Practical comparisons of DC/DC control-modes to solve end equipment challenges

Product Training

APP/BSR/CCP

Training Summary

Practical comparisons of DC/DC control-modes summary:

Certain end-equipment, like communications, server, industrial, and personal electronics have design challenges solved by the DC/DC converter's control-mode. This session will compare and contrast 3 different devices using 3 different control modes under the same design criteria to see how each control mode solves particular size, efficiency, external component, ripple and transient response design challenges.

What you'll learn:

- Learn the basics of step-down DC/DC control modes as it pertains to design challenges for many different end equipment
- Understand how the control mode affects performance of the point of load power supply with an apples-to-apples comparison
- See 3 different devices with 3 different control modes respond to the same design criteria to help show which one is the better device for specific design challenges.
- See how output filters are designed

URL link to <u>complimentary</u> training – Control Mode Theory Summary Training level: Intermediate Course Details:

- Audience: Analog, Systems, Power **Specific Parts Discussed**:
- <u>TPS54824</u>, <u>TPS54A20</u>, <u>TPS56C215</u>

TI Designs

- <u>PMP11438</u> Three Different Buck Converter Circuits to Convert 12V to 1.2V at >6A Load
- <u>PMP15008</u> Tiny, Low Profile 10 A Point-ofload Voltage Regulator Reference Design
- <u>PMP15018</u> Power Reference Design With Dual VOUT of 1.2V@10A and 1V@10A

Other Trainings

- Fixed Freq Control vs COT Control
- Survey of Control Topologies

Agenda

- Market challenges
- Overview of control methods and parts used in comparison
- Bounding the 3 designs: $V_{IN},\,I_{OUT}\,,\,V_{OUT}$ and V_{OUT} tolerance during transient
- Inductor & capacitor selection
- Loop response and transient comparison
- Output ripple and jitter
- Efficiency comparison
- Thermal comparison
- Solution size
- Considering cost
- Summary

Market Challenges

Telecom / Datacom / Industrial power needs

- Telecom/Datacom
 - Increasing PCB density requires small solution size with high power density
 - High efficiency allows increased card density and higher product performance
 - · Fixed frequency operation helps to reduce unwanted noise in the system
- Servers / SSD
 - Increasing PCB density requires small solution size with high power density
 - High efficiency allows increased card density and higher product performance
 - High light load efficiency is needed
 - Cost is key
- Industrial
 - Increasing PCB density requires **small solution size** with high power density
 - High efficiency allows increased card density and higher product performance
 - **Fixed frequency operation** helps to reduce unwanted noise in the Medical and Test & Measurement systems
 - Cost is key in majority of Industrial applications outside Medical and Test & Measurement

Control, Converters and Topology

Current Mode

- Used in TPS54824
- On time initiated by clock signal
- Scaled inductor current compared to control voltage to modulate pulse width
- Fixed frequency under all conditions

COT with SYNC

- Used in TPS54A20
- Phase lock loop (PLL) added to constant on-time (COT) controller
- PLL slowly adjusts on-time
- Fixed frequency in steady state
- Non-linear, fast transient response

D-CAP3™

Used in TPS56C215

- Advanced constant on-time (COT) control where a on-time **adapts with voltage** conditions
- A new high side on-pulse is **triggered** when falling feedback voltage equals the reference voltage
- Supports all **ceramic output caps** with internal ramp circuit
- Improved voltage set-point accuracy

TPS54824

Overview

- $V_{IN} 4.5 17V$
- I_{OUT} 8A
- f_{SW} : 200kHz to 1.6MHz
- Control Mode: Current Mode
 Advantages
- Low jitter fixed frequency operation
- Control loop is tunable adding flexibility for filter components
- Small signal model can be modeled for CM based control

Disadvantages

- Solution size
- Requires external compensation

Applications

- **Communications and Industrial** applications where many signal chain devices are used.
- The switching frequency is **predictable** and programmable with **low jitter** which helps improve noise performance.

TPS54A20

Overview

- V_{IN} 8 14V
- I_{OUT} 10A
- f_{SW} : 2 5MHz per phase
- Control Mode: COT with Sync

Advantages

- Smallest solution size
- Fast transient response
- Low profile
- No external compensation required

Disadvantages

- Limited V_{OUT} range: 0.5 2.0V
- Limited V_{IN} range: 8 14V
- Small signal model for COT based control can nor be modeled

Applications

- Ideal for non-portable applications needing small size with a fast transient response.
- **High frequency** enables a very small design, but where highest efficiency is not needed.

