
Designing Quick Starting Embedded Systems Training

Schuyler Patton – Catalog Processors, Linux Software Applications

Systems overview
• What problem is being solved?

Providing a boot time background to enable users of the AM3x/AM4x/AM57x processors to make
choices that reduce boot time during system design of a selected processor.

• Why was this solution developed?
Users of the AM3x/AM4x/AM57x processors are concerned about boot time of the processor and
seeking ways to minimize it.

• Brief description of this system solution:
– Understand the boot time components of the catalog processors, system, and the Processor

Linux Software Development Kit (PLSDK) for the AM335x, AM437x, and AM57x.
– Learn first steps and capabilities to reduce boot time using the Processor SDK without doing

significant customization. This presentation gives developers a look beyond just the
initialization of the selected OS.

• What steps are recommended to evaluate this solution?
This presentation shows steps that can be used to evaluate and design a boot time.

Detailed agenda
• Defining “boot time”
• Out-of-the-Box (OOB) boot times of the TI Processor Linux SDK
• Hardware elements of boot-time design in an embedded system
• Software elements of boot-time design in an embedded system
• Single user boot times on the Catalog EVMs
• Designing boot time
• Summary

Defining Boot Time

Defining boot time
• Does boot time matter?

• One common definition for boot time is that it is defined as the time from system
power-on to full system availability. The distinction here is that this does not mean full
application capability. This will be unique to the application.

• The boot time expectations can be different based on system complexity.

• The time required to achieve complete system availability can be more than product
developers want.

• Often the common view is that the OS is the main contributor to boot time duration.

• Are there decisions that can be made during system design that can improve the
product boot time?

• This is a question and a decision that should be made
at the start of the system design due to potential
impact on cost and development time.

Boot time: Does it matter?

• A boot time requirement may require hardware
support, software, run-time, or unique application
development eco-system for the product.

 • Is the boot time requirement needed for user
satisfaction, product domain expectation, or
product build and test requirement?

Image
Storage

Runtime
Init

Application
Development

Boot Board
Diagnostic

Boot Board
Flashing

Boot Board
Sys Cfg & Test

What is the boot process? … simplified
• Once the HW releases Sys_Reset, the ROM loads a boot image into internal RAM.

dev….

Kernel

dev….
dev…. dev….
dev…. dev….

deamon… deamon…
Product Application

deamon… deamon…

ROM

Boot Image

Application

Secondary
Boot Image

(SBL)

Secondary
Boot Image

Boot Image

Internal RAM

External RAM

• The boot image may either load a secondary into
external RAM or load the OS kernel into external
RAM.

• The OS image starts the user
environment and product application,
which also needs time to initialize to full
system availability.

• All this takes time.

Kernel • The OS image needs time to
initialize itself and drivers.

• Completing application init is described as
full application availability.

Looking at a system boot to application - Linux

V
+

v

MLO/SPL RBL Kernel U-Boot User Space Init

Display
LCD/HDMI
Touch Scr

Clocks

EDMA
Timers

WDT
RTC

eHRPWM
eQEP
eCAP
ADC

UART
SPI
I2C

McASP
CAN

MMC/SD/
SDIO

GPIO

USB
EMAC

Graphics
PowerVR

SGX
PRU-ICSS

Kernel

GPMC

DDR

User Space

systemD
telephony

avahi
telnetd
thttpd

dropbear
lightpd
login

agetty

bluetooth

udev

udhcpd
sound

weston
debugfs

various FS

Boot
Mode

Storage
Interface

Init

Kernel

AMxx

What is the application?
• Obviously, embedded products have targeted or unique applications.

• One common method of determining application complexity is considering the user
interface. If it has no display, this is considered “headless,” but should not be assumed
to be less complicated.

• The user interfaces and interactions are unique as well.

Examples of “headless”
devices (no display).

Examples of display devices

Single-user systems
• Let’s use the definition of “single user” to mean essentially a single-user

thread/application.

