, UIU) 
• The NDK is divided into two 

parts: 
– NIMU (Network Interface 

Management Unit) 
– UIU (User Interface Unit) 

• For more information, refer to 
the NDK User’s Guide. 

 
 

 
 

NIMU 
Hardware-
dependent 

NDK Drivers & 
Application Part 

Application Part 
DHCP, DNS 

Drivers 
OS-dependent 

http://www-s.ti.com/sc/techlit/spru523.pdf


Algorithm Libraries 

Introduction to Processor SDK RTOS 



• The Processor SDK release contains three algorithm 
libraries. 

• Each release directory has a C66 DSP-optimized code 
as well as a standard ANSI  C implementation of all 
the functions. 

• The standard ANSI C implementation is used to 
validate the results of the optimized library 
functions. 

• Compiling the ANSI C source code using another core 
(like M4 or A15) compiler provides (non-optimized) 
libraries for non-DSP core. 
 

Optimized Algorithm Libraries 



• Optimized algorithm libraries contain C66x C-callable, 
C with intrinsic functions for specific usage. 

• Few legacy functions are written using assembly 
code. 

• The following three libraries are part of the Processor 
SDK release: 
– Fundamental math & signal processing libraries: 
 DSPLIB: Signal-processing math and vector functions 
 MathLIB: Floating-point math functions 

– IMGLIB: Image/video processing functions 
• A complete set of libraries that are available as 

source code can be found here: 
http://processors.wiki.ti.com/index.php/Software_libraries 
 

DSP Algorithm Libraries 

http://processors.wiki.ti.com/index.php/Software_libraries


Diagnostics Software 

Introduction to Processor SDK RTOS 



CCS Diagnostic Elements 
• CCS-based Debug 

– break points 
– watch points 
– step/step into 
– resume 

• CCS-based Trace (Instrumentation) 
– Configure trace logic 
– Getting trace information back to host 

• CCS-based data processing (Visualization) 
 



Run-Time Diagnostics in Processor SDK 

CToolsLib (Chip Tools Library) has multiple libraries that provide run-time 
debug capabilities. 
 

NOTE: Not all features are available for all devices. Usage is dependent  on 
core and device hardware. 

More details at http://processors.wiki.ti.com/index.php/CToolsLib  

ctoolslib_version# > packages >  

aet 

DSPTraceLib 

ETBLib 

ETMLib 

PMICILib 

SCILib 

STMLib 

http://processors.wiki.ti.com/index.php/CToolsLib


Run-Time Diagnostic Elements (1/3) 
• AET (Advanced Event Trigger 

Library) configures state 
machines that control tracing. 
 

• DSPTraceLib and ETBLib 
(Embedded Trace Buffer 
Library) provide a set of 
functions to control the DSP 
trace buffer operation and 
trace data transport. 

More details at http://processors.wiki.ti.com/index.php/CToolsLib  

ctoolslib_version# > packages >  

aet 

DSPTraceLib 

ETBLib 

ETMLib 

PMICILib 

SCILib 

STMLib 

http://processors.wiki.ti.com/index.php/CToolsLib


Run-Time Diagnostic Elements (2/3) 
• ETMLib (Embedded Trace 

Macrocell Library) controls the 
ARM macrocell trace facilities. 
 

• PMICMILib (Power and Clock 
Management Instrumentation 
library) provides programming 
and control APIs for the 
PMI/CMI units, which provide 
power and clock state 
profiling. 

More details at http://processors.wiki.ti.com/index.php/CToolsLib  

ctoolslib_version# > packages >  

aet 

DSPTraceLib 

ETBLib 

ETMLib 

PMICILib 

SCILib 

STMLib 

http://processors.wiki.ti.com/index.php/CToolsLib


Run-Time Diagnostic Elements (3/3) 
• SCILib (Statistic Collectors 

Library) collects statistical 
data from hardware counters 
(core dependent). 
 

• STMLib (System Trace Library) 
provides a set of utilities to 
collect real-time, non-
intrusive system trace 
messages during run-time. 

More details at http://processors.wiki.ti.com/index.php/CToolsLib  

ctoolslib_version# > packages >  

aet 

DSPTraceLib 

ETBLib 

ETMLib 

PMICILib 

SCILib 

STMLib 

http://processors.wiki.ti.com/index.php/CToolsLib


For More Information 
• Processor SDK RTOS Getting Started Guide 
• Processor SDK Training Series 
• Additional training: 

– TI-RTOS Kernel Workshop 
– Processor SDK RTOS Overview P2 

• For questions regarding topics covered in this 
training, visit the Sitara Processor support 
forum at the TI E2E Community website. 

 

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide
http://training.ti.com/processor-sdk-training-series
http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop
https://training.ti.com/introduction-processor-sdk-rtos-part-2
http://e2e.ti.com/support/arm/sitara_arm/f/791

	Introduction to �Processor SDK RTOS Part 1
	Agenda
	Processor RTOS SDK Overview
	Processor SDK RTOS Development Ecosystem 
	Processor SDK RTOS Install
	Part of Processor SDK RTOS Install Page
	Processor SDK RTOS: Overview
	Processor SDK Elements
	Processor SDK RTOS Software: AM57x Superset
	Processor SDK RTOS ��Single product supports multiple SoCs
	Processor SDK RTOS Release (AM335x)
	Processor SDK RTOS Release (AM437x)
	Processor SDK RTOS Release (AM57x)
	Processor SDK RTOS Release (AM57x)�
	Processor SDK RTOS Release (AM57x)
	Processor SDK RTOS Release (AM57x)
	Processor SDK RTOS Release (AM57x)
	TI-RTOS Kernel
	TI-RTOS: Generic Real-Time Operating System
	Real Time Multi-Tasks Scheduler
	TI-RTOS Real Time Multi-Tasks Scheduler
	More Information About TI-RTOS
	Inter-Processor Communication (IPC)
	IPC Principles
	IPC Challenges
	SoC Architecture Support for IPC
	IPC Module
	IPC Services
	MessageQ Highest Layer API (1/3)
	Using MessageQ (2/3)
	Using MessageQ (3/3)
	Network Developer’s Kit (NDK)
	NDK Services
	NDK Parts (NIMU, UIU)
	Algorithm Libraries
	Optimized Algorithm Libraries
	DSP Algorithm Libraries
	Diagnostics Software
	CCS Diagnostic Elements
	Run-Time Diagnostics in Processor SDK
	Run-Time Diagnostic Elements (1/3)
	Run-Time Diagnostic Elements (2/3)
	Run-Time Diagnostic Elements (3/3)
	For More Information