TPS56C215

Overview

- V_{IN}: 4.5 17V
- I_{OUT}: 12A
- f_{SW} : 400kHz, 800kHz and 1.2MHz
- Control Mode: D-CAP3™

Advantages

- No external compensation required
- Fast transient response
- Light load efficiency (Eco Mode™) Disadvantages
- Solution size
- Frequency Jitter
- Small signal model for COT based control can nor be modeled

Applications

- Ideal for applications, like **enterprise**, where there are fewer noise-sensitive analog components
- Powering low voltage processors that need high accuracy and present fast load transients.

Step Down Converter Topologies

Series Capacitor Buck Converter: TPS54A20

Buck Converter

- **Two** MOSFET switches (single phase)
- One output inductor

Series Capacitor Buck Converter

- Four MOSFET switches (two phase)
- Two output inductors
- One series capacitor
- Reduced switching loss enables efficient high frequency operation

Bounding the 3 designs

Design Specifications

Parame	ter	Conditions	Min	Тур	Max	Unit
V _{OUT}	Output voltage	±5% of typical	1.14	1.2	1.26	V
I _{OUT}	Output current		0		8	А
V _{IN}	Input voltage	±10% of typical	10.8	12	13.2	V
ΔV_{OUT}	Transient response	2 to 6A load step @ 1A/us			36	mV

Other aspects to consider:

- Overall converter size
- Power (heat) dissipation
- Solution cost

Inductor & Capacitor Selections

Choosing the Switching Frequency

- Higher frequency operation reduces overall solution size
 - Lower inductance required
 - Fewer decoupling capacitors
- Tradeoff: **efficiency decreases** with increased switching frequency
- Minimum on-time consideration

Minimum On-time Considerations

- For FCCM, min on-time at min load is the corner case to consider.
- Equation to estimate maximum fsw:

Part Number	Typical Minimum on-time (ns)	Maximum f _{sw} (kHz)
TPS54824	95	957
TPS54A20	14	12,987
TPS56C215	54	1,683

- Must consider part to part, temperature and load variation in min on-time.
- TPS54824 recommended max to use for calculation considering all conditions is 150 ns, max fsw for this application is
 606 kHz.

Figure 18. Minimum on-time vs Ambient Temperature

Inductor Value Selection

Inductance equation for traditional Buck Converter (TPS54824/TPS56C215)

• Inductance equation for Series Cap Buck Converter (TPS54A20)

$$L = \left(\frac{V_{IN,MAX} - 2V_o}{K \times I_o/2}\right) \left(\frac{V_o}{V_{IN,MAX} \times f_{SW}}\right)$$

- K = $\Delta I_L/I_O$, where I_O is full load current
- K is usually between 0.1 and 0.4

Part Number	V _{IN,Max} (V)	V ₀ (V)	I _o (A)	F _{sw} (MHz)	K	L (µH)	L Chosen (µH)
TPS54824	13.2	1.2	8	0.5	0.3	0.909	1.00
TPS54A20	13.2	1.2	10	2/phase	0.4	0.245	0.22 (x 2)
TPS56C215	13.2	1.2	8	1.2	0.3	0.379	0.47

Inductance Impact on Efficiency

 Inductance equation for TPS54A20 (series cap buck)

- $K = \Delta IL/IO$, where IO is full load current
- K is usually between 0.1 and 0.4

- Higher inductance tends to increase peak efficiency
- Lower inductance has higher full load efficiency and better transient response

Inductor Size – TPS54A20

- Larger inductors tend to result in higher efficiency
 - Thicker wire
 - Lower winding resistance
 - Benefit seen in mid to high load current range
- Measured results for
 - Same inductance
 - Same vendor
 - Same core material

12 $V_{\rm IN},$ 1.2 $V_{\rm O},$ 2MHz/phase

Inductor Vendor – TPS54A20

- Finding the right inductor vendor matters
 - Various core material, construction, etc.
 - Should not judge an inductor by DC resistance alone
- Measured results for
 - Same inductance
 - Same size
- If possible, experimentally test inductors

12 V_{IN} , 1.2 V_O , 2MHz/phase

Output Capacitor Selection – TPS54A20

• Load step down:

- Ex:
$$\Delta I_{o,max} = 5A$$
, L = 330nH,
Vo = 1.2V, $\Delta V_{o,max} = 25mV$, $V_{IN,min} = 10.8V$

$$C_o \ge \frac{\left(\Delta I_{o,\max}\right)^2 L}{4V_o \Delta V_{o,\max}} = 66 \mu \mathrm{F}$$

• Load step up:

$$C_{o} \ge \frac{2L(\Delta I_{o,\max})^{2}}{(V_{IN,\min} - 4V_{o})\Delta V_{o,\max}} = 106\mu F$$

 Select largest value and take variation in to account→ TPS54A20: 47 µF + 100 µF

Output Capacitor Selection – TPS56C215

- Ex: $\Delta I_{o,max} = 4A$, $\Delta V_{o,max} = 0.025V$, $V_{IN,min} = 10.8V$, Vo = 1.2V, L = 470nH, $f_{SW} = 1.2MHz$, $t_{OFF,min} = 0.31us$
- Load step down:

$$C_{o} \geq \frac{\left(\Delta I_{o,max}\right)^{2} \times L}{2 \times V_{o} \times \Delta V_{o,max}} = 125 \ \mu F$$

• Load step up:

$$C_{o} \geq \frac{L \times (\Delta I_{o,max})^{2} \times \left(\frac{V_{o}}{V_{IN,min} \times f_{SW}} + t_{OFF,min}\right)}{2 \times \Delta V_{o,max} \times V_{o} \times (\frac{V_{IN,min} - V_{o}}{V_{IN,min} \times f_{SW}} - t_{OFF,min})} = 117 \mu F$$

 Select largest value and take DC Bias variation into account → TPS56C215: 47 µF x 4pcs

Output Capacitor Selection – TPS54824

- Peak CMC typically has lower loop bandwidth than COT based converters
 - Higher closed loop output impedance
 - Slower transient response

- Reasonable estimation of loop bandwidth is **fsw/10**.
- Ex: $\Delta I_{o,max} = 4 \text{ A}, \Delta V_{o,max} = 36 \text{ mV}, f_{CO} = fsw/10 = 50 \text{ kHz}$

- Required capacitance varies with **load step slew rate**. Lower slew rate requires less output capacitance.
- **PSPICE transient simulation** is a great tool to find more accurate capacitance before testing a real circuit.

Series Capacitor Selection – TPS54A20

Series Capacitor Self Heating – TPS54A20

- Ensure series cap temperature stays within limits
 - Calculate RMS current
 - Check datasheet/online tools

Ex: 10.8V_{IN,MIN}, 1.2V_O, I_{L,RMS} = 5.02A
$$I_{SCAP,RMS} = \sqrt{2\left(\frac{2V_O}{V_{IN,MIN}}\right)}I_{L,RMS}^2 = 3.34A$$

- 2.2µF cap, 1206 (3.2 x 1.6 x 1.15mm)
- Result: 15.8°C temp rise
- Same approach applies to input caps and output caps

DC Voltage and Temp Impact on Capacitance

Capacitance decreases with DC voltage •

Select a capacitor taking capacitance variation into account.

TPS54824 Compensation Calculations

- Simplified equations in datasheet ignoring slope compensation. Stable design but conservative loop bandwidth.
- Start by selecting target loop bandwidth. Use smallest of the two calculated values.

- Calculate compensation using DC bias de-rated C_{OUT} of ~352 $\mu\text{F}.$

TPS54824 More Optimized Compensation

- TINA or PSPICE average model to simulate power stage gain and phase.
- Calculate new R_c based on power stage gain at new target f_{co} of 60 kHz.

• New compensation values are 9.53 k Ω , Cc = 4.7 nF, Cp = 68 pF, Cff = 220 pF.

TPS54824 Schematic

TPS54A20 Schematic

TPS56C215 Schematic

*Could use 2 x 100uF output capacitors

Solution Comparisons

Part Number	Control	F _{sw}	R _{DSON}	Minimum ON Time	Inductor	C _{OUT}
TPS54824	Peak CMC	500kHz	14.1-mΩ HS 6.1-mΩ LS	95ns	1μH, 11A, 10 mΩ	4 x 100µF 6.3V X5R 1210
TPS54A20	Sync COT	2MHz per phase	~14-mΩ HS* ~4-mΩ LS*	14ns	2 x 220 nH, 7.6 A, 9mΩ	47μF & 100 μF 4V X5R 0805
TPS56C215	DCAP3	1.2MHz	13.5-mΩ HS 4.5-mΩ LS	54ns	470 nH, 17.5 A, 4mΩ	4 x 47µF 6.3V X5R 0805