Display
LCD/HDMI
Touch Scr

EDMA
Timers

WDT
RTC

eHRPWM
eQEP
eCAP

JTAG/ETB
ADC

UART
SPI
I2C

McASP
CAN

MMC/SD/
SDIO

GPIO

USB
EMAC

Graphics
PowerVR

SGX
PRU-ICSS

Kernel

GPMC

User Space

systemD
telephony

avahi
telnetd
thttpd

dropbear
lightpd
login

agetty

bluetooth

udev

udhcpd
sound

weston
debugfs

various FS

• Single-user applications
“may” use fewer resources.

• Fewer resources can
translate to less processor
features to enable and
therefore less boot time.

shell

Multi-user systems
• Let’s use the definition of “multi user” to mean essentially a multi-user

thread/application that requires a support infra-structure that requires initialization.

Display
LCD/HDMI
Touch Scr

EDMA
Timers

WDT
RTC

eHRPWM
eQEP
eCAP

JTAG/ETB
ADC

UART
SPI
I2C

McASP
CAN

MMC/SD/
SDIO

GPIO

USB
EMAC

Graphics
PowerVR

SGX
PRU-ICSS

AMxx

GPMC

User Space

systemD
telephony

avahi
telnetd
thttpd

dropbear
lightpd
login

agetty

bluetooth

udev

udhcpd
sound
weston
debugfs

various FS

• Multi-user applications
“may” use most or all SOC
resources.

• More resources can translate
to more processor features
to enable and this could
mean an extended boot time

shell

user daemon
user daemon

user app user app

user app

The user perspective of boot time
• A user wants to see some indication or “proof of life” from the device after power

initiation through even the minimalist user interface.

User Interface

Boot Time
User pushes a button

• Embedded devices can have a variety of ways to indicate they are ready for operation.

Light, sound

Display

• The indication does not mean full system availability but
that the boot process is proceeding.

Summary: Defining boot time
• Does boot time matter for the product?
• The boot process of an “embedded product.”
• There various stages of the Linux boot process.
• Product requirements can affect boot time, such as the difference

between single-user and multi-user application.
• Proof-of-life indications to the user are important for extended boot

times.
• When is the best time to consider the boot time requirements for the

product?

Out-of-the-Box (OOB) boot times of the TI Processor Linux SDK

OOB boot times of the Processor Linux SDK
• What is the OOB boot time of the Processor Linux SDK (PLSDK) and where to find this

information?

• Break down the components of the OOB boot time.

• Describe the multi-user space.

• Describe the single-user space.

Boot time measurements OOB PLSDK
• This data is from the performance data sheet released with the SDK and it shows two

different timings per SOC.

Multi-user

Single-user

• Multi-user refers to an Initialization Run Time Target or Run Level. This is the
initialization for the OOB PLSDK.

• Single-user refers to shell.

Break down the components of the OOB boot time
• The OOB SDK is booting a desktop-like environment, since this provides the necessary

support for OOB product demos and development.
• Because of the support necessary for the OOB, user

space initialization takes a long amount of time to
achieve full system availability.

User Space

systemD
telephony

avahi
telnetd
thttpd

dropbear
lightpd
login

agetty

bluetooth

udev

udhcpd
sound

weston
debugfs

various FS

shell

user daemon
user daemon

user app user app

user app • Strongly emphasize that the
OOB PLSDK environment was
not intended for production.

The multi-user space
• The OOB user space uses SystemD which is a centralized user level daemon for

starting/stopping/controlling/configuring system services

• SystemD uses udev and dbus to get events and communicate between services.

• SystemD is called right after kernel initialization and – based on a target selection
needed by user space – starts several services that have defined dependencies.

• SystemD replaced SysVinit, which has several examples on how to reduce boot time.

• Getting to the login prompt on the console from a cold boot with SystemD takes about
18s. Here is the abbreviated grabserial output:

[8.961440] systemd[1]: System time before build time, advancing clock.
[26.856867] am57xx-evm login:

AM437x OOB SDK boot time breakdown by stage
• This is the boot time by stage for an OOB

PLSDK for the AM437x.
 • The only change made was U-Boot boot

delay was changed from a default of 2
to 0.

• If the boot time requirement is significantly
less than the user space time demonstrated,
this would be a reason to think about
another option.

• The length of time to initialize user space
is due to the required support for demos
and a development work space in the OOB
PLSDK.