*Estimated RDSON due to 2 phase configuration

Loop Response and Transient Comparisons

TPS54824 Measured Loop Response (CCM)

TPS54A20 Measured Loop Response (CCM)

TPS56C215 Measured Loop Response (CCM)

Load Step Comparison (2 A to 6 A step at 1 A/µs)

- TPS54824: Largest undershoot and settling time due to CM control
- TPS54A20 and TPS56C215: Minimal undershoot due to fast transient response of COT control

- TPS54824: Largest overshoot and settling time due to CM control
- TPS54A20 and TPS56C215: Minimal overshoot due to fast transient response of COT control

Output Ripple and Jitter

V_{OUT} Ripple – I_{OUT} = 0 A

TPS54824							TPS54A20							TPS56C215														
	· · · · · ·		Y																					-				
-									- 														-	-				-
	\ 	/ _{OUT}	(10r	nV/d	v ac	coupled	d)	- - 	- - - -	V	DUT	(10m	רV/d	iv ac	cou	oled))			V _C	UT	(10m	ıV/d	v ac	cou	pled)		
		/////					A	+++++			\wedge	\sim	\wedge		MA	A	N		Vout	1	mm	Lunni	m.	n 1	m	Jung	mathi	tyrhyn
									- - -														-	-				- -
- - - -					- - 				- 														-	-				
					- - 		1	- - - -	- - - -				- - - - -			400	0		-				- - - - -	-		400		- -
)h1	: 10.0mY 1	BW	:	: <u>-</u>	+ + 	M 1.0µs 5.0GS/s A Ch1 ≠ 4.8mY	I US/Q	IV -	Ch1 1	:	N	: :		+ + 	M 400ns 5. A Ch1 ∠ 8	40(0GS/s 3.6mY	UNS/0	IIV :	- Ch1 10	.0mY ∿ ¤w			- - 	- - -	M 400ns 1 A Ch1 7	25MS/s 5.0mV	8.0ns/pt	V -

• All three designs have <10mV output voltage ripple

- All three designs have <10mV output voltage ripple
- Steady-state output ripple is slightly increased at full load

On-Time Jitter Comparison

- TPS54824: Small on-time jitter due to on-time modulation
- TPS54A20 and TPS56C215: No on-time jitter due to constant on-time control
- TPS54A20: Lower V_{sw} due to series cap buck topology

Frequency Jitter Comparison

- TPS54824: No frequency jitter due to fixed frequency current mode control
- TPS54A20: Very low frequency jitter due to synchronizable COT control
- TPS56C215: Frequency jitter due to DCAP3 (COT control)
- PCB layout can affect Jitter

Efficiency Comparison

Measured Efficiency

- TPS54824 (500 kHz) is the highest efficiency solution
- TPS56C215 (1.2MHz) has best light load efficiency due to Eco Mode™
- TPS54A20 (2MHz/phase) very close to TPS54824 efficiency at 4X FSW

Note: TPS54A20 & TPS56C215 external 5V bias

Measured Efficiency vs WEBENCH Simulation

- WEBENCH efficiency estimates are **lower** than measured data.
- External Bias is not simulated in WEBENCH.
- Inductor core loss is not simulated in WEBENCH.

Thermal Comparison

Thermal Comparison

Observations

- In all 3 designs, the IC is the thermal hot spot
- TPS54A20's small inductors are not a thermal bottleneck
- All designs have less than 40°C temp rise

Solution Size

Solution Size Comparison

TPS54824 ~382 mm²

TPS54A20 ~136 mm²

TPS56C215 ~382 mm²

- TPS54824 Largest solution size and highest efficiency.
- TPS54A20 **Smallest** solution size and **lowest profile** with 1.25 mm height vs 3.0 mm.
- TPS56C215 Lowest cost solution. Could reduce size by using a smaller inductor.

Considering Cost

TPS54824 BOM Analysis

	Part Number	Description	Footprint	QTY	1k Price	Total Cost
IC	TPS54824RNVR	4.5-V to 17-V Input, 8-A Synchronous Step-Down DC/DC Converter	3.5x3.5mm	1	\$2.0000	\$2.0000
Inductor	IHLP2525CZER1R0M01	Inductor, Shielded Molded, 1µH, 11A, 10 mOhm	6.95x2.8x6.6mm	1	\$1.0500	\$1.0500
Output Caps	GRM32ER60J107ME20L	CAP, CERM, 100 μF, 6.3 V, +/- 20%, X5R, 1210	1210	4	\$0.1800	\$0.7200
Input Caps	GRM32ER61E226KE15L	CAP, CERM, 22 μF, 25 V, +/- 10%, X5R, 1210	1210	2	\$0.1631	\$0.3262
	GRM188R71E822KA01D	CAP, CERM, 8200 pF, 25 V, +/- 10%, X7R, 0603	0603	1	\$0.0203	\$0.0203
	GRM1885C1H270JA01D	CAP, CERM, 27 pF, 50 V, +/- 5%, C0G/NP0, 0603	0603	1	\$0.0155	\$0.0155
	GRM188R71E222KA01D	CAP, CERM, 2200 pF, 25 V, +/- 10%, X7R, 0603	0603	1	\$0.0130	\$0.0130
	885012006057	CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0603	0603	1	\$0.0365	\$0.0365
	06033C104KAT2A	CAP, CERM, 0.1uF, 25V, +/-10%, X7R, 0603	0603	3	\$0.0053	\$0.0158
	CRCW0603100KJNEA	RES, 100 k, 5%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW060386K6FKEA	RES, 86.6 k, 1%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW060310R0JNEA	RES, 10, 5%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW06039K53FKEA	RES, 9.53 k, 1%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW06036K04FKEA	RES, 6.04 k, 1%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW060369K8FKEA	RES, 69.8 k, 1%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW060312K1FKEA	RES, 12.1 k, 1%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
	CRCW060330K9FKEA	RES, 30.9 k, 1%, 0.1 W, 0603	0603	1	\$0.0041	\$0.0041
			Total Cost			\$4.23

TPS54A20 BOM Analysis

	Part Number	Description	Footprint	QTY	1k Price	Total Cost
IC	TPS54A20	8V to 14V, 10A, up to 10MHz Synchronous Step-Down Converter	3.5x4mm	1	\$3.25	\$3.25
Inductors	HMLW32251B-R22MS-79	Inductor, Powdered Iron, 220 nH, 7.6 A, 0.009 ohm, SMD	3.2x2.5x1.2mm	2	\$0.2240	\$0.4480
	GRM21BR60J476ME15L	47μF ±20% 6.3V Ceramic Capacitor X5R 0805	0805	1	\$0.1278	\$0.1278
Output Caps	GRM21BR60G107ME15L	CAP, CERM, 100 μF, 4 V, +/- 20%, X5R, 0805	805	1	\$0.4305	\$0.4305
Series Cap	GRM21BR71A225MA01L	CAP, CERM, 2.2 μF, 10 V, +/- 20%, X7R, 0805	0805	1	\$0.0459	\$0.0459
Input Cape	C1608X5R1E106M080AC	CAP, CERM, 10 μF, 25 V, +/- 20%, X5R, 0603	0603	1	\$0.3010	\$0.3010
input Caps	GRM188R61E104KA01D	CAP, CERM, 0.1 μF, 25 V, +/- 10%, X5R, 0603	0603	1	\$0.0090	\$0.0090
	GRM155R61E105KA12D	CAP, CERM, 1 µF, 25 V, +/- 10%, X5R, 0402	0402	1	\$0.0177	\$0.0177
	GRM155R71A473KA01D	CAP, CERM, 0.047 µF, 10 V, +/- 10%, X7R, 0402	0402	2	\$0.0061	\$0.0122
	GRM155R61A475M	CAP, CERM, 4.7 µF, 10 V, +/- 20%, X5R, 0402	0402	1	\$0.0948	\$0.0948
	C1005C0G1H471J	CAP, CERM, 470 pF, 50 V, +/- 5%, C0G/NP0, 0402	0402	1	\$0.0108	\$0.0108
	CRCW040222K1FKED	RES, 22.1 k, 1%, 0.063 W, 0402	0402	1	\$0.0058	\$0.0058
	CRCW04021K00FKED	RES, 1.00 k, 1%, 0.063 W, 0402	0402	1	\$0.0058	\$0.0058
	CRCW04021K40FKED	RES, 1.40 k, 1%, 0.063 W, 0402	0402	1	\$0.0058	\$0.0058
	CRCW040247K0FKED	RES, 47k, 1%, 0.063 W, 0402	402	1	\$0.0058	\$0.0058
	CRCW040280K6FKED	RES, 80.6k, 1%, 0.063 W, 0402	402	1	\$0.0058	\$0.0058
	CRCW040212K4FKED	RES, 12.4k, 1%, 0.063 W, 0403	402	1	\$0.0058	\$0.0058
			Total Cost			\$4.78