PWR

ROM

MLO

U-Boot

Kernel

User
Space

The single user or thread user space
• The single-user or thread user space is initiated after the kernel has initialized.
• Single User or shell mode is initiated on the kernel command line by passing the

location of the executable to run.

• The capabilities of the shell are completely up to the writer.
Example shell script:

Kernel command line: console=... init=/bin/boot_app.sh

• The last line of the above script could be the command that launches the application
rather than invoking another shell.

#!/bin/sh

mount -t proc proc /proc
mount -t sysfs sysfs /sys

/bin/sh

Summary: OOB boot times of the Processor Linux SDK

• Looked at the boot times for the OOB PLSDK.

• Discussed the components of the OOB PLSDK and why they contribute to the length of
boot time user experience.

• The pie chart illustrated that the bulk of the OOB PLSDK boot time is the initialization
of the user space.

• Discussed the single-user space, how to initiate it, and that it is a single shell or
application that the user controls.

Hardware elements of boot time design in an embedded system

Hardware elements used to define boot time
• Boot Modes
• Power Management Integrated Circuits (PMIC)
• Processor Operating Performance Point (OPP)

Choosing processor boot mode
• Boot modes have a significant impact on boot time.
• Memory device boot modes such as MMC, QSPI, NAND, NOR

should be first in the boot order.

• Peripheral-based boot modes – such as EMAC, USB, UART –
should be later in the boot order. These boot modes would be
good for “in place” device programming.

• Example of Beagle Bone Black boot mode:
– The first row is the default.
– The second is the user switch which can select a different mode

• Example of the AM437 Starter Kit EVM boot mode:
– The first is the default, MMC0.
– The fourth is QSPI.
– A significant timeout takes place between MMC0 to QSPI.

PMICs – power sequencing the processor
• Later in the presentation there will be more

details presented on the PMIC power up and
how it can effect boot time.

• The reason for needing a PMIC is that the
processor voltage rails need to sequenced on
startup in a particular order and OPP voltages
managed as part of DVFS support. This is done
by the PMIC.

• Each Processor ROM is expecting the PMIC to
be at a certain OPP mode defined by the
datasheet.

Processor operating performance points
• AM335x from PORz runs ROM at

600MHz OPP100 voltage.

• AM4378 from PORz runs ROM at
300Mhz OPP50 voltage

300 MHz

• After MLO loads and runs, the processor
clock and voltages are set as needed.

• AM57x runs the ROM at 588MHz.

Summary: Hardware elements used to define boot time
• Boot modes – make sure the primary boot mode is from a memory boot device

• Power Management Integrated Circuits (PMIC) – this device can impact boot time

• Processor Operating Performance Point (OPP) – ROMs start at a lower OPP level that
have will impact boot time.

Software elements of boot time design in an embedded system

Software elements for designing boot time
• MLO/SPL of the U-Boot code base has a mode called Falcon that allows skipping U-

Boot to boot the kernel directly.

• There are several tutorials on the internet for reducing Linux kernel initialization time.

• For this discussion, a few common techniques are introduced that can be used to
significantly reduce kernel initialization time. These techniques do not require code
customization or configuration changes to the OOB PLSDK Linux kernel.

• Device Tree source files

• User Space choice

MLO

Internal RAM

DDR

U-Boot Falcon mode
• Falcon mode is a configurable mode of U-Boot that allows MLO/SPL to load the kernel

directly without having to load U-Boot.

MLO/SPL Kernel U-Boot

• Boot sequence with U-Boot, 3 stages:

• Boot sequence with Falcon mode, 2 stages.

MLO/SPL Kernel
• To use Falcon mode, MLO/SPL must be able to

read data that indicates where to find the
kernel, kernel parameters, and the DTB, so
that they can be loaded into DDR and started.

args

uImage

dtb

Linux kernel initialization time optimizations
• There are several very good articles on the web that describe these steps. So there is

no need to go into detail on all of them here.

 • Here are just a few of several suggestions that can be found:

- Add quiet to the command line
- Add loops per jiffy LPJ to the command line

- Kernel compression
- Reducing kernel size through configuration

• One goal of this presentation was to show significant time can be saved with just
these techniques of kernel compression, quiet boot, and driver initialization.