TPS56C215 BOM Analysis

Part Number

IC
Inductor
Output Caps

i art Number	Description	Tootprint	Q I I	INTINCE	10101 0031						
TPS56C215RNNR	4.5V to 17V Input, 12A Synchronous Step-Down Converter,	RUW0015A	1	\$1.90	\$1.90						
IHLP2525CZERR47M01	Inductor, Shielded Drum Core, Powdered Iron, 470 nH, 17.5 A, 0.004 ohm	IHLP-2525CZ	1	\$1.06	\$1.06						
GRM21BR61E226ME44L	22µF ±20% 25V Ceramic Capacitor X5R 0805	0805	4	\$0.1162	\$0.46						
GRM21BR60J476ME15L	47μF ±20% 6.3V Ceramic Capacitor X5R 0805	20% 6.3V Ceramic Capacitor X5R 0805 0805 4 \$0.127									
GRM188R71E104KA01D	CAP, CERM, 0.1 μF, 25 V, +/- 10%, X7R, 0603	0603	3	\$0.0049	\$0.0146						
GRM188R71H473KA61D	CAP, CERM, 0.047 μF, 50 V, +/- 10%, X7R, 0603	0603	1	\$0.0147	\$0.0147						
GRM188R61A475ME15	CAP, CERM, 4.7 μF, 10 V, +/- 20%, X5R, 0603 0603 1 \$0.0303										
GRM1885C1H560JA01D	CAP, CERM, 56 pF, 50 V, +/- 5%, C0G/NP0, 0603	', CERM, 56 pF, 50 V, +/- 5%, C0G/NP0, 0603 0603 1 \$0.0155									
CRCW060310K0FKEA	RES, 10.0 k, 1%, 0.1 W, 0603	0603	3	\$0.0055	\$0.0166						
CRCW060352K3FKEA	RES, 52.3 k, 1%, 0.1 W, 0604	0603	1	\$0.0055	\$0.0055						
CRCW060349K9FKEA	RES, 49.9 k, 1%, 0.1 W, 0605	0603	1	\$0.0055	\$0.0055						
MCR03EZPJ000	RES, 0, 5%, 0.1 W, 0603	0603	2	\$0.0024	\$0.0047						
CRCW060357K6FKEA	RES, 57.6 k, 1%, 0.1 W, 0603	0603	1	\$0.0055	\$0.0055						
CRCW060312K1FKEA	RES, 12.1 k, 1%, 0.1 W, 0603	0603	1	\$0.0055	\$0.0055						
		Total Cost			\$4.05						

Description

Feetprint

OTV 1k Price Total Cost

BOM Analysis

Part Number	Inductors	Caps	Resistors	IC	Total
TPS54824	\$1.05	\$1.15	\$0.03	\$2.00	\$4.23
TPS54A20	\$0.45	\$1.05	\$0.03	\$3.25	\$4.78
TPS56C215	\$1.06	\$1.05	\$0.04	\$1.90	\$4.05

IC cost is not the only factor to consider!! (Note all pricing is 1K Resale)

- Make sure to evaluate the total solution cost!!
- Capacitors & inductors can greatly affect the solution cost
 - Capacitors cost will vary with package chosen
 - Caps selected for TPS54A20 were more expensive per piece due to smaller package size
 - Inductor cost will vary depending on size and construction

Summary

TPS54824

- Highest efficiency
- Lowest temperature rise
- No frequency jitter
- 3X solution size

TPS54A20

- Smallest solution size
- Lowest profile (height)
- Highest bandwidth

TPS56C215

- Lowest cost solution
- Fast transient response
- High light load efficiency
- 3X solution size

Part Number	Efficiency @2A/6A/8A	Solution Size (mm²)	BW (kHz)	Transient (mV)	Ripple @Full Load (mV)	On- Time Jitter	FREQ Jitter	IC Thermal @8A	Solution Cost
TPS54824	87/87.5/86	382	60	35	5	very little	no	50.9°C	\$4.23
TPS54A20	85.5/86/84.5	136	300	15	10	no	very little	61.2ºC	\$4.78
TPS56C215	80.5/84.5/84	382	150	15	5	no	yes	59.8°C	\$4.05