- Selecting which drivers are initialized

Linux kernel compression
• The default kernel compression of the SDK uses LZMA, which is a compression

technique focused on size efficiency.
• By switching to LZ4, the compression changes from size efficient to decompression

efficient. The kernel is larger than the kernel compressed with LZMA, but the
decompression speed more than makes up for the additional transfer time from
storage to DDR.

 • One example using the AM437:

• SDK pre-built zImage size compressed with LZMA: 3489392 bytes
• SDK zImage compressed with LZ4: 5511632 bytes (over 2MB larger)
• Yielded a decompression improvement of 1.80 seconds
• This demonstrates the possible improvement on boot time by changing

the kernel compression types.

Device tree source file
• The default DTB files shipped with the

SDK bind board features to the kernel.

• AM437 reduced feature example DTB
kernel init time – 0.97s, .52S faster

• Key point is to only enable the kernel
features necessary for the product.

• A product board DTB might have more
or less features.

• The size of the DTB can impact the boot
time.

• AM437 SK EVM OOB DTB kernel init
time – 1.49s

Results were done with passing quiet and an LPJ value on the kernel command line. Times were gathered from dmesg.

User space
• As mentioned in an earlier section, the OOB SDK user space type (single/multi user)

decides the init system which impacts boot time

• The developer is the owner and implementer of this decision

• Is the product application a single-thread type or does it require the infrastructure of a
multi-threaded system?
A single-threaded app may be more cumbersome to develop due to lack of
accustomed infrastructure.

• The infrastructure required for the application may decide the init system.

• The user space choice will be based on the application infrastructure and boot time
requirements

Summary: SW elements in designing boot time
• The first topic discussed was how Falcon mode can boot the kernel directly without

having to load U-Boot.

• Next the presentation discussed that there are several kernel initialization tutorials on
the web and discussed which ones provide significant boot time improvement without
having to customize the OOB SDK.

• A Demonstration how the size of the DTB file can affect boot time:
– If the system only uses a few peripherals, then the DTS file should only enable those nodes

that are used.
– Do not use the example EVM DTS with minor modifications unless it matches the product

exactly

• The last topic was about user space choice which is based on application and boot time
requirements.

Single-user boot times on the Catalog EVMs

Single user boot times on catalog EVMs
• This section describes the boot time for a single user type environment

• Initial test setup environment

• Review boot time of a single user:
– Beagle Bone Black
– AM437 Starter Kit
– AM572x Industrial Development Kit (IDK)

• Overview of PMIC processor interaction

• All numbers presented in this section are derived by experiment and are for reference
purposes only.

How the single user boot time was measured

Boot Process

Power
On

Application
Processing

Cold Boot to GPIO
toggle

pwr

GPIO

sys_resetn

ROM
Start

RBL MLO Kernel Shell

This diagram emphasizes that this is the timeline to the start of application processing.

Closer look at components of a BBB boot time
using init=/bin/sh – eMMC
• From power on

• Reduced DTB / kernel compressed with LZ4

MLO/SPL RBL Kernel - Init
SPL

Read
Kernel
Read

DTB
Read

≈155mS 344mS 8mS

Shell Pwr up

137mS

Cold Boot to GPIO toggle 2.36S

≈ 237mS > 352mS ≈ 632mS

Kernel
Decompress

time

Falcon mode here saves a
minimum of 45mS. Time is how
long it takes to load u-boot.img

≈ 1.0S

5.5MB 74KB 51KB

Breakdown of time to ramp TPS65271c
TPS65217c AM3358

AC LDO1
+ 50mS

PMIC_PWR_EN

VRTC

Total = 136mS

PWR_EN

All rails start to
ramp

+50ms deglitch

+6ms all rails
ramp

+20ms PGOOD
delay

PORz
+ 10mS

SYS_RESET

Closer look at components of AM437SK boot time
using init=/bin/sh – SD
• From power on
• Falcon mode not used here
• Full DTB / LZ4 compressed kernel

MLO/SPL RBL Kernel - Init
SPL

Read
Kernel
Read

DTS
Read

≈ 277mS 684mS 25mS

Shell Pwr up

100mS

Cold Boot to GPIO toggle 4.71S

≈ 394mS >78mS ≈ 967mS

Kernel
Decompress

time

U-Boot
U-Boot
Read

78mS

>709mS

5.5MB 74KB 51KB 600KB

< 2.5S

Closer look at components of AM572x-IDK boot time
using Falcon mode & init=/bin/sh

MLO/SPL RBL Kernel - Init
SPL

Read
Kernel
Read

DTS
Read

≈124mS 267mS 9mS

Shell Pwr up

≈ 23mS

Cold Boot to GPIO toggle 2.93S

≈ 268mS ≈ 276mS ≈ 1.64S

Kernel
Decompress

• From power on
• Full DTB / LZ4 compressed kernel

Falcon mode here saves a
minimum of 37mS, the time it
takes to load the u-boot.img

5.7MB 77KB 101KB

< 723mS

Summary: Single user boot times on Catalog EVMs
• Described the minimalistic elements for booting a single user system or shell.

• Defined how the boot to application time was measured.

• Discussed boot times for the AM3x/AM4x/AM5x.

• Demonstrated for each processor how power on through kernel init was affected by
various factors such as:

– PMIC
– Processor OPP
– Falcon mode
– DTB size

• The key takeaway here is that an embedded application boot time is very dependent
on the processor features used and the support required to initialize them.

Designing System Boot Time

Designing system boot time
• Putting together all the elements from this presentation

• When should the system developer set the boot time requirements

• Pick a boot mode that has local storage first in the boot order

• Review rough numbers of boot time

• Deciding on the user space

• Overall, achieving boot time is asymptotic in nature

Review: Designing boot time
• The processor was most likely picked for features rather

than boot time. So the developer must be aware of the
processor capabilities such as the OPP of the processor and
the impact on boot time.

• System developer decides if the product has a boot time requirement.

• Choose memory storage as the primary boot mode, such as MMC, NAND, NOR, QSPI

Rough numbers to start analysis
• Some rough numbers presented in this application for quickly thinking about what the

processor boot time potentially could be.

Pwr up 136mS – AM3x 101ms – AM4x 22ms – AM572x

RBL 237mS – AM3x 394ms – AM4x 268ms – AM572x

MMC boot – includes reading in MLO

• The example here is based on the EVMs using MMC boot mode, the PMIC ramp times,
and ROM to read in the OOB SDK MLO images:

• The point here is that each processor has a minimum time that the it takes to get to the
MLO image read in by ROM.

• One tradeoff is to consider XIP boot mode if the processor has support to avoid the
ROM reading in MLO image.

Review: Falcon mode or full MLO/U-boot
• Falcon mode allows the direct loading of the kernel and DTB.

• This presentation demonstrated that bulk of the time saved by using Falcon mode is
the time is takes to load U-Boot.

MLO/SPL Kernel

Review: Kernel initialization
• Kernel compression – switch from LZMA to LZ4

• Kernel command line quiet saves about 500mS or more depending on kernel init.

• Kernel DTB sized for the system:
– Board DTS should be sized for the system. Starting with an EVM DTS file and leaving

nodes from the EVM that are not used in target system will have a negative impact
on boot time.

– On AM437x with the released SDK kernel, this yielded an decompression
improvement of 1.80 seconds

Kernel command line: console=... quiet

– On AM437x, a reduced DTB to emulate a smaller system initialized over 500mS
faster.

Review: User space initialization

• The system developer decides if the product has a boot time requirement.

• The user space initialization is a big consideration. A quick review of the SDK
performance datasheet indicates the boot times for multi-user and single-user.

• User space choice has an impact on development eco-system, too.
• The system developer is the owner for the user space choice and development.
• Unfortunately, this choice often gets left until the end of a project, sometimes

requiring the developer to address this issue with a user space change.

Review: User space initialization – (cont.)

• The system developer must do additional work to determine their unique application
boot time.

• If the product requires a multi-user system, then a “proof of life” type boot stage might
be a choice. If that is the case, then U-Boot has to be loaded and “customized” to
provide the “proof of life” indication.

• The system boot time requirement is different from a fully running application.
Examples shown here are only to a command prompt for the single user case.

Product Splash
Screen

Boot time reduction becomes an asymptotic effort
• Overall boot time design effort depends on the boot time requirement of the product

• OOB vs heavy customization

• This is where developers will be doing significant experimentation and development to
achieve the desired boot time

t
OOB Boot time

Shell Boot time

effort

Summary: Designing system boot time

The goal of this section was to review each element of determining boot time:

• Suggested choosing a primary boot mode that is memory-based

• Discussed rough numbers to guide determined boot time

• Suggested employing Falcon mode if supported by the processor

• Discussed a few effective steps to reduce the Linux kernel initialization time

• Examined user space initialization and the impact on boot time, development, and the
need for proof-of-life indicators on extended boot times

• Discussed how boot time development can be asymptotic

Training summary
• The earlier that the developer decides the boot time in the design process, the better.

• Pick the right boot mode, not just for the product, but perhaps manufacturing as well.

• There are some HW elements – such as OPPs, PMIC – that impact boot times.

• The are SW elements that help in shortening a boot time, such as Falcon mode, DTB
size, kernel compression, and boot time parameters.

• The developer’s choice of user space for single user or multi-user can impact product
development time.

• The techniques presented here are a way point on the way to the design the developer
requires, there are not any one step actions to achieve a desired boot time.

• Be prepared for experimentation on boot time, as each product is unique and actual
results will vary.

For more information
• Designing Quick Starting Embedded Systems Training Series:

http://training.ti.com/designing-quick-starting-embedded-systems-training-series

• Sitara Processors Overview: http://www.ti.com/sitara

• Embedded Linux Wiki discussion of how to reduce boot time:
– http://elinux.org/Boot-up_Time_Reduction_Howto
– NOTE: A web search of “Linux Boot Time Reduction” yields several more

presentations

• Embedded Linux Wiki discussing boot time measurement tools/techniques :
http://elinux.org/Boot_Time

• For questions about this training, refer to the E2E Community Forums at
http://e2e.ti.com

http://training.ti.com/designing-quick-starting-embedded-systems-training-series
http://www.ti.com/sitara
http://elinux.org/Boot-up_Time_Reduction_Howto
http://elinux.org/Boot_Time
http://e2e.ti.com/

	Designing Quick Starting Embedded Systems Training
	Systems overview
	Detailed agenda
	Defining Boot Time
	Defining boot time
	Boot time: Does it matter?
	What is the boot process? … simplified
	Looking at a system boot to application - Linux
	What is the application?
	Single-user systems
	Multi-user systems
	The user perspective of boot time
	Summary: Defining boot time
	Out-of-the-Box (OOB) boot times of the TI Processor Linux SDK
	OOB boot times of the Processor Linux SDK
	Boot time measurements OOB PLSDK
	Break down the components of the OOB boot time
	The multi-user space
	AM437x OOB SDK boot time breakdown by stage
	The single user or thread user space
	Summary: OOB boot times of the Processor Linux SDK
	Hardware elements of boot time design in an embedded system
	Hardware elements used to define boot time
	Choosing processor boot mode
	PMICs – power sequencing the processor
	Processor operating performance points
	Summary: Hardware elements used to define boot time
	Software elements of boot time design in an embedded system
	Software elements for designing boot time
	U-Boot Falcon mode
	Linux kernel initialization time optimizations
	Linux kernel compression
	Device tree source file
	User space
	Summary: SW elements in designing boot time
	Single-user boot times on the Catalog EVMs
	Single user boot times on catalog EVMs
	How the single user boot time was measured
	Closer look at components of a BBB boot time using init=/bin/sh – eMMC
	Breakdown of time to ramp TPS65271c
	Closer look at components of AM437SK boot time�using init=/bin/sh – SD
	Closer look at components of AM572x-IDK boot time�using Falcon mode & init=/bin/sh
	Summary: Single user boot times on Catalog EVMs
	Designing System Boot Time
	Designing system boot time
	Review: Designing boot time
	Rough numbers to start analysis
	Review: Falcon mode or full MLO/U-boot
	Review: Kernel initialization
	Review: User space initialization
	Review: User space initialization – (cont.)
	Boot time reduction becomes an asymptotic effort
	Summary: Designing system boot time
	Training summary
	For more information

